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Abstract: Knowledge tracing (KT) serves as a primary part of intelligent education systems. Most
current KTs either rely on expert judgments or only exploit a single network structure, which affects
the full expression of learning features. To adequately mine features of students’ learning process,
Deep Knowledge Tracing Based on Spatial and Temporal Deep Representation Learning for Learning
Performance Prediction (DKT-STDRL) is proposed in this paper. DKT-STDRL extracts spatial features
from students’ learning history sequence, and then further extracts temporal features to extract
deeper hidden information. Specifically, firstly, the DKT-STDRL model uses CNN to extract the
spatial feature information of students’ exercise sequences. Then, the spatial features are connected
with the original students’ exercise features as joint learning features. Then, the joint features are
input into the BiLSTM part. Finally, the BiLSTM part extracts the temporal features from the joint
learning features to obtain the prediction information of whether the students answer correctly at the
next time step. Experiments on the public education datasets ASSISTment2009, ASSISTment2015,
Synthetic-5, ASSISTchall, and Statics2011 prove that DKT-STDRL can achieve better prediction effects
than DKT and CKT.

Keywords: prediction; learning performance; e-learning; deep learning; knowledge tracing;
knowledge representation; spatial feature; temporal feature; convolutional neural network;
bidirectional long short-term memory

1. Introduction

At present, learning management systems (LMSs), are widely welcomed [1]. LMSs are
software systems for distance education based on the internet. LMSs have the functions of
managing students and learning resources, providing students with the services of online
learning, exercises, tests, communication, registration, scheduling, logging, and so on [2].
The typical LMSs can be divided into categories of open LMSs (e.g., EdX, Moodle [3]),
customized LMSs (e.g., ASSISTments [4]), and learning management ecosystems [2,5].
LMSs have rich resources, flexibility, and convenience, which brings new development
opportunities for intelligent education [6]. As a crucial research branch of intelligent
education, knowledge tracing (KT), which promotes solving the problem of personalized
tutoring for learners, has attracted more and more attention [7]. KT can model and analyze
the data of interactions from learners practicing online to obtain the potential law of the
change of different students’ knowledge status, and then predict students’ future learning
performance [8]. Specifically, knowledge tracing can model the students’ practice process
by logistic function, machine learning (such as hidden Markov models) or deep learning
(such as recurrent neural networks, graph neural networks) algorithm models based on the
students’ practice records collected by LMSs such as ASSISTments and Coursera. Through
the modeling and analysis of the interaction process between students and exercises, KT
models can learn parameters about the hidden state of students’ mastery of knowledge
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points (the probability of successfully mastering the corresponding knowledge points of
exercises) from the explicit answer history sequence and then can output the prediction
of whether the student can answer the next question correctly or not. This is because it is
generally believed in the field of education that exercises can test students’ grasp of the
knowledge points contained in the exercises, and students’ grasp of the knowledge points
can also be reflected through exercises. KT can analyze and predict the learning status of
different students, which is helpful for LMSs to provide personalized learning programs
and help students improve learning efficiency [9]. When most students can achieve better
learning results, the educational level and social economy are expected to usher in further
prosperity and development. As a result, more research has been conducted on KT.

Today, there are many KT models. First of all, Bayesian knowledge tracing (BKT) was
proposed in 1994 [8], which took whether students have mastered a certain knowledge point
or not as a hidden variable and used a hidden Markov model (HMM) to model its changes
in the learning process. BKT has laid an important foundation for the development of KT.
For a long period of time, the research on KT has mainly focused on the improvement
and application of BKT, such as Knowledge Tracing: Item Difficulty Effect Model (KT-
IDEM) [10] and Personalized Clustered BKT (PC-BKT) [11]. However, the traditional KT
models represented by BKT were limited by manual tags and were limited by modeling and
analyzing single concepts. Then, deep knowledge tracing (DKT) [12] was put forward in
2015, which applied recurrent neural networks (RNNs) to modeling the learning process of
students and predicting their future performance. DKT solved the problem of the discrete
modeling of knowledge points without manually annotating the relationship between
exercises and knowledge points. Since then, more and more deep learning (DL) techniques
have been introduced into KT modeling tasks. For example, dynamic key-value memory
networks (DKVMNs) [13] brought in and improved memory-augmented neural networks
(MANNs) to automatically discover knowledge points in exercises and predict students’
knowledge state; convolutional neural networks (CNNs) were introduced into CKT [14]
to analyze students’ personalized phased learning characteristics and predict learning
performance. GKT [15] built a graph neural network (GNN) by using the correlation
between knowledge points to predict learning performance. The KT models based on
deep learning had significant advantages in automatically extracting features, which was
suitable for mining potential rules from massive data without manual operation. Compared
with traditional KTs, KTs on the basis of DL catered to the development of big data in
education. However, the existing KT models had the problem that they expressed features
inadequately. It can be found that most of the existing KTs on the basis of DL used
relatively single network structures. For example, DKT just used RNN or LSTM to extract
the temporal features of students’ learning sequences, CKT just used CNN to extract
the spatial features of students’ learning sequences, and GKT just used GNN to learn
the correlations between knowledge points. The feature extraction abilities of different
DL network structures have different advantages and disadvantages. So, KTs based on
single networks had limitations in sufficiently extracting features, resulting in insufficiently
mining and utilizing information based on original data and a difficulty in obtaining a
more accurate prediction.

To solve the problem that the KT model does not adequately express deep features,
we propose Deep Knowledge Tracing Based on Spatial and Temporal Deep Representation
Learning for Learning Performance Prediction (DKT-STDRL) , which can fully explore
and comprehensively utilize the spatial and temporal characteristics of students’ exercise
sequences, so as to obtain more accurate prediction results.. Inspired by DKT [12] and
CKT [14], this model combines the students’ exercise history and the spatial features as
the joint learning features to further extract the temporal features of students’ learning
process. Specifically, for a given sequence of students’ answer performance, we first
extract the spatial features of students’ exercise sequences by using multilayer convolution
neural networks. The spatial features can represent the learners’ personalized learning
efficiency, which can be reflected from the performance of continuous problem solving [14].
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Then, we extract the temporal characteristics of learners’ learning performance sequences
through bidirectional long short-term memory (BiLSTM) [16] based on the combination
of spatial learning features and the original response performance. The temporal features
can represent the changing process of students’ knowledge state. Because of the sufficient
utilization of bidirectional sequence signals by BiLSTM [17], the DKT-STDRL considers
both the past and future learning performance of students so that a better judgment of the
current time can be obtained.

