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Abstract: Arsenic (As) is one of the most common inorganic pollutants; unfortunately, it is also
one of the most toxic and is therefore a cause of great concern for the health risks that could result
from it. Removing arsenic from the soil using phytoremediation approaches is an effective strategy,
and several studies demonstrate the ability of Cannabis sativa (TSN 19109, hemp) to tolerate this
harmful contaminant. The aim of this work was to identify the best experimental conditions for a
phytoremediation plan to be applied in a disused area located in Sicily (Italy) and contaminated by
As, comparing Cannabis sativa with Brassica juncea (TSN 23059) and Zea mays (TSN 42269, corn). To
assist the process, several chelating agents were tested to improve arsenic mobility, and two different
sets of arsenic-tolerant bacteria were isolated from the rhizospheric soil of indigenous herbaceous
species and used to promote plant growth, leading to a significant improvement in terms of biomass
produced and phytoextraction. After the combined treatment, the arsenic content in the aerial part of
the plants increased by more than two orders of magnitude (e.g., from 0.05 to 6.57 mg kg−1, from
0.04 to 6.69 mg kg−1, and from 0.03 to 5.57 mg kg−1 for brassica, corn, and hemp, respectively),
confirming the marked increase in the total absorption of As by plants.

Keywords: arsenic pollution; microbial endophytes; mobilizing agents; phytoremediation; soil
remediation

1. Introduction

Process industry, transport, urban sprawl, agriculture, and illegal dumping or landfill
without adequate recovery of resources [1–3] represent just some of the many causes of
direct or indirect release of organic and inorganic pollutants into the environment, with
hazardous effects on the ecosystem and human health [4].

The remediation of contaminated sites is therefore of primary importance, as evidenced
by the numerous physicochemical and biological solutions developed for the recovery of
contaminated water [5–8] and soils [9–12] in recent years. However, an often-overlooked
aspect is that remediation activities also have an environmental impact as they frequently
rely on chemical products or processes, with consequent consumption of raw materials and
energy. This can compromise the sustainability of the approach itself, or even invalidate its
beneficial aspects [13], for example by generating harmful side effects [14].

An ecological and sustainable approach should allow not only to eliminate or reduce
contamination, but also to minimize the environmental impact (emissions into the atmo-
sphere, energy consumption, waste production, etc.) and to create synergies between
different sectors and activities (protection of ecosystems, circular economy, climate change,
and resilience).
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Remediation technologies based on the natural-based solution (NBS) approach can
make a significant contribution in supporting this transition to sustainable remediation,
achieving the natural resources’ protection objectives established by current environmental
policies [15]. Among the NBS remediation measures, a growing focus is on phytoremedi-
ation [16–18], which is the set of remediation technologies that see plants as main actors
to clean up organic and inorganic contaminants in soil and other environmental matrices
(sediments, water). The interest in these phyto-technologies has grown over time, thanks
to their low cost, simplicity of operation, and environmental benefits [19,20], and possible
uses in combination with other solutions have also been proposed to further increase the
overall sustainability [21,22].

In this regard, experimentation of phytoremediation techniques in urban areas com-
bined with other solutions aimed at mitigating climate change has intensified in recent
years. For example, the use of green roofs [23], known to be able to improve the energy and
environmental performance of urban environments [24,25], combined with phytoremedia-
tion and bio-absorption techniques, have proven to be viable nature-based solutions, able
to act as domestic wastewater treatment [26], improve the quality of roof runoff water [27],
purify the air [28], and remove heavy metals [29], just to name a few. The promising results
obtained should help to draw the attention of both public and private investors towards
such green and sustainable approaches [30].

Among the different phytoremediation technologies, phytoextraction is considered
a non-invasive technique to remove heavy metals from contaminated soil in an environ-
mentally friendly and economical way by root absorption, transfer, and accumulation in
the different tissues of the plant [31,32]. Originally, the approach was based on the use of
hyperaccumulating species, capable of absorbing large quantities of metal without suffering
physiological damage, but which generally suffer from low biomass production and a slow
growth rate, resulting in long lead times [33].

