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Abstract: Bone age assessment plays a critical role in the investigation of endocrine, genetic, and
growth disorders in children. This process is usually conducted manually, with some drawbacks,
such as reliance on the pediatrician’s experience and extensive labor, as well as high variations among
methods. Most deep learning models use one neural network to extract the global information from
the whole input image, ignoring the local details that doctors care about. In this paper, we propose a
global-local feature fusion convolutional neural network, including a global pathway to capture the
global contextual information and a local pathway to extract the fine-grained information from local
patches. The fine-grained information is integrated into the global context information layer-by-layer
to assist in predicting bone age. We evaluated the proposed method on a dataset with 11,209 X-ray
images with an age range of 4–18 years. Compared with other state-of-the-art methods, the proposed
global-local network reduces the mean absolute error of the estimated ages to 0.427 years for males
and 0.455 years for females; the average accuracy rate is within 6 months and 12 months, reaching
70% and 91%, respectively. In addition, the effectiveness and rationality of the model were verified
on a public dataset.

Keywords: bone age assessment; deep learning; convolutional neural network; feature fusion;
pediatric

1. Introduction

Bone age assessment (BAA) is a common method used for assessing skeletal maturity
in pediatric radiology, which can be used to assess human growth potential by comparing
the skeletal age with the chronological age. In a pediatric clinical, through a skeletal bone
age analysis, combined with physical examination and testing, it is possible to find out
the causes of the child’s growth, development, and diseases (in time), and take effective
intervention measures to obtain a good prognosis. BAA has been commonly used in clinical
medicine, preventive medicine, sports science, biology, and forensic anthropology [1–3].

The previous clinical BAA approaches can be divided into two categories, including the
Greulich-Pyle atlas method (GP) [4] and the Tanner-Whitehouse scoring method (TW) [5,6].
GP is a simple technique, which compares hand X-ray images with a list of standard bone
age maps to predict bone age. However, this relies heavily on the physician’s intuition
and experience and may lead to different results from the same X-ray image at different
times with poor consistency. In contrast, the TW scoring method is more objective and
accurate in prediction, it can assess the maturity level of the region of interest (the ROI is a
specific region selected from the image, delineating this region can reduce the processing
time and improve task accuracy) of the hand and wrist. Scores are assigned to individual

Appl. Sci. 2022, 12, 7218. https://doi.org/10.3390/app12147218 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147218
https://doi.org/10.3390/app12147218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9217-0274
https://orcid.org/0000-0002-4273-1341
https://orcid.org/0000-0001-9339-8086
https://doi.org/10.3390/app12147218
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12147218?type=check_update&version=2


Appl. Sci. 2022, 12, 7218 2 of 15

ROIs according to maturity level; finally, all scores are combined to estimate bone age by
means of a pre-defined strategy.

In the medical field, with the developments of computer vision technology in image
analysis, deep learning methods particularly have powerful automatic feature extraction
capabilities, which can model the input data and approach complex functions through
the deep nonlinear network. Deep learning BAA techniques have developed rapidly
and achieved considerable progress compared to traditional methods. These methods
generally regard BAA task as a classification or regression problem, involving hand seg-
mentation [7,8], ROI detection, feature extraction [9], and the design of regressors [10] or
classifiers [11].

Despite some methods yielding accurate results in this field, BAA suffers from the
following problems: (1) Reading these images is time-consuming, labor-intensive, and
mainly depends on the experiences of radiologists. Moreover, since different experts
may have different results, robust evaluations cannot be obtained, and they are prone to
significant inter- and intra-observer variability. (2) Medical images are expensive to acquire
compared to natural images and the quality of X-ray images may be poor for various
reasons during the acquisition process. The images need to be labeled by professional
radiologists. Therefore, the dataset of high-quality labels for BAA is very limited. (3) It is
difficult for the performances of traditional assessment methods to meet the clinical needs;
most of them require manual extraction of feature information, failing to satisfy automation.
The manually extracted features are often not accurate enough or do not represent the
essence of things well, making it difficult to improve the learning effect. (4) While deep
learning methods can achieve leading results in BAA, they have a low ROI focus on hand
bone images, and the prediction performance can still be further improved by adding some
knowledge to the deep learning framework.