We sum up our main contributions as follows:

1. A new KT model is proposed by us, which is called Deep Knowledge Tracing Based
on Spatial and Temporal Deep Representation Learning for Learning Performance
Prediction (DKT-STDRL). This model tries to combine the advantages of CKT [14] and
DKT [12] in extracting the spatial features and temporal features of students’ learning
process, so as to mine students’ learning characteristics in two ways;

2. The DKT-STDRL model combines the spatial features of students learning sequence
over the past period of time extracted by the multilayer convolutional neural network
with the data of students’ historical answers to obtain the joint learning features. Then,
we employ BiLSTM to further learn the time-series information of the joint learning
features. The overlapped neural networks make the model take into account the
spatial learning features when extracting the temporal features of students learning,
so it is conducive to mining and obtaining deeper learning information of students;

3. We use BiLSTM to perform a two-way time series analysis of the joint learning features,
which enables the model to analyze the learning features of students at each time step
from both a past and future perspective, so as to obtain more accurate predictions;

4. We conducted sufficient experiments on five commonly used public educational
datasets to demonstrate that DKT-STDRL obviously outperforms the CKT [14] and
DKT [12] models on ACC, AUC, r2, and RMSE;

5. We completed enough experiments to compare the prediction performance of DKT-
STDRL with DKT [12], CKT [14], and four variants of DKT-STDRL (DKT-TDRL,
DKT-SDRL1, DKT-STDRRP, and DKT-STDRRJ) when they are set up with the same
hyperparameters on the same datasets, to observe the impacts of the different as-
pects of spatial features, temporal features, prior features, and joint features on the
prediction metrics.

The rest of the paper is organized as follows: first, Section 2 provides a brief overview
of the research work on KT and the research motivations. Then, in Section 3, we formally
define the problem to be solved by the KT task, the implementation details of the compo-
nents of the DKT-STDRL model structure, and the loss function. Section 4 compares the
experimental results of DKT-STDRL with CKT, DKT, and the variants of the DKT-STDRL
model on the same five open datasets. At last, the conclusion of this paper and prospective
research work are pointed out in Section 5.

2. Related Work and Motivation

The work of KT is partitioned into two phases in general: the development of KT
models on the basis of traditional research methods and the development of KT models on
the basis of deep learning.

The first stage of KT development is from 1994 to around 2015. During this period,
the research on KT was mainly based on traditional research methods, such as probability
maps and psychological theories. Among them, probability map-based models represented
by Bayesian knowledge tracing (BKT) [8] were the main part. BKT took the knowledge state
of whether students mastered a knowledge point or not as a hidden variable, the result of
whether they answered correctly the corresponding questions of the knowledge point or
not as an observation variable, and used the hidden Markov model to represent the changes
of the skills status of learners, and then predicted the probability that learners acquired
the skill point. BKT solved the problem of KT for the first time. Subsequent research has
also produced some variants of BKT that improved the performance of BKT in different
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ways. For example, C. Carmona et al. proposed introducing a layer structure to represent
the prerequisite relationships in actual educational scenarios, consequently acquiring a
more accurate model used for predicting students’ knowledge status [18]. KT-IDEM [10]
was proposed to more accurately predict students’ practice performance by adding the
dependence of item difficulty to the probability map. BKT and its variants had simple
structures and strong explanatory ability. During this period, BKT was of great significance
in constructing intelligent tutorial systems and learning management systems, such as the
ACT Programming Tutor [8] and edX [3]. For example, BKT improved the prediction of the
test performance on the ACT Programming Tutor of students through modeling the change
of the probability that the student grasped each rule [8]. EdX used variants of BKT to acquire
students’ practice performance on several questions in the past period, modeling students’
mastery of knowledge components and, thus, predicting students’ test performance in a
later period. This helps to analyze the learning effect of students on the edX platform [3].
However, BKT and its variants ignored the long-term temporal dependence of students
learning process because they were based on a Markov chain structure. Furthermore,
BKT was not suitable for future scenarios with large amounts of data, because it relied on
labeling the data manually. In addition, some scholars have applied psychological theory to
KT, such as item response theory (IRT) [19], DINA [20], and so on. Although models based
on psychometric measurement theory could be well interpreted, the simple parameter
settings limited the models’ ability to encode complex features. Therefore, though a number
of effective models emerged in the first stage of KT, the model structures were too simple
to express more complex features. Moreover, there was a bottleneck in the development of
data processing due to the need for manual operation.

The second stage of KT is from 2015 to the present. In 2015, deep knowledge tracing
(DKT) [12] was proposed, marking the beginning of an era in which DL technologies drove
the evolution of KT. DKT used long short-term memory (LSTM) to learn the procedure
that the learners’ skill status changed and made a prediction about learners’ future exercise
performance. Compared with BKT, the LSTM model used by DKT could make use of
long-term time series dependence, which conformed to the long-term dependence of the
state of knowledge at each moment in the actual learning process and helped to obtain
more accurate prediction results. In addition, DKT could automatically extract features
without labeling them, which saved labor costs and avoided human errors. However, DKT
only considered whether students answered correctly or not, ignoring other characteristics
of the learning process. Liang Zhang et al. supplemented other relevant features, (such
as time, reminder utilization, and attempt counts) collected by education information
platforms to the DKT model and acquired more accurate prediction outputs [21]. Although
the model could predict better by adding the exercise performance information in other
aspects, these features were difficult to fully express the student’s personalized learning
features. Shuanghong Shen et al. proposed convolutional knowledge tracing (CKT) [14],
which used convolutional neural networks (CNNs) to extract students’ personalized prior
knowledge and learning rates from their answer histories. Although extracting and uti-
lizing personalized learning features could improve prediction accuracy, characterizing
temporal changes was not sufficient because only a gate linear unit (GLU) [22] was used to
control the forward temporal dependence of personalized prior knowledge. GritNet [17]
bidirectionally analyzed students’ exercise records by BiLSTM to predict students’ fu-
ture performance, which fully extracted the temporal features of the learning process,
namely, the knowledge state for each knowledge point during each practice interaction.
In the whole learning process, temporal factors such as remebering and forgetting could
affect the students’ mastery of knowledge at set intervals. Neural networks could learn
representation features of the potential knowledge mastery state under the influence of
these temporal factors. However, it did not take into account other learning features,
such as personalized prior knowledge features or individualized learning rate features.
Moreover, the experimental dataset, Udacity data, was not commonly used. Moreover,
GritNet was only proved to be superior to the standard logistic-regression-based method.
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The dynamic key-value memory network (DKVMN) [13] employed the idea of memory-
augmented neural networks (MANNs), which recorded and updated the knowledge points
and students’ mastery of knowledge with two matrices, respectively. DKVMN had an
advantage in explanation. GKT [15] built a graph neural network (GNN) [23] on the basis
of the association between knowledge points, which could help improve prediction and
interpretation performance [15]. Sequential key-value memory networks (SKVMN) [24]
employed the triangular membership function to diagnose students’ mastery of knowledge
concepts and used the improved LSTM to capture the features of the learning process,
which showed good performance in prediction accuracy and explanation. Qi Liu et al.
attempted to combine the students’ exercise performance with the features extracted from
the test content, and proposed an exercise-enhanced recurrent neural network (EERNN)
and EKT [25], which exploited BiLSTM, a Markov property, or an attention mechanism.
The experiment proved that supplementing the feature information of the problem content
could help advance the prediction effect. The self-attention mechanism was utilized in
self-attentive knowledge tracing (SAKT) [26] to model learners’ performance on related
questions, and then to predict learners’ future responses. It solved the sparse dataset
problem and achieved good prediction results. Although previous research has made up
for the deficiencies in different aspects of KT models and promoted the development of
KT based on deep learning, most models had relatively simple feature extraction methods,
leading to the inadequate use of information on students’ practice records. A comparison
of previous main research in KT is shown in Table 1.