Several studies have explored the possibility of improving the efficiency of phytoreme-
diation by using fast-growing and highly tolerant species, with the help of chelating agents
to increase the uptake of metals from soil, such as ethylenediaminetetraacetic acid (EDTA)
or ethylenediamine disuccinic acid (EDDS). In fact, the only metals that plants can absorb
are those in bioavailable form, i.e., present in soluble forms in the soil solution [34,35], and
chelating agents have the precise function of favoring the release of heavy metals bound to
soil particles into the soil solution, thus increasing their phyto-availability [36].

Another possibility to help phytoextraction by maximizing its effectiveness is the use
of plant growth-promoting rhizobacteria (PGPR) [37]. This strategy involves rhizobacteria
that can stimulate plant growth both by facilitating the bioavailability of soil nutrients
and by modulating the production and level of phytohormones in plants [38]. In addition,
thanks to the microbial processes active in the rhizosphere, PGPR can also promote the
mobility and bioavailability of metals in the soil, increasing their uptake by plants [39,40].

This work aimed to investigate the single and synergistic effect of PGPR and different
chelating agents, namely dipotassium phosphate (KH2PO4), potassium hydrogen oxalate
(KHC2O4), and ascorbic acid (C6H8O6), on the growth and uptake of As of three tolerant
species, Cannabis sativa (hemp), Brassica juncea, and Zea mays (corn), to evaluate their
potential use in a site contaminated by As.

The selection of bacterial strains capable of improving the efficiency of the phytore-
mediation is a fundamental step, made non-trivial by the specificity of the action of PGPR
and by their effectiveness, which depends on numerous factors related to the complex
interactions with the soil and plants [38]. In this study, the addition of a selected microbial
consortium with indigenous endophytic bacteria made it possible to obtain detectable
levels of phytoextraction even without the addition of chemical mobilizing agents.
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2. Materials and Methods
2.1. Site Description and Soil Sampling

The contaminated site under investigation is located in southern Italy and consists of
two different areas. The first is located inside a former chemical plant, in an internal area
that has concentrations above the legal limits for arsenic, mercury, C > 12 hydrocarbons,
ethylbenzene, and PAHs. The second area is a vegetated area about 1000 m from the former
factory showing only arsenic contamination (external area).

The soil sampling was performed with a small excavator. The presence of a layer of
concrete in the internal area and rocks in the external area did not allow reaching sampling
depths greater than 2 m for the internal area and 1.6 m for the external area.

2.2. Soil Characterization and Evaluation of As Bioavailability

Soil samples were analyzed to determine the pH and the total and potentially bioavail-
able content of arsenic.

Since the preliminary bioavailability tests revealed a difficult mobilization of arsenic,
an adsorption of arsenic to the iron oxides/hydroxides present in the soil was hypothe-
sized; therefore, in addition to the most widely used chemical additive (0.05 M and 1 M
KH2PO4), other extraction solutions were also tested, namely 0.1 M potassium pyrophos-
phate (K4P2O7), 1% ethylenediaminetetraacetic acid (EDTA), 0.27 M potassium thiosulfate
(K2S2O3), and 0.2 M potassium hydrogen oxalate (KHC2O4). All tests were carried out in
duplicate and considering a soil:extracting solution ratio of 1:25 and a contact time of 4 h.

2.3. Phytotoxicity Tests

Soil toxicity was assessed using the phytotoxicity screening test based on the inhibition
of germination and root extension of Lepidium sativum L. [41].

The assay was carried out by placing 10 g of As-contaminated soil in a Petri dish
(10 cm in diameter). The medium was moistened with deionized water to saturation, and a
Whatman #1 filter with 10 seeds of Lepidium sativum L. was placed on the medium.

Five replicates were run simultaneously for polluted soil and the negative control
(quartz sand). The Petri dishes were closed and placed in a germination chamber for 72 h
in the dark at 25± 1 ◦C. At the end of the waiting time, the germinated seeds were counted,
and the elongation of the roots was measured. With these values, the germination index
(GI%) and the inhibition of root elongation (Inh%) were estimated using Equations (1) and
(2), in which Gs and Gc are the average numbers of seeds germinated in the contaminated
soil samples and the negative control, respectively, while Ls and Lc are the mean root
lengths (mm) for the contaminated soil samples and the negative control, respectively.