To address the above issues, we further studied the automatic feature extraction of
hand bone images and propose a global-local feature fusion framework, including ROI
detection, global-local fusion, and a bone age prediction network. The detection network
involves extracting 18 key patches of hand bones; in the fusion network, global-local feature
information is extracted by a convolutional neural network (CNN), followed by two fully
connected layers to finally determine the age of the bone. In this paper, we aimed to mimic
the workflow of radiologists and address the problem that deep learning methods for bone
age assessments pay less attention to ROIs. The contributions of this paper are as follows:

1. Histogram equalization was adopted to improve image contrast and reduce the influ-
ence of low-quality X-ray images; label smoothing is proposed to reduce overfitting.

2. Object detection is combined with bone age assessment and YOLOv5 is used for
detection to locate and extract ROIs in real-time. These ROIs are the ossification areas
that a radiologist’s workflow focuses on.

3. The global-local fusion network can effectively and efficiently integrate global context
and local fine structures, yielding high-quality prediction. Either global or local
information is proven to be indispensable.

The remainder of the paper is organized as follows. Section 2 briefly summarizes
several CNN-based BAA systems. Section 3 explains the details of materials and resources.
Section 4 describes the proposed model in detail. Experimental results are provided in
Section 5 and further discussions are made in Section 6.

2. Related Work

Our review of the related research primarily focuses on deep learning-based ap-
proaches. In 2016, Stern et al. [12] firstly proposed a deep convolutional neural network
(DCNN) BAA method using hand magnetic resonance imaging, which followed TW2 to
obtain age information by integrating the ossification stages of 13 bones. Chen [11] reported
the first CNN-based BAA method with transfer learning, which proposed a VGGNet-
based BAA classification model, adopting the GP framework. Kashif [13] used sparse
and dense feature points for key point selection. For each type, five feature descriptors
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were extracted within the epiphyseal region of interest and classified using a support vec-
tor machine. Spampinato et al. [14] tested several CNN models, including OverFeat [15],
GoogleNet [16], OxfordNet [17], and the proposed BoNet, consisting of five convolutional
and pooling layers; they performed feature extraction for the first time for specific parts of
the hand bones. Moreover, the results show an average error of 0.8 years in males. In 2017,
Lee et al. [18] proposed a fully automated BAA system. First, it was segmented to remove
the background interference, and then the bone age was recognized by GoogLeNet [16]
with the whole picture as the input. The experimental results show that the effect of transfer
learning is slightly worse than that of the BoNet network, mainly because the features of
a hand bone X-ray have less commonality with natural images. For example, translation
invariance and deformation invariance in natural images do not exist in X-ray hand images,
and the corresponding bone age will change if local deformation occurs in the hand.

The following research studies focused on specific patches of hand bones, providing
new thoughts for BAA. Iglovikov et al. [19] used U-Net [20] to segment the hand and a
VGG [17] was used to detect three key points in order to remove the hand deformation
and rotation interference. Taking the whole image as input, two network structures based
on classification and regression were designed to evaluate bone age. Through the inte-
gration of the two networks, the mean absolute error (MAE) was obtained as 0.508 years.
Wang et al. [21] proposed an automated BAA method that took the distal radius and ulnar
regions as ROIs, extracted their features separately, and predicted the final bone age by
classification. Bui et al. [22] combined the TW3 with DCNN, using Faster R-CNN [23] and
Inception-v4 networks [24] for detection and classification, respectively. Mining expert
knowledge from TW3 and engineering features from DCNN to improve the accuracy of
BAA, the final MAE was 0.59 years. Liang et al. [25] took full consideration of the regions
and proposed a novel deep automated skeletal BAA model via the region-based convo-
lutional neural network. It transferred Faster R-CNN from object detection to bone age
regression in order to detect the ossification centers of the epiphysis and carpal, causing
MAE to be 0.51 years. Liu [26] proposed a multi-scale feature fusion framework based
on a non-sub-sampled contour wave transform and convolutional neural networks. In
particular, the method had significant advantages compared to the corresponding spa-
tial domain methods, the MAE was 0.519 years for males and 0.553 years for females.
Wu et al. [27] proposed a residual attention network, which used a Mask R- CNN subnet
to segment the hand region and then used the residual attention network to focus on the
key components of the image to generate the final prediction results, the MAE was 0.615
years. Chen et al. [28] extracted local binary pattern features and modifier subunit features
of glutamate-cysteine ligase from an image. A support vector machine was used to classify
the features and the author proposed a multi-dimensional data features fusion model for
BAA. Its MAE was 0.455 years. Koitka [29] built an automated system for pediatric BAA
that mimicked and accelerated the workflow of the doctor without breaking it. The MAE
obtained by this method was 0.38 years. The system provided self-explanatory results for
radiologists. Han [9] automatically extracted key features of the bone age of the left joint
based on the residual network (ResNet) model [30], and automatically assessed the bone
age using a convolutional neural network; the average absolute error was 0.455 years.