As far as we knew, there were spatial features and temporal features in students
learning sequences, which had location correlations and time correlations. The spatial
features can be extracted by CNN. Typical CNN [27] structures were mainly composed of
convolution layers and pooling layers alternately, among which the core was the convolu-
tion layer. The convolution layer contained multiple convolution kernels. The convolution
kernel contained multiple parameters. By translating the convolution kernel to scan dif-
ferent positions of samples, parameters in the convolution kernel could learn some local
features in the sample space, which was conducive to the judgment of classification. The
pooling layer played the role of sub-sampling to reduce model parameters and reduce
model complexity. CNN was often used for two-dimensional image processing, such
as handwriting recognition [27], due to its good spatial feature extraction ability. One-
dimensional sequence samples could be regarded as special two-dimensional structures,
so CNN was also suitable for processing time-series data, such as natural language pro-
cessing [28], and only one-dimensional convolution kernels were required. In KT, we used
one-dimensional convolution to extract the spatial features of students’ practice sequences.
In addition, temporal features can be extracted by BiLSTM [16]. BiLSTM is a method based
on LSTM [29] for bidirectional parameter learning, which consists of circularly connected
memory modules. Each module contains three gate units, which are used to control the
input, output, and forgetting operations of transmitted information. Through this gating
mechanism, the long-term dependence of the information transfer process was solved,
which was conducive to the time series analysis of samples. LSTM and BiLSTM were often
used in sequence learning tasks [16], such as word sequence processing. In KT, we used
BiLSTM to extract the temporal features of student exercise sequences. Therefore, we
tried to integrate CNN and BiLSTM to extract the spatial features and temporal features
of interaction sequences, which helped to use feature information fully [30]. In addition,
the BiLSTM further improved the adequate utilization of the information by extracting
features in both directions.
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Table 1. Comparison of previous main research in KT. The “Category” column represents the two main types of knowledge tracing methods, the “KTs” column
stands for the different knowledge tracing models, the “Year” column is the year that the knowledge tracing model was firstly published, the “Technology” column
means the main machine learning or deep learning techniques used, the “Key Article” column shows the key articles involved in the method, the “Utility” column
serves as the educational application scenarios, and the “Characteristics” column summarizes the main features of the knowledge tracing method.

Category KTs Year Technology AUC Key Article Utility Characteristics

Probability Graph BKT 1994 HMM 0.670 Corbett et al. [8] Programming performance pre-
diction Single knowledge

based KT KT-IDEM 2011 HMM+IRT 0.690 Pardos et al. [10] Performance prediction on math
exercises Ignore long term dependences

DKT 2015 RNN/LSTM 0.805 Piech et al. [12] Performance prediction on math
courses Multiple knowledge, single feature

DKT+ 2017 RNN/LSTM 0.863 Zhang et al. [21] Performance prediction on statis-
tics courses Multiple knowledge, multiple features

DKVMN 2017 MVNN 0.816 Zhang et al. [13] Performance prediction on math
exercises Adaptively update knowledge mastery

Deep Learning SKVMN 2019 LSTM+MVNN 0.836 Abdelrahman et al. [24] Performance prediction on scien-
tific courses Multiple knowledge, long-term dependencies

based KT GKT 2019 GNN 0.723 Nakagawa et al. [15] Performance prediction on math
courses

Model relationship between exercises and
knowledge

EKT 2019 LSTM 0.850 Liu et al. [25] Performance prediction on math
courses Apply semantic information of exercises

SAKT 2019 FFN+MSA 0.848 Pandey et al. [26] Performance prediction on scien-
tific courses Model relationship among knowledge points

CKT 2020 CNN 0.825 Shen et al. [14] Performance prediction on math
exercises Extract spatial features



Appl. Sci. 2022, 12, 7188 7 of 21

3. Proposed Method
3.1. Problem Definition

The function of KT is described as follows: for a given dataset of students’ exercise
performance history, the interaction sequence when a student answers l times can be
expressed as U l = (u1, u2, u3, . . . , ut, . . . ul), where l is the length of the sequence. ut =
(st, rt) represents the exercise record of the student at time step t, st is the number of the
question at time step t, and rt represents the corresponding answer result. rt has only
two values: 0 or 1. When rt = 1, the student answered the question correctly at the
corresponding time step. When rt = 0, the student answered the question incorrectly at
the corresponding time step. KT uses U l to learn the students’ skill status, for predicting
whether the students can successfully solve the problem st+1 at each next time step t + 1,
namely, rt+1.