GI% =
Gs ∗ Ls

Gc ∗ Lc
× 100 (1)

Inh% =
Lc − Ls

Lc
× 100 (2)

A high GI% value indicates reduced phytotoxicity of the contaminated soil, while the
Inh% index is higher when the soil quality is worse. These indices are considered useful
preliminary values to support further investigations on the toxicity of these soils.

2.4. Isolation of Arsenic-Tolerant Bacteria

Indigenous arsenic-tolerant bacteria were isolated and subsequently used to support
plant performance. Small aliquots of bulk and rhizospheric native plant soil from the
contaminated soil of the external area were resuspended in sterile milli-Q water. After
a few hours of incubation at room temperature, 100 µL of serial ten-fold dilutions were
plated on LB agar supplemented with 100 mM of sodium arsenate (Na3AsO4). After 4 days
at 30 ◦C, several colonies were visualized. About 100 colonies were randomly selected and
propagated to obtain pure cultures.
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2.5. Characterization of Bacteria Isolates

The DNA of these isolates was used as a template for 16SrRNA gene amplification.
The PCR-amplified DNA was analyzed with an automated DNA sequencer (ABI model
3500 Genetic Analyzer) and the nucleotide sequences were then subjected to homology
comparison with BLAST analysis and the National Center for Biotechnology Information
(NCBI) database. A collection of ten isolates belonging to Gamma proteobacteria, Bacilli,
and Actinobacteria classes was obtained. These strains were subjected to a series of
in vitro assays to evaluate their plant growth promotion (PGP) potential, as reported
in [40]. In addition, tolerance to mercury, copper, nickel, arsenic(III), and arsenic(V) at high
concentrations was also tested. The tolerance to metals was performed by growing the
isolates in a liquid medium (Luria Bertani) with the addition of salts of the different metals:
HgCl2, CuSO4, NiCl2, NaAsO2, and Na3AsO4. The list of isolates and the results of the
tests performed on them are shown in Figure 1.

Figure 1. List of arsenic-tolerant bacteria isolated from the As-contaminated soil and results of the
tests performed on them. GenBank Accession number, metal tolerance, and in vitro PGP properties
are shown.

2.6. Isolation of Hemp Endophytes

By exploiting an ongoing phytoextraction experiment conducted with Cannabis sativa
on soil heavily contaminated by arsenic (up to 1000 mg kg−1, from a former industrial area
in Italy [42]), endophytic bacteria were isolated from the roots of hemp seedlings grown
in microcosms on this soil according to the protocol described in [40]. The isolates were
then characterized for the presence of PGP properties according to the procedures already
described in [40]. Figure 2 lists this second set of isolates and the results of in vitro PGP
tests performed on them.

2.7. Preparation of Bacterial Consortia

Isolation of arsenic-tolerant bacteria was performed following a homemade approach [43].
The two sets of bacteria were cultured in LB medium for 72 h and the cell pellets were pooled
by resuspending them in a suitable protective medium (1% sodium glutamate, 7% sucrose, 5%
dextran), freezing them, and exposing them to a vacuum in small aliquots for 48 h. Aliquots
of these lyophilized bacterial consortia (about 108 cfu per gram of soil) were then added to
the pots.

2.8. Preparation of Microcosms

To set up the microcosm tests, four types of soil were chosen from those obtained from
the sampling, representing both the soils of the external area (S2, S6) and the internal one
(PZ, SW): S2 (1–1.6 m), S6 (0.3–0.6 m), PZ (0.3–1 m), and SW (1–2 m).
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Figure 2. Second set of arsenic-tolerant bacteria isolated from a different soil contaminated with As.
GenBank Accession number, metal tolerance, and in vitro PGP properties are shown.

On these soils, two sets of microcosms were set up in succession, one for each mobiliz-
ing agent, testing first the phosphate and then the oxalate. Each batch included replicates
to test the effect of adding PGPR bacteria from the first set of isolates.

As for the plant species, in addition to Cannabis sativa, Brassica juncea and Zea mays
have also been used, to evaluate which was the most suitable for the specific contamination
of the site.

The first set of tests was carried out according to the following scheme:

• All 4 selected soil types were investigated, using about 300 g of soil for each microcosm.
• Sowing involved all 3 plant species, in particular 0.4 g of B. juncea seeds, 12 seeds of

C. sativa, and 5 seeds of Z. mays, by germinating the seeds on moistened cotton and
then transplanting them at the appropriate time.