While deep learning has already achieved a leading performance in bone age assess-
ment, prior methods usually took the whole X-ray image or cropped image as the input,
and radiologists observed some key patches during the practical process of manual BAA.
Inspired by this heuristic knowledge, we integrated object detection into BAA to detect
these key patches and present a global-local feature fusion network; higher accuracy could
be achieved by the combination of object detection and feature fusion.

3. Materials and Resources
3.1. Data Sources

We used an in-house dataset to validate the performance in our own clinical envi-
ronment and acquisition procedure. The dataset, from the First Affiliated Hospital of
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Zhejiang University School of Medicine, contains 11,209 hand radiographs (male—5021,
female—6188) from 4 to 18 years old (the ground truth is the average of two expert readings
independently using TW3). The distribution of images among these categories is shown
in Figure 1. The dataset contains two types of images, one is only the left hand, and the
other is both hands. For several pictorial examples of the data, see Figure 2. Moreover, the
reading labels are smoothed, e.g., if the label is 120 months, 120 ± 3 is used for training;
all belonged to prediction accuracy in 117–123 months. Only the labels of the training
set were softened, while the test set was not processed accordingly. Moreover, we used
the Radiological Society of North America (RSNA) Pediatric Bone Age Challenge dataset,
which included 14,236 hand radiographs to validate the model.

(a) (b)

Figure 1. The distribution of examples in this dataset based on the ground truth bone age. (a) Age
distribution of the male group. (b) Age distribution of the female group.

(a) (b) (c)

(d) (e) (f)

Figure 2. Examples of raw datasets. “L” marks the left hand position, “R” marks the right hand posi-
tion; (a) 10-year-old; (b) 13.5-year-old; (c) 5-year-old; (d) 6-year-old; (e) 13-year-old; (f) 18-year-old.

By analyzing the gray value of images, it was found that the gray distribution was
inhomogeneous, which led to poor feature extraction and had a negative impact on training
results. Therefore, this paper uses the histogram equalization method [31] to enhance the
contrast of images. Figure 3 shows the comparison before and after histogram equalization;
it can be seen that the gray value of the image is more uniformly distributed in the entire
gray range, and the overall contrast is significantly enhanced, which is convenient for fea-
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ture extraction. After equalization, data augmentation flips, mirrors, and rotates operations
on the images.

(a) (b)

(c) (d)

Figure 3. Effect of the histogram equalization operation. (a) The original image; (b) original histogram;
(c) the improved image by histogram equalization; (d) histogram after processing.

3.2. Deep Learning Libraries and Computing Resources

All the experiments on network training conducted via the deep learning framework
TensorFlow. The hardware environment mainly includes an Intel Core i7-8700 CPU and an
NVIDIA RTX 3090 GPU.

4. Methodology

The entire process framework is shown in Figure 4. After equalization and data
augmentation, an ROI detection network is used to identify ossified regions of the hand
bone. These local patches are leveraged as input to the local network. Convolutional neural
networks are then used for global and local networks to extract deep features from the
whole image and local patches. The following sections describe each step in more detail.
In comparative experiments, we also used global and local features separately for bone
age prediction.
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Figure 4. The overall process framework. It contains three major parts: (1) data preprocessing; (2) ROI
extraction and feature fusion; (3) bone age prediction.