3.2. Model Architecture

Deep Knowledge Tracing Based on Spatial and Temporal Deep Representation Learn-
ing for Learning Performance Prediction (DKT-STDRL) consists of 3 parts: the part of
extracting the spatial features of students’ learning sequences by CNN, the part of interme-
diate data processing, and the part of extracting students’ temporal features in the learning
process by BiLSTM. In the part of spatial feature extraction, a multi-layer convolutional
structure [27] is used to obtain students’ personalized learning efficiency information as
supplementary information. The goal of the intermediate data processing part is to com-
bine the students’ practice history and personalized learning efficiency information for the
subsequent sequence feature extraction part. Therefore, the intermediate data processing
part merges the one-hot coded spatial features and the exercise history features into the
joint features of student learning, and then passes them to the next part. The next part,
namely, temporal feature extraction, adopts the BiLSTM [16] structure to further extract
bidirectional time-sequence features from the student learning joint features, so as to obtain
the information about the change of students’ knowledge state in the learning process and
then predict students’ performance in the next time slice. The architecture diagram of
DKT-STDRL is shown in Figure 1.

As shown in Figure 1, it can be noted that the DKT-STDRL improves the model
structure of DKT [12] and CKT [14].

DKT directly used LSTM [29] to extract the temporal features (hidden knowledge
state of students) of the sequences from the students’ practice history, and then output
the prediction results of the next time slice [12]. Compared with DKT, DKT-STDRL is
improved in two aspects. First, the input information of the sequential learning structure is
more abundant. The information data extracted from sequence features is no longer only
the original student practice records, but also includes the spatial features extracted from
the student practice sequences using CNN [27]. In this way, the spatial features can be
regarded as abstract characteristics of students’ personalized learning efficiency. Spatial
features are added as the input of the temporal feature extraction structure for analyzing
and predicting students’ practice sequences from the spatial perspective before analyzing
students’ practice sequences from the temporal perspective. Thus, the learning analysis
process of the model is more comprehensive, because the change of knowledge states
of students in the learning process and the influencing factors of students’ personalized
learning efficiency are analyzed at the same time, and then a more accurate prediction can
be obtained. Secondly, the learning ability of the structure for temporal features learning
is improved. The temporal features learning structure is changed from LSTM [29] to
BiLSTM [16], which enables the model to learn not only the forward sequence features, but
also the reverse sequence features. The two-way learning mode enhances the ability of the
model to adjust internal parameters so that it is easy to obtain more accurate prediction
results. The extraction method of bidirectional temporal features is in line with the practical
significance, which enables the KT model to consider students’ future performance as well
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as their past performance, which enables more accurate judgments to be obtained when
analyzing students’ knowledge mastery at each time step.
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Figure 1. The architecture of the DKT-STDRL model. The red text in the figure shows the shape of
the data, where batch equals the batch size. k represents the max sequence length. n is the number of
dimensions of the embedding matrix. M is the count of different skills. g is the number of units of
each LSTM module.
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CKT [14] extracted the characteristics of personalized prior knowledge from students’
practice records, and then extracted the characteristics of the learning rate based on the
characteristics of the personalized prior knowledge using CNN [27], then outputting the
prediction. Although the spatial features of student practice sequences are extracted, CKT
has defects in temporal feature extraction. Compared with CKT [14], DKT-STDRL enhanced
the time series feature extraction capability of CKT. After simple processing, the spatial
features extracted from sequences are input into the BiLSTM structure to further extract the
bidirectional temporal features. In this way, the prediction output of the model is based
on the comprehensive analysis of spatial features and temporal features, which is to say
that our model can simultaneously analyze the personalized learning rate of students and
the change of knowledge state of students in the learning process, and it is thereby easy to
obtain more accurate prediction results.

3.2.1. Using CNN to Extract Spatial Features of Students’ Learning Sequences

Because CKT has significant advantages in modeling students’ personalized learning
interaction process [14], DKT-STDRL borrows the CKT model structure. Different from
CKT, this component of the DKT-STDRL model needs only to extract the spatial features of
students’ learning sequences without predicting the performance of the next time step. The
steps are as follows:

1. Convert the input to an embedded matrix.
In order to make the model better extract spatial features of students’ learning process,
CKT uses the embedding matrix to represent the given students’ exercise history Uk. k
is the max sequence length. Specifically, st is randomly initialized as an n-dimensional
vector st by embedding; n is far less than the total counts of knowledge points in the
whole dataset M. Then, according to whether the answer result is correct or not, the
same n-dimensional zero vector is spliced on the right or left side of st, so that Uk is
transformed into a k× 2n dimensional matrix through embedding [14];

2. Calculate the prior knowledge of different students.
Because the learners’ prior knowledge varies with each individual and can be reflected
by students’ past exercise performance and correct ratio on relevant skills [31], CKT
obtains the prior knowledge of different students by calculating values for historical
relevant performance (HRP) and concept-wise percent correct (CPC) [14];

3. Calculate the learning rate of different students.
Because the learning efficiency of different students is different, and the continuous
exercise performance of students over a period can reflect the learning efficiency
of different students in different learning stages, CKT extracts the learning rate of
different students through multi-layer CNN.

Through the above process, the spatial learning features of students’ learning se-
quences can be obtained. The process is visualized by the formula as follows:

et =

{
[st ⊕ 0], if rt = 1
[0⊕ st], if rt = 0

(1)

FLIS = (e1, e2, . . . , ek)
> (2)

{
relationt(j) = Masking

(
sj · st

)
, j ∈ (t, k)

weightt(j) = Softmax (relationt(j)), j ∈ (1, k)
(3)

FHRPt(t) =
t−1

∑
j=1

weightt(j)ej (4)

FCPCt(m) =
∑t−1

j=0 rm
j == 1

total(sm)
(5)
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{
F JPF = FLIS ⊕ FHRP ⊕ FCPC
F ILA =

(
F JPF ∗W3 + b3

)
⊗ σ

(
F JPF ∗W4 + b4

) (6)

FKS = {GLU(Conv 1d(F ILA))}3 (7)

where FLIS is the embedded matrix expression of the learning interaction sequence Uk.
Masking is an operation used to exclude subsequences. weight is used to estimate the
resemblance between the present question and the previous question, and to then com-
prehensively analyze the impact of previous exercise performance on the current exercise.
FHRP is a historically related performance feature. m is the number of the knowledge point.
FCPCt(m) indicates the correct rate when the student answers the question of a knowledge
point at a certain time. F JPF is the prior knowledge feature obtained by connecting FLIS,
FHRP, and FCPC. The spatial features of people’s studying processes FKS can be obtained
from F JPF through 3 layers of nonlinear transformations of a gated linear unit (GLU) and
one-dimensional convolution operation [14].