• Three different treatments were prepared for each soil and each plant, namely a control
(CT), a treatment with 0.05 M KH2PO4 (P), and a treatment with the further addition
of growth-promoting bacteria (P+).

All tests were performed in triplicate, for a total of 108 microcosms prepared for this
first set. The duration of the microcosm test was on average around 30 days. The mobilizing
agent was administered about 15 days after transplanting for both corn and hemp, and
20 days after sowing for brassica, as this plant species developed somewhat slower than
the others. A total dose of 10 mL of mobilizing agent was added to the microcosms, divided
over 5 days to dilute the effect of a possible too-rapid absorption of the As. Each 2 mL daily
dose was diluted with water to a volume of 10 mL. The plants were watered according
to their need. The addition of phosphate was planned as, both from previous tests and
from the literature, it has always been the best additive to solubilize arsenic and favor its
absorption by plants [34].

At the end of the test, the plants were harvested by separating the aerial part from the
roots. The plant samples were thoroughly washed and prepared for analysis.

A second set of microcosms was then set up with the same plant species, using 0.2 M
potassium hydrogen oxalate instead of KH2PO4 as the mobilizing agent.

This second set of tests was carried out according to the following scheme:

• Two soils, S2 and SW, representative of the external and internal area, respectively,
were investigated, and the amount of soil used for each microcosm was about 300 g.

• Three plant species, replicating the quantities and methods used for the first series
of tests.

• For each soil and each plant, four different treatments were investigated, namely
a control (CT), a treatment with 0.2 M KHC2O4 (O), and the same treatments with
further addition of growth-promoting bacteria (CT+ and O+).
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All tests were carried out in triplicate, for a total of 72 microcosms prepared for this
second set. The trial lasted approximately 30 days and treatment with PGPR (first set of
isolates) began approximately 15 days after the transplant. A total dose of 25 mL of 0.2 M
KHC2O4 was added to the microcosms, divided over 5 days. Each 5 mL daily dose was
diluted with water to a volume of 10 mL. The plants were watered according to their need.

Once again, the aerial part and roots of the plants were separated and washed thor-
oughly before being analyzed.

Finally, a third set of microcosm tests was set up to investigate the second set of PGPR
bacteria. Tests were carried out according to the following scheme:

• Two soils, S2 and SW, as for the second set, and the amount of soil used for each
microcosm was about 300 g.

• Two plant species (hemp and corn), replicating the quantities and methods used for
previous tests.

• For each soil and each plant, two different treatments were investigated, namely
a control and a treatment with 0.2 M KHC2O4, both with the addition of growth-
promoting bacteria from the second set of isolates, namely CT++ and O++, respectively.

All tests were performed in triplicate, for a total of 24 microcosms prepared for this
third set. This trial lasted less than 30 days, as the plants showed signs of distress, and
treatment with the mobilizing agent started about 15 days after the transplant.

The addition of oxalate to the microcosms was carried out in a total dose of 25 mL,
divided over 5 days: each 5 mL daily dose was diluted with water to a volume of 10 mL.
The plants were watered according to their need. Again, the same procedure of sample
preparation for analysis already mentioned for the previous tests was adopted. Since these
tests were all conducted in the presence of PGPR bacteria (different from the previous
tests), the biomass produced cannot be directly compared to that of the previous tests;
furthermore, it should be considered that the test was conducted for a shorter period.

It should also be noted that B. juncea has not been further investigated in this third set of
microcosms, following general considerations relating to the future field experimentation.
In fact, brassica generally has a much lower biomass yield than the other investigated
species if used in the field, which is why, in view of a future application on a larger scale,
attention has been focused more on the other two species, more attractive with a view to a
possible thermal valorization of biomass.

To determine the amount of accumulated As, plant samples at the end of each trial
set were finally mineralized and analyzed: A weighted amount of dried plant tissue was
ground and then digested in a Teflon vial with a 2.5:1 mixture of HNO3 and H2O2, using an
ETHOS-900 microwave system (MILESTONE S.r.l., Bergamo, Italy) with pulsed emission.
After digestion, the samples were diluted to 25 mL with milli-Q water and analyzed.