4.1. ROI Extraction-Detection Network

Object detection is a major direction of computer vision and is important in the fields
of face recognition, unmanned vehicles, and security. Object detection algorithms based on
deep learning can be divided into two categories. One is the two-stage detection paradigm,
which divides the detection problem into two stages, first generates candidate regions,
and then performs classification and location refinements. This class is represented by
R-CNN algorithms, such as R-CNN [32], Fast R-CNN [33], and Faster R-CNN [23]. The
other is the one-stage detection algorithm. Unlike the former, it directly generates the class
category and location coordinate values of the object. Typical algorithms include Single
Shot MultiBox Detector (SSD) [34] and You Only Look Once (YOLO) [35]. YOLO series
algorithms [35–38] have a high detection speed; the latest YOLOv5 exceeds 140 fps, which
make it possible for real-time object detection. In this paper, we chose YOLOv5 for hand
bone ROI detection.

ROIs in TW3 can focus on information that is highly correlated with bone maturity.
Therefore, based on TW3 evaluation criteria, 18 ROIs are detected and extracted by YOLOv5,
which can ensure the trade-off of speed and accuracy. In this process, 500 images were
stratified from the dataset according to the proportion of each age group, manually labeled,
as well as 400 for training, and 100 for testing. The precision, recall, and F1 scores in the test
set were 0.997, 0.993, and 0.996, respectively. The results of the ROI detection are shown in
Figure 5. The number above the box indicates the confidence level of detection. It can also
be seen that YOLO can still detect 18 ROIs even though the hand bones are immature at
the age of 4. Figure 6 presents the ROI example for a 12-year-old hand bone image. Since
there are images that contain both left and right hands in the dataset, and some images
contain only the left hand, we performed the following operations: the raw data were
passed through the detection network, and then expanded by 5 pixels according to the
boundary coordinates of the 11th and 17th ROIs to crop out the entire left-hand skeleton,
which was used as the input of the global network, and the corresponding 18 ROIs were
used as the input of the local network.
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(a) (b) (c) (d)

Figure 5. The features of 18 key regions based on (a) 4-year-old; (b) 8-year-old; (c) 12-year-old;
(d) 15.5-year-old left-hand X-rays.

Figure 6. 18 ROI extraction thumbnails.

4.2. Global-Local Fusion Framework

In this section, our purpose is to extract and fuse local information into the global
CNN and predict bone age. Figure 7 shows the architecture, which mainly consists of three
modules: an input layer containing two types of inputs, a fusion network containing both
global and local information, and a simple regression network. For the input layer, the
entire left skeleton image is the global input while the local patches are the local input.
In the fusion network, the global pathway and the local pathway are kept at the same
convolution depth to ensure the consistency of information. After pooling and two fully
connected layers, the final bone age result is the output.

Specifically, for the input layer, the left-hand image is scaled to 224 × 244 as the input
of the global network; the local ROIs form a 64 × 64 × 18 3D matrix as the input of the
local network. For both global and local networks, three-time convolution operations were
first performed so that the feature size became 56 × 56 × 128. Afterward, the first feature
fusion was performed to obtain a size of 56 × 56 × 256. Similarly, three more fusions were
performed to make it to 7 × 7 × 2048, and then two more convolutions were performed to
obtain 2 × 2 × 2048. The convolutional architecture in the fusion framework is shown in
Table 1; it contains 11 convolutional layers with the corresponding batch normalization and
activation layers (in total). In the regression prediction, via global max pooling, two dense
layers were connected, including 512 neuron units, followed by a single-neuron layer that
provided bone age prediction.
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Table 1. The details of the fusion network architecture for BAA.

Convolution Global Local

Convolution 1 7 × 7 × 64, str = 2, pad = same 5 × 5 × 64, str = 1, pad = valid
Convolution 2 7 × 7 × 128, str = 2, pad = same 5 × 5 × 128, str = 1, pad = valid
Convolution 3 7 × 7 × 128, str = 1, pad = same 3 × 3 × 128, str = 1, pad = same

Feature concatenation, Feature size: 56 × 56 × 256

Convolution 4 3 × 3 × 256, str = 2, pad = same 3 × 3 × 256, str = 2, pad = same
Convolution 5 3 × 3 × 256, str = 1, pad = same 3 × 3 × 256, str = 1, pad = same

Feature concatenation, Feature size: 28 × 28 × 512

Convolution 6 3 × 3 × 512, str = 2, pad = same 3 × 3 × 512, str = 2, pad = same
Convolution 7 3 × 3 × 512, str = 1, pad = same 3 × 3 × 512, str = 1, pad = same

Feature concatenation, Feature size: 14 × 14 × 1024

Convolution 8 3 × 3 × 1024, str = 2, pad = same 3 × 3 × 1024, str = 2, pad = same
Convolution 9 3 × 3 × 1024, str = 1, pad = same 3 × 3 × 1024, str = 1, pad = same

Feature concatenation, Feature size: 7 × 7 × 2048

Convolution 10 3 × 3 × 2048, str = 2, pad = valid /
Convolution 11 3 × 3 × 2048, str = 1, pad = valid /

Figure 7. The framework of the global-local fusion network. The top is the global pathway to extract
global information. The bottom is the local pathway to obtain local fine-grained details.