3.2.2. Intermediate Data Processing

The main goal of intermediate data processing is to take the spatial features extracted
from the previous part as supplementary information regarding students’ original exercise
features, and then input them into the next part to extract the temporal features of students’
learning process. Specifically, firstly, the spatial learning features FKS are activated by
the sigmoid function. Then, the processed spatial features are suitable for the next part
after classification and one-hot coding. Finally, the spatial features are combined with the
student learning record sequences processed by one-hot coding to form joint features as
the input of BiLSTM. The process is shown by the formula as follows:

F ′KS = σ(FKS) (8)

F ′′KS(t) =

{
1, if F ′KS > 0.5
0, if F ′KS ≤ 0.5

(9)

AP1(t) = F ′′KS(t) ·M + st (10)

F ILF = OneHot(AP1, 2M) (11)

AP2(t) = (1− rt) ·M + st (12)

FLRS = OneHot(AP2, 2M) (13)

FLJF(t) = F ILS(t)⊕ FLRS(t) (14)

where AP1 and AP2 are used to calculate the position of 1, which is used for the one-hot
coding transformation of the spatial features and learning record sequence. F ILF represents
the spatial features encoded by one-hot, and FLRS represents the learning record sequences
encoded by one-hot. The two are connected and combined to form the joint feature of
students’ learning FLJF. FLJF is a k× 4M matrix.

3.2.3. Using BiLSTM to Extract the Temporal Features of Students’ Learning Process

Inspired by GritNet [17], this part of the model introduces BiLSTM to extract the
temporal features of students’ studying procedures and make a prediction about learners’
recent learning effect. Because BiLSTM can pass information forward and backward at
the same time, the DKT model with the BiLSTM structure can make use of students’ past
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exercise performance information and future exercise performance information at the same
time. Compared with the original DKT consisting of the LSTM structure, which can only
use past information, the DKT based on the BiLSTM structure can use more sufficient
information to adjust the parameters of the model, so as to obtain more accurate judgment
results. The processing process of intermediate data in this part is as follows:

−→
ht = LSTM

(
FLJF(t),

−−→
ht−1

)
(15)

←−
ht = LSTM

(
FLJF(t),

←−−
ht+1

)
(16)

ht =
−→
ht ⊕

←−
ht (17)

h′t = ht ∗W5 + b5 (18)

where
−→
ht is the hidden state in chronological order when it is time step t.

←−
ht is the hidden

state in reverse time order when it is time step t.
−→
ht and

←−
ht are combined to obtain ht, and

ht is the temporal features of students’ learning process extracted by BiLSTM. h′t can be
regarded as the hidden knowledge state after comprehensive analysis. Through h′t and
an exercise sequence, the exercise performance at the next time step pt+1 can be easily
obtained by simply finding the knowledge state of the corresponding problem and being
dealt with by the sigmoid function.

3.3. Optimization

In order to optimize the model, the loss function of cross-entropy and the Adam
optimizer are adopted. The loss function is as follows:

Loss = −
l

∑
i=1

(ri log pi + (1− ri) log(1− pi)) (19)

4. Results and Discussion
4.1. Experimental Datasets

For the purpose of fair comparison with other KTs, experiments were conducted on the
same public datasets to obtain the models’ performance. These datasets were the classical
datasets that are commonly exploited in KT research. Descriptions of the datasets are
shown in Table 2.

Table 2. Introduction of the datasets.

Dataset Students Skills Records

ASSISTment2009 4151 110 325,637
ASSISTment2015 19,840 100 683,801

Synthetic-5 4000 50 200,000
ASSISTchall 1709 102 942,816
Statics2011 333 1223 189,297

The ASSISTment2009 dataset comes from the log data of students performing math
exercises in 2009, which were collected by the ASSISTments platform [32]. The original
version of the dataset contained 123 skills. Skills corresponded to exercise tags, such as
prime numbers or linear equations in math problems. For the convenience of representation,
the exercise tags were mapped to some numbers in the dataset. In other words, a skill
ID represented an exercise tag in these KT datasets. Later, it was found that there were
duplicate records of the data, which affected the reliability of the prediction results of the
DKT model [33]. Therefore, experiments in this paper adopted the version after removing



Appl. Sci. 2022, 12, 7188 12 of 21

duplicate records. The total number of skills involved in this version of the dataset has
been reduced to 110.

The ASSISTment2015 dataset comes from the data collected by the ASSISTments
platform in 2015.

The Synthetic-5 dataset is from the paper which proposed DKT. The dataset is a set of
unreal datasets constructed for experiments and does not correspond to the actual skills [12].
However, the dataset is of good quality and is still suitable for many experimental studies
in KT founded on DL.

The ASSISTchall dataset was gathered when learners utilized the ASSISTments plat-
form and was used for an educational data mining competition in 2017.

The Statics2011 dataset originates from online college-level statistics lessons [34].
When using the datasets mentioned above, the student whose records are less than

or equal to two were regarded as invalid records and were removed from the sample sets,
as the student records with too few practice records could not reflect the real learning
situation of the student and were not applicable to the time-series model [21]. There
were various situations leading to a student only practicing twice. The student may have
already mastered a particular skill, and thus did not need practice. The student may also
have given up the exercise because it was too difficult. So, the student records with two
practice records did not seem reliable enough to reflect students’ real learning situation.
The training of neural networks relies on reliable samples on a large scale to obtain accurate
results. So, we removed the students with less than two practice records, which could affect
the whole model.

A portion of the dataset is shown in Figure 2.

Stu_ID: 57
K_ID 22 23 18 40 40 40 24 60 19 34 …

Response 1 0 1 0 0 1 0 1 1 0 …

Stu_ID: 6
K_ID 35 13 41 12 35 12 13 41 34 29 …

Response 0 1 1 0 0 1 1 1 1 1 …

Stu_ID: 198
K_ID 18 33 18 69 73 20 21 21 24 24 …

Response 0 1 1 0 1 1 0 0 1 0 …

Student ID 

Knowledge ID 

Student Response Sequence

Figure 2. Description of a portion of the dataset.