2.9. Arsenic Analysis

Samples obtained from the sequential extraction of soils and from the mineralization
of plants were analyzed by ICP-OES (Varian AX Liberty), using a method for the generation
of hydrides [44].

2.10. Quality Assurance and Quality Control

QA/QC assessments were performed by testing two standard solutions every ten
samples. CRM ERM—CC141 for soil and CRM ERM—CD281 for plants were used as
certified reference materials. The detection limit for As was 5 µg L−1. Recovery from
spiked samples ranged from 94% to 101% with a relative standard deviation (RSD) of 1.87%
of the mean.

2.11. Statistical Analysis

The data relating to the phytoextraction tests are reported as the average of three
replicated microcosms and the analyses were performed in triplicate, recording the mean
value ± standard deviation (SD). Statistical data analyses were performed using Statistica
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version 6.0 (StatSoft, Inc., Tulsa, OK, USA). Treatment effects were analyzed using a one-
way analysis of variance (ANOVA, San Francisco, CA, USA). Differences between means
were compared, and a post hoc analysis of variance was performed using Tukey’s honestly
significant difference test (p < 0.05).

3. Results and Discussion
3.1. Soil Analysis

The main characteristics of the soils obtained from the sampling procedures and the
results of the arsenic extraction tests are reported in Tables 1 and 2, respectively.

Table 1. Chemical properties of the individual samples collected at the site under investigation.
Values are reported as mean (n = 3) ± SD.

Mean

pH 8.3 ± 0.2
EC (µS cm−1) 585 ± 10

Clay (%) 33.5 ± 1.8
Silt (%) 18.6 ± 1.1

Sand (%) 47.9 ± 0.6
CEC (Cmol(+) kg−1) 23.3 ± 0.7

Table 2. Arsenic content (mg kg−1) in the individual samples collected at the site under investigation.
Values are reported as mean (n = 3) ± SD.

S2 S6 SW PZ

Total 40.5 ± 2.0 29.3 ± 1.7 24.9 ± 1.5 67.2 ± 2.1
KH2PO4 0.05 M 1.00 ± 0.04 0.99 ± 0.05 0.52 ± 0.05 1.50 ± 0.07
KH2PO4 0.1 M 1.30 ± 0.07 — — 2.20 ± 0.11
K4P2O7 0.1 M 0.20 ± 0.01 — — 2.53 ± 0.12

EDTA 1% 0.80 ± 0.07 — — 8.20 ± 0.80
K2S2O3 0.27 M 0.10 ± 0.01 — — 0.30 ± 0.02
KHC2O4 0.2 M 1.88 ± 0.13 5.99 ± 0.30 14.1 ± 0.42 42.9 ± 0.9

The concentration of As was found to vary between 24.9 and 67.2 mg kg−1, while the
potentially bioavailable portion estimated by using 0.05 M KH2PO4 (which is the typical
mobilizing agent of As) was always rather low and independent of the total amount of As
present in the soil, both in the external and internal areas.

These results suggest the presence of particularly strong bonds with which arsenic is
retained by the surfaces of these soils and, in particular, a very strong interaction between
arsenic and iron oxides/hydroxides. In fact, both the pentavalent and trivalent forms of
arsenic are retained by the iron oxides through very strong bonds in which arsenate and
arsenite anions compete and exchange with hydroxyl groups directly coordinated with
structural Fe3+ cations on the surface of the iron oxides/hydroxides. The complexes are
then formed with a direct coordination of arsenic species with the iron ions of the oxides.

In the case of As(V), which is the predominant form of As in soils, the arsenate anion
is adsorbed by coordinating with two adjacent structural Fe3+ cations forming a bidentate
binuclear surface complex, characterized by a very strong bond that makes desorption
difficult. Inorganic arsenic species, in particular As(V) species, form very strong bonds
with iron oxides, for which in general only phosphate is highly competitive for adsorption
sites, as a very similar mechanism also characterizes the adsorption of phosphate by iron
oxides/hydroxides. After the addition of phosphate ions, an exchange can take place
between a specifically adsorbed anion (arsenate) with another anion (phosphate). This
adsorption mechanism has been used successfully in various similar applications [43,45].