5. Experimental Results
5.1. Training Details

The distribution of training, validation, and testing set data is shown in Table 2. For
the ROI detection network, batch size, IoU threshold, and epoch were set to 64, 0.5, and 100,
respectively, the initial learning rate was 0.01, and the oneCycleLR strategy was used; the
final learning rate was 0.001. There were three sizes of anchors by default, which were [10,
13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], and [116, 90, 156, 198, 373, 326]. For the global-local
fusion network, the batch size and maximum epoch were set to 64 and 100, respectively.
Adam was selected as the optimizer; the initial learning rate was 0.001 with 1/3 decay for
every 10 epochs and the activation function was ReLU. Early stopping with patience of 10
epochs was used, which means that the training was terminated automatically if the loss
on the validation set did not improve for 10 epochs.



Appl. Sci. 2022, 12, 7218 9 of 15

Table 2. Age distribution of training, validation, and testing datasets.

Age Training Data Validation Data Testing Data

(Years) Male Female Total Male Female Total Male Female Total

[4, 6] 726 394 1120 69 32 101 73 50 123
(6, 8] 377 755 1132 37 95 132 35 96 131

(8, 10] 724 1289 2013 61 139 200 71 153 224
(10, 12] 414 1760 2174 41 200 241 35 217 252
(12, 14] 1627 572 2199 116 66 182 146 70 216
(14, 16] 224 146 370 19 17 36 23 18 41
(16, 18] 162 96 258 22 8 30 19 15 34
Total 4254 5012 9266 365 557 922 402 619 1021

For quantitative evaluation, the mean absolute error (MAE) and root mean square
error (RMSE) are used in this paper, which are calculated as follows:

MAE =
1
N

n

∑
i=1
|yi − ŷi| (1)

RMSE =

√
1
N

n

∑
i=1
|yi − ŷi|2 (2)

where yi and ŷi are the estimated bone age and the ground truth in the month, respectively.
Table 3 shows the MAE and RMSE of the proposed BAA system according to age

groups. Most importantly, our model is able to effectively assess bone age with high
accuracy for all genders and age ranges from 4 to 18 years old.

Table 3. Bone age prediction accuracy per age group.

Age MAE RMSE

(Years) Male Female Total Male Female Total

[4, 6] 0.195 0.455 0.301 0.291 0.554 0.418
(6, 8] 0.54 0.424 0.455 0.69 0.542 0.585

(8, 10] 0.521 0.445 0.469 0.736 0.591 0.641
(10, 12] 0.8 0.43 0.482 0.992 0.557 0.635
(12, 14] 0.368 0.519 0.418 0.536 0.639 0.572
(14, 16] 0.518 0.616 0.561 0.637 0.818 0.722
(16, 18] 0.412 0.639 0.484 0.587 0.765 0.649
AVG. 0.427 0.455 0.444 0.617 0.588 0.599

Meanwhile, the identity lines for males and females are shown in Figure 8. The
performance is quite steady for all age ranges and performs quite well on images centered
around the mean but struggles with the lower and higher ranges.

In addition, we also introduced another effective curve-based evaluation method for
BAA, named cumulative percentage accuracy curve, to calculate the cumulative accuracy
of prediction error within 0 to 24 months. An example is shown in Figure 9, where the
horizontal axis represents the month within the prediction error, and the vertical axis
represents the accuracy rate. The prediction performance of the method can be seen more
intuitively from the curve. The average accuracy rate within 6 months and 12 months
reached 70% and 91%.
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Figure 8. Identity lines for males and females.

Figure 9. The cumulative percentage accuracy curve to evaluate BAA performance.