4.2. Experimental Environment

The experiments for analyzing the models cannot be completed without the support
of an effective software and hardware environment. A description of the main hardware
and software environment configurations is shown in Table 3.
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Table 3. Description of the experimental environment.

Configuration Environment Configuration Parameters

Operating System Windows 10 64-bit
GPU gtx 1080ti
CPU E5 Series (4 cores)

Memory 16 GB
Programming language Python 3.6

Deep learning framework Tensorflow 1.5
Python library Numpy, Scikit-learn, Pandas, Matplotlib

4.3. Results and Discussion

During our experiments, we partitioned each dataset into three parts: a training set, a
validation set, and a test set. They, respectively, accounted for about 55%, 15%, and 30%
of the total students. The training set was used for training the model. The validation
set was used for adjusting hyperparameters. The test set was used for evaluating the
model. To obtain more reliable results, the experiments of each model on each dataset were
repeated three times, and the average values were taken as the evaluation result in terms
of RMSE, AUC, ACC, and r2. Considering the balance of the calculation resource and the
prediction accuracy, the hyperparameters were set as in Table 4. In fact, the DKT-STDRL
model can obtain more accurate predictions by changing the hyperparameters, regardless
of calculation resources.

Table 4. Hyperparameters of the DKT-STDRL.

Hyperparameters Value

Learning rate 0.001
Rate of decay for the learning rate 0.3

Steps before the decay 8
Batch size 50

Epochs 10
Shape of filters of the conv1d (16, 50, 50)

Layers of the hierarchical convolution 3
Keep probability for dropout of the

convolution 0.2

Number of units of each LSTM cell 30
Output keep probability of LSTM cell 0.3

Baselines comparison. For the sake of better verifying the validity of the new model,
DKT-STDRL was compared with DKT based on LSTM and CKT on the same dataset. As the
starting model of deep knowledge tracing, the DKT model based on LSTM had an important
reference value. In addition, because DKT-STDRL is an improvement based on the CKT
model, the comparison with the CKT model was essential. We refer to and reproduce
the code of DKT and CKT as baselines, and obtain the evaluation results approach to the
reported results.

Table 5 compares the prediction effects of DKT-STDRL with DKT and CKT. It was
found in the experiments on the five datasets that our DKT-STDRL outperforms the DKT
and the CKT in terms of RMSE, AUC, ACC, and r2. Specifically, for ASSISTments2009,
DKT-STDRL achieved an RMSE of 0.2826. It decreased by 11.8% and 10.86% compared,
respectively, with DKT and CKT. DKT-STDRL achieved an AUC of 0.9591. It increased by
15.42% and 13.54% compared, respectively, with DKT and CKT. DKT-STDRL achieved an
ACC of 0.8904. It increased by 12.41% and 11.56% compared, respectively, with DKT and
CKT. DKT-STDRL achieved r2 of 0.644. It increased by 36.05% and 32.59% comparedm
respectively, with DKT and CKT. For ASSISTments2015, Synthetic-5, ASSISTchal, and
Statics2011, DKT-STDRL had similar performance. Experiments verify the prediction effect
of the model from two aspects: classification and regression. AUC and ACC of DKT-STDRL
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were gained. Therefore, the DKT-STDRL model can better classify the prediction results of
whether students can answer correctly or not. Moreover, from the perspective of regression,
the reduction of RMSE with DKT-STDRL reflects that the new model is more accurate in
predicting the probability of students answering correctly or incorrectly. In addition, the r2

of DKT-STDRL has been significantly improved, which shows that the prediction results of
the new model are highly correlated with the actual exercise performance of students. The
new model learns the essential law of the change of students’ knowledge state from the
sample data. Therefore, the DKT-STDRL model promotes present KT models predicting
more accurately.

Table 5. Comparison of experimentation results among DKT-STDRL, DKT, and CKT models.

Datasets Models RMSE AUC ACC r2

ASSISTment2009
Ours 0.2826 0.9591 0.8904 0.6440
DKT 0.4006 0.8049 0.7663 0.2835
CKT 0.3912 0.8237 0.7748 0.3181

ASSISTment2015
Ours 0.0766 0.9996 0.9948 0.9698
DKT 0.4131 0.7235 0.7504 0.1235
CKT 0.4107 0.7322 0.7542 0.1338

Synthetic-5
Ours 0.3167 0.9482 0.8790 0.5766
DKT 0.4109 0.8167 0.7475 0.2868
CKT 0.4051 0.8279 0.7553 0.3075

ASSISTchall
Ours 0.2716 0.9710 0.9078 0.6847
DKT 0.4538 0.7022 0.6791 0.1198
CKT 0.4500 0.7127 0.6857 0.1342

Statics2011
Ours 0.2772 0.9499 0.9010 0.5621
DKT 0.3697 0.8012 0.8054 0.2216
CKT 0.3630 0.8232 0.8101 0.2496

Comparison of the variants of the DKT-STDRL. The experiments for comparing
DKT-STDRL with its variants, by removing different parts, are helpful to understand the
importance of various components in the DKT-STDRL model for advancing the prediction
effect of the whole model. Therefore, in addition to the CKT and DKT, four variants were
designed by us to observe the different impacts on the prediction effect from the aspects of
spatial features, temporal features, prior features, and joint features. The four variants are
described as follows:

• DKT-TDRL. To study the influence of spatial features on the prediction effect of the
DKT-STDRL model, we removed the part of extracting spatial features with CNN from
the DKT-STDRL model and obtaine dthe variant model DKT-TDRL. Specifically, the
DKT-TDRL model first takes the input data represented by the embedding matrix and
the students’ personalized prior knowledge state as the prior feature. Then, through
the intermediate data processing process, it is input into BiLSTM for bidirectional time
feature extraction. Finally, the prediction result is output;

• DKT-SDRL1. For the purpose of studying the impact of time features of DKT-STDRL
on the prediction effect, the part of extracting time features was removed from the DKT-
STDRL model. Since DKT-STDRL adopts BiLSTM to the express bidirectional feature
of the sequence, two schemes can be obtained to study the influence of unidirectional
and bidirectional temporal feature extraction, respectively. The first scheme is to
remove the bidirectional temporal feature extraction structure of the DKT-STDRL
model. Following this idea, to obtain the prediction results of the next time step, the
model is transformed into the CKT model. The second scheme is to change the BiLSTM
structure of the DKT-STDRL model into the LSTM structure, which can show the
influence of one-way temporal output on the prediction effect of the model. Then, we
can compare the difference between two-way time characteristics and one-way time
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characteristics in solving the prediction problem of students’ learning performance. We
abbreviate the second scheme as DKT-SDRL1. Specifically, DKT-SDRL1 first extracts
and uses the prior learning features, and then a multi-layer convolution structure is
used to extract students’ spatial learning features. Then, after a simple intermediate
process, it is input to the one-way temporal feature extraction layer based on LSTM.
Finally, the prediction results are output;

• DKT-STDRRP. In order to study the influence of the prior learning features of the
DKT-STDRL model on the prediction effect, we removed the part of extracting the
prior learning features from the DKT-STDRL model. This variant model is called
DKT-STDRRP. DKT-STDRRP transforms the input students’ learning history data
into an embedded matrix, and then extracts spatial features through CNN layers and
extracts bidirectional temporal features through the BiLSTM layer, so as to predict
students’ learning performance. By comparing the prediction results before and after
removing the prior learning features, it is helpful to intuitively understand the role of
the prior features in the task of predicting learning performance;

• DKT-STDRRJ. For studying the impact of the joint features in the DKT-STDRL model
on the prediction, the process of merging the one-hot coded exercise history data is
removed from the DKT-STDRL model in the intermediate data processing. In other
words, the variant scheme keeps the structure of the first half of the DKT-STDRL
model unchanged, inputs the one-hot coded spatial features directly into the temporal
feature extraction part, and then obtains the final prediction result. This scheme is
called DKT-STDRRJ.

Table 6 shows the prediction performance of DKT-STDRL, CKT, DKT, and the variants
of DKT-STDRL (DKT-TDRL, DKT-SDRL1, DKT-STDRRP, and DKT-STDRRJ) on the ASSIST-
ment2009, ASSISTment2015, Synthetic-5, ASSISTchall, and Statics2011 datasets. It should
be noted that different models are based on the same hyperparameters in the experiments
on the same datasets. Because as parts of the DKT-STDRL, other models should keep the
same settings to make only the model structure different in each experiment.

In order to more intuitively compare the prediction effect of these models, Figure 3
displays the prediction results of all models on the ASSISTment2009 dataset in the bar
charts. Figure 4 displays the prediction results of all models on the ASSISTment2015 dataset
in the bar charts. Figure 5 displays the prediction results of all models on the Synthetic-5
dataset in the bar charts. Figure 6 displays the prediction results of all models on the
ASSISTchall dataset in the bar charts. Figure 7 displays the prediction results of all models
on the Statics2011 dataset in the bar charts. From these figures, it can be seen, obviously,
that the DKT-STDRL had a higher AUC, ACC, and r2, and a lower RMSE, than CKT, DKT,
DKT-SDRL1, and DKT-STDRRJ. Moreover, the AUC, ACC, and r2 of the DKT-STDRL were
a little higher than DKT-TDRL and DKT-STDRRP, and the RMSE of DKT-STDRL was a
little lower than DKT-TDRL and DKT-STDRRP. The model with higher AUC, ACC, and r2,
and lower RMSE, is better. So, DKT-STDRL is significantly better than CKT, DKT, DKT-
SDRL1, and DKT-STDRRJ. Moreover, DKT-STDRL is only a little better than DKT-TDRL
and DKT-STDRRP. Firstly, DKT-TDRL, regardless of extracting spatial features, raised the
RMSE no more than 2% and dropped the AUC, ACC, r2 no more than 2%, 0.7%, and 5%,
respectively. So, the spatial features have little benefit in improving prediction results.
Secondly, different from DKT-STDRL, DKT-SDRL1 learns unidirectional temporal features
instead of bidirectional features. As the results show, DKT-SDRL1 is significantly worse
than DKT-STDRL. Thus, the extracted bidirectional temporal features are very important
for DKT-STDRL. Thirdly, DKT-STDRL has many advantages compared with DKT-STDRRP.
Changing from DKT-STDRRP to DKT-STDRL can decrease the RMSE by over 2% and
increase AUC, ACC, and r2 by over 2%, 1.8%, 6.8%, repsectively. So, prior learning features
are also meaningful for obtaining a better model. Fourthly, DKT-STDRRJ has obvious
weaknesses in all the metrics. It can be inferred that merging exercise performance history
information with spatial features is necessary for the DKT-STDRL because the extracted
spatial features have information errors compared with the original data and cannot be
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directly input into BiLSTM. So, the spatial features, temporal features, prior features, and
joint features of DKT-STDRL play various roles in improving prediction.

Table 6. Comparison of experimentation results among the DKT-STDRL, CKT, DKT, and variants
of DKT-STDRL.