5.2. Comparison of Various Models

In order to evaluate the effects of histogram equalization and the global-local fusion
strategy, we performed ablation experiments and gradually compared the performances of
the model in these two aspects, see Table 4 for specific results. On the other hand, over the
past two decades, many automated BAA methods have been proposed with accuracies (in
MAE) ranging from 0.37 to 2.63 years. However, these methods are either tested on private
datasets or their source codes are not available; thus, their results are not reproducible
or usable as baselines. Here, we also selected several well-known bone age works, such
as Spampinato [14], the RSNA children’s bone age machine learning challenge [39], and
the currently popular transformer method [9] for comparison. Moreover, we tested the
performances of DenseNet, ResNet, and VGGNet in bone age assessment, respectively.
Table 5 shows the comparison results of these methods.
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Table 4. The ablation study results in terms of histogram equalization, global and local.

Histogram Equalization Global Local RSNA In-House

X 0.854 0.813
X 0.735 0.68

X X 0.712 0.658
X X 0.68 0.6
X X 0.53 0.467
X X X 0.512 0.444

Table 5. Comparison in terms of average years between our method and state-of-the-art ones.

References Methods Number of Images MAE

Spampinato [14] BoNet + CNN 1390 0.8
Wang [21] Faster R-CNN + Voting ensemble 3300 0.46

Bui [22] RCNN + Inception-v4 1391 0.59
Liu [26] Multi-scale fusion + VGG 1400 0.511

Halabi [39] Inception-v3 + Dense 14,236 0.37
Thodberg [40] Active appearance model plus principal component analysis 1559 0.42

Han [9] ResNet plus spatial transformer 5876 0.455
DenseNet / / 0.85

ResNet / / 0.69
VGG / / 0.53
Ours Global-local fusion plus CNN 11,209 0.444

6. Discussion

Bone age assessment is a specific and direct task for machine learning. In this study,
we attempted to create a system for the fully automated estimation of bone age using
pediatric X-ray hand bone images. Moreover, we showed that with a small labeled dataset,
an ossification area detection network could be trained, which is stable enough to pave
the way for the next step of local feature extraction. Meanwhile, the fusion of a global
context and a local fine structure could effectively enhance bone age prediction (the final
performance was 0.444 years).

Table 3 shows the prediction results of bone age for males and females in different
age groups. It can be seen that the variance in the results in the male group is greater than
that in the female group. In the experimental data, females obeyed the normal distribution,
while the distribution of males was not balanced, indicating that the balance of the data was
conducive to improving the stability of the model. In terms of data volume, the peaks of
the male and female data volumes were at 13 years old and 11 years old, respectively. This
is because boys start puberty at 12 years old while girls start at 10 years old. After about 1
to 2 years of growth and development, parents pay attention to their child’s height. Since
the experimental data in this paper were clinically-derived, the imbalance of distribution
was unavoidable. So, in future research, we will continue to track the data to make them
evenly distributed across age groups and improve the generalization ability of the model.
In addition, it is worth noting that in each age group, the ages of (4, 6] were the best, and the
ages of (14, 16] were the worst. From the image analysis, there were 8 ROIs concentrated
in the wrist of the hand bone. In the early stage of child growth, due to the low degree
of ossification development, the overlap between these blocks is low, the distinction is
obvious, and it is easy for the network to learn local features, so the evaluation error is
small. With growth and development, especially after puberty, skeletal ossification tends
to mature, the degree of overlap increases, and some boundaries appear in two or more
blocks. Meanwhile, the feature learning efficiency is low, and some feature redundancy
exists, resulting in increased errors.

Models trained with global images or local patches may yield different results as to
whether the image performs histogram equalization. This is because the image contrast
changes and the models have different receptive fields, resulting in different suitable
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training choices. Therefore, we carefully compared the models trained by these two
ablation approaches (each using histogram equalization, global image, or local patches)
and picked the best result. According to Table 4, after histogram equalization, the MAE
improves from 0.813 to 0.6 for the global network, and the average improvement is about
0.2 years for the local and fusion networks. When the global-local feature fusion strategy is
adopted, the predicted result improves from 0.6 to 0.444, an improvement of about 0.16
years. This ablation study proves that equalization, global, and local fusion can effectively
collaborate to improve bone age assessment task results. The overall X-ray image is dark
and the contrast is low, and histogram equalization can enhance the local contrast without
affecting the overall contrast. After processing, the bone structure can be better displayed
to obtain better details, which is friendly to network learning features. These local ROI
features refer to the degree of development of the ossification centers of the phalanges,
carpals, radius, and ulna, the criteria for TW3, which pediatricians focus on in the film
reading.

From Table 5, Spampinato [14] was the first automated BAA work, they tested several
network architectures for BoNet and then chose the best one as the final model for eval-
uation. The structure was mainly aimed at the extraction of middle and low-level visual
features and had a non-rigid deformation denoising layer, but for X-rays, the noise was
not a very fatal factor. Moreover, after many convolutions in deep learning, the feedback
was more of deep-level image features; thus, the model lacks the learning and utilization of
deep features, and cannot guarantee sufficient accuracy. Halabi [39] pointed out that all
five winning algorithms used a preprocessing step, in which images were normalized or
important anatomic areas were selected prior to algorithm training. Preprocessing seems to
be an important component of the generalizability of the algorithm. The first place achieved
an amazing effect of 0.37 years in the test set of 200 cases. This approach combined pixel
and gender information and used an ensemble method to filter multiple high-performance
models to improve the overall performance. However, the contestants claimed that there
was a certain correlation in the testing set. Thoddberg [40] reconstructed bones using an ac-
tive appearance model and predicted bone age based on shape, strength, and texture scores
from the principal component analysis. It lacked robustness for the Chinese. Moreover, it
requires high-quality X-ray images to obtain reliable results. In fact, it rejects images of
poor quality or abnormal bone structure, for which cases, the analysis needs to be manual.
It is a great challenge in clinical applications. Compared with the reconstructed bone image,
the information of the raw image is more fidelity. Han [9] segmented hand bones based
on morphological watersheds (downsampled by using bilinear interpolations on image
pyramids); they used a spatial transformer to locate ROIs and retain positional parameters
(attention mechanisms), and finally used ResNet as a backbone to predict the bone age.
There was an error of 0.455 years, which reflected the strong learning ability of the trans-
former. The attention mechanism in BAA is less studied in the existing research, and Han’s
work illustrates the effectiveness of the attention mechanism in this task. Moreover, we
tested DenseNet, ResNet, and VGGNet separately, see Table 5; the complex deep networks
DenseNet and ResNet do not perform well; in contrast, the simple structured VGGNet
turned out to be good.

The prediction results of the public dataset have also been improved to some extent,
but the overall effect is lower than that of the in-house dataset. There are obvious racial
differences between the two datasets. The public dataset is from the Children’s Hospital
Stanford and Colorado, involving many races, while the in-house dataset is for Chinese
people. In terms of labels, the public dataset provides the real bone age by the GP atlas
method, the latter adopts the TW3-Chinese version, and the real labels have methodological
differences. These reasons lead to inevitable deviations in the model results.

Since our approach is designed to mimic how radiologists work, this of course has
the inherent disadvantage that our method is limited to a specific workflow and image
information of selected regions of the hand. It cannot be ruled out that an end-to-end
network design with no assumptions at all will lead to more accurate results, for example,
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by considering other regions of the image. Future work should study this in detail and
integrate possible improvements through different network designs; we can also consider
the fusion of multimodal data of X-rays, ultrasounds, and MRIs of hand bones; the self-
attention mechanism of the transformer can be combined with CNN architecture to improve
the accuracy of bone age prediction.

7. Conclusions

We presented a global-local feature fusion convolutional neural network for BAA.
It has the advantages of short diagnosis times, it is labor-saving, and has high accuracy.
This greatly reduces the workload of the physician and is highly reproducible. Our work
integrates global and local information, which are shown to be effective at improving the
accuracy of reading the bone age. Instead of directly employing the image as network input,
18 ROIs were firstly generated for feature pre-extraction. These ROIs were taken as the
local features, then the global features of the whole image were extracted by convolution,
overcoming the shortcomings of low utilization of the TW3 standard in deep learning.
Experiments on an in-house dataset demonstrated the effectiveness of the proposed method.
In comparison to other state-of-the-art deep learning networks, it exhibited generalization
and adaptability. In future work, we will explore the potential of skeletal maturity and train
the network according to the ranking criteria of each TW3 block of bones and present a
visually interpretable form for radiologists to better understand the reasoning of the system.
In addition, we will also consider the interpretability of deep learning.
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