Datasets Models RMSE AUC ACC r2

ASSISTment2009

DKT-STDRL 0.2826 0.9591 0.8904 0.6440
DKT-TDRL 0.2845 0.9574 0.8896 0.6394

CKT 0.3953 0.8154 0.7687 0.3039
DKT-SDRL1 0.4265 0.7567 0.7370 0.1894

DKT 0.4293 0.7509 0.7338 0.1788
DKT-STDRRP 0.2878 0.9557 0.8861 0.6310
DKT-STDRRJ 0.4531 0.6736 0.6890 0.0853

ASSISTment2015

DKT-STDRL 0.0766 0.9996 0.9948 0.9698
DKT-TDRL 0.0799 0.9995 0.9942 0.9672

CKT 0.4099 0.7343 0.7546 0.1370
DKT-SDRL1 0.4176 0.7070 0.7475 0.1043

DKT 0.4183 0.7042 0.7468 0.1015
DKT-STDRRP 0.0801 0.9995 0.9943 0.9671
DKT-STDRRJ 0.4053 0.7581 0.7511 0.1563

Synthetic-5

DKT-STDRL 0.3167 0.9482 0.8790 0.5766
DKT-TDRL 0.3186 0.9469 0.8776 0.5714

CKT 0.4081 0.8241 0.7513 0.2972
DKT-SDRL1 0.4496 0.7283 0.6754 0.1469

DKT 0.4505 0.7269 0.6752 0.1432
DKT-STDRRP 0.3194 0.9461 0.8768 0.5693
DKT-STDRRJ 0.4716 0.6485 0.6417 0.0612

ASSISTchall

DKT-STDRL 0.2716 0.9710 0.9078 0.6847
DKT-TDRL 0.2790 0.9675 0.9009 0.6671

CKT 0.4503 0.7119 0.6846 0.1330
DKT-SDRL1 0.4683 0.6431 0.6642 0.0627

DKT 0.4682 0.6430 0.6648 0.0628
DKT-STDRRP 0.2854 0.9633 0.8942 0.6518
DKT-STDRRJ 0.4493 0.7170 0.6935 0.1371

Statics2011

DKT-STDRL 0.2772 0.9499 0.9010 0.5621
DKT-TDRL 0.2891 0.9395 0.8956 0.5220

CKT 0.3630 0.8241 0.8099 0.2496
DKT-SDRL1 0.3724 0.7942 0.8042 0.2103

DKT 0.3739 0.7891 0.8023 0.2036
DKT-STDRRP 0.2974 0.9275 0.8827 0.4940
DKT-STDRRJ 0.3756 0.7873 0.7995 0.1967

Figure 3. Prediction results of DKT-STDRL, CKT, DKT, and the variants of DKT-STDRL on the
ASSISTments2009 dataset.
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Figure 4. Prediction results of DKT-STDRL, CKT, DKT, and the variants of DKT-STDRL on the
ASSISTments2015 dataset.

Figure 5. Prediction results of DKT-STDRL, CKT, DKT, and the variants of DKT-STDRL on the
Synthetic-5 dataset.

Figure 6. Prediction results of DKT-STDRL, CKT, DKT, and the variants of DKT-STDRL on the
ASSISTchall dataset.

From the previous two types of comparison experiments, it can be found that our DKT-
STDRL has better prediction accuracy than CKT [14] and DKT [12]. Analyzing the functions
of the various parts of DKT-STDRL, the spatial features, temporal features, prior features,
and joint features of DKT-STDRL all contribute to improving the prediction accuracy to
varying degrees. In short, the success of DKT-STDRL in improving the prediction accuracy
is inseparable from the comprehensive analysis of the spatial and temporal characteristics
of students’ practice sequences. In other words, for KT, a comprehensive consideration of
students’ personalized learning efficiency and characteristics of students’ knowledge state
change process is helpful to obtain more accurate prediction results.



Appl. Sci. 2022, 12, 7188 18 of 21

Figure 7. Prediction results of DKT-STDRL, CKT, DKT, and the variants of DKT-STDRL on the
Statics2011 dataset.

Our model significantly improved the prediction accuracy of KT, and it had practical
significance for different education stakeholders, such as students, LMS administrators,
teachers, and instructional designers [2]. First, LMSs which use our method can analyze
students’ potential knowledge state based on the students’ practice logs and make an
accurate prediction of students’ performance in the next stage . Therefore, our method can
help the LMSs to obtain information about students’ future learning performance. LMSs
can generate reports for students or teachers to help system users better find the problems
in learning. LMSs can also learn the knowledge points that students have not mastered
from the prediction information of students’ learning performance, so as to recommend
content suitable for students’ further learning. In this way, LMSs can send exercises that
students really need without wasting too much time doing exercises they have grasped.
Secondly, LMSs using our KT model can provide teachers and instructional designers with
more accurate analysis reports on students’ learning conditions based on the prediction of
students’ answer performance, so as to help teachers and instructional designers flexibly
adjust teaching plans. Through the learning reports provided by the systems, teachers
and instructional designers can prepare lessons efficiently around students’ knowledge
defects. With the continuous improvement of teaching methods, the student-centered
outcome-based education (OBE) concept can be realized. Thirdly, the administrators
of LMSs adopting our KT model can provide better consulting services for customers.
Administrators can also divide classes according to the degree of knowledge mastery of
students and assign special teachers to the classes for guidance, which is convenient for
class management and improves the overall teaching effect for students. So, our KT model
can promote the development of intelligent education.

5. Conclusions

For filling the gap of current KT models that express students’ learning features insuf-
ficiently, Deep Knowledge Tracing Based on Spatial and Temporal Deep Representation
Learning for Learning Performance Prediction (DKT-STDRL) was put forward. DKT-
STDRL extracted the spatial features on the basis of students’ exercise history, and then
further extracted the temporal features of students’ exercise sequence. Firstly, DKT-STDRL
used CNN to extract the spatial feature information of students’ exercise history. Then, the
spatial features were connected with the exercise history features and input into the BiLSTM
part as joint learning features. Finally, BiLSTM extracted the temporal feature from the joint
learning features to obtain the prediction information of whether the students could answer
correctly or not at the next time step. The prediction effect of the DKT-STDRL model was
verified on five common public datasets. The experimentations demonstrated that the
prediction of the DKT-STDRL outperformed the DKT and CKT. Therefore, DKT-STDRL
is effective for promoting the prediction accuracy of the KT model on the basis of DL.
Moreover, many experiments were conducted to compare the prediction performance of
DKT-STDRL with CKT, DKT, and four variants of DKT-STDRL, which showed the different
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impacts on the prediction effect from the aspects of spatial features, temporal features, prior
features, and joint features.

Though we have succeeded in advancing the prediction accuracy, there are still some
limitations of our work on the complexity and interpretability of the model. First, the
structure of the model is complex and has too many parameters. Secondly, the parameters
in the DL networks lack interpretability, which limits the significance of the model in
practical applications. So, in prospective work, we strive to reduce the complexity of the
model to save the computing resources and to improve the interpretability to provide
more application value. In addition, in the future, because the model has good prediction
accuracy, we can try to integrate the model into LMSs for a better recommendation, so that
we obtain more intelligent and caring online learning systems. By using our improved
KT algorithm, LMSs can obtain more accurate information about students’ knowledge
mastery or prediction results of answer performance. Based on this information, LMSs
can intelligently recommend learning resources (such as lectures, documents, exercises,
and quizzes) that better meet students’ needs, thus helping students reduce their learning
burden and improve their learning efficiency.
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MANN Memory-Augmented Neural Network
CNN Convolutional Neural Network
CKT Convolutional Knowledge Tracing
GKT Graph-based Knowledge Tracing
GNN Graph Neural Network
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IRT Item Response Theory
LSTM Long Short-Term Memory
GLU Gate Linear Unit
SKVMN Sequential Key-Value Memory Networks
EERNN Exercise-Enhanced Recurrent Neural Network
SAKT Self-Attentive Knowledge Tracing
HRP Historical Relevant Performance
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AUC Area Under Curve
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