However, the ease of exchange between the two anions depends on the properties of
the adsorption surface, on the specific characteristics of the soils involved, and on the time
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required to reach equilibrium, which could be very long. The process is made possible by
the similar chemical characteristics of phosphate and arsenate, including the symmetry and
size of the anions. However, once the arsenate has been adsorbed and depending on the
type of surface complex that is formed (inner-sphere or outer-sphere), only a part can be
easily desorbed and the quantitative exchange with the phosphate can become difficult or
largely incomplete. This behavior may be partially due to the fact that phosphate can bind
to Fe oxide on different types of surface sites, with different types of bonds and strengths
(e.g., monodentate versus bidentate bond).

Based on the modest solubilization of the arsenate, it was decided to proceed with
a dissolution of the superficial structural cations of the oxides, with consequent disso-
lution of the mineral and release of arsenic adsorbed on the surface, according to the
following scheme, which can occur with all the iron oxides/hydroxides, although it varies
substantially with the mineral phase:

(FexOy)AsO4 + C2O4
2− → Fe2(C2O4)3 + AsO4

3−

These aspects were evaluated by means of As extraction tests from two soils coming
from the internal and external areas (PZ and S2, respectively) using agents capable of
destroying the iron oxides/hydroxides, such as EDTA, oxalate, and pyrophosphate (the
latter is also able to interact with humic substances), as well as testing agents potentially
capable of solubilizing arsenic, such as thiosulfate and phosphate at higher concentrations.

The results showed that a treatment with oxalate can solubilize considerable quantities
of As, supporting the hypothesis that arsenic is essentially retained in these soils by iron
oxides. Oxalate reacts with the amorphous iron oxides and, as a result, arsenic is released
into the soil solution, from which it can be absorbed by plants. The results of the extraction
with EDTA (iron complexing agent) are also in line with this hypothesis. In the light of these
data, an extraction with oxalate was carried out for soils S6 (0.3–0.6 m) and SW (1–2 m).
The amount of As extracted was 5.99 and 14.1 mg kg−1, respectively.

New microcosm tests (second and third sets) were then prepared to assess whether
this potential bioavailability of As could be used by plants.

3.2. Phytotoxicity Test

The phytotoxicity test was considered as a preliminary investigation to evaluate plant
growth and provide information to support further investigations performed in this study.

As shown in Figure 3, GI% and Inh% data for soils S2 (55% ± 5.8% and 34% ± 5.5%,
respectively) and SW (77% ± 4.9% and 15% ± 5.9%, respectively) suggest the lack of
adverse conditions for plant growth. In fact, high GI% and low Inh% values are indicative
of limited phytotoxicity. The results confirmed the low bioavailability values of As, which
did not cause significant toxic effects in the species used. To a lesser extent, a similar
consideration can also be made for soil S6, which, although starting from non-optimal
values, does not prevent the growth of plants, as also highlighted by the general increase in
GI% values and the reduction of Inh% following the different treatments. Conversely, this
does not apply to PZ soil, where only corn has managed to germinate and grow, albeit with
greater difficulty than in the other soils.

An improvement in phytotoxicity indices was generally observed in all soils after
treatment with phosphate and the addition of PGPR bacteria, but phytotoxicity indices
did not improve in the case of PZ soil, in line with the fact that this is the soil for which
phosphate extraction was found to have the greatest efficacy. In the other soils, since the
quantity of As released by the treatment with phosphate is very low, the positive effects of
the mobilizing agent and of the PGPR bacteria appear to be predominant.
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Figure 3. (a) Germination index (GI%) and (b) root elongation inhibition (Inh%) for Z. mays, C. sativa,
and B. juncea grown on soil control (CT) and As-contaminated soil treated with phosphate (P). The
addition of PGPR bacteria (first set of isolates) is indicated with a “+” sign. Values are the mean of
three replicates, and the error bars show the standard deviation. Values with different letters are
significantly different at the 5% probability level (Tukey’s test).

3.3. Microcosm Tests with Phosphate

The biomass values from the aerial part of plants grown in the control soils and in the
soils treated with KH2PO4, with or without PGPR bacteria, are shown in Figure 4.

Figure 4. Dry weights (mg pot−1) of (a) roots and (b) shoots of Z. mays, C. sativa, and B. juncea grown
on soil control (CT) and As-contaminated soil treated with phosphate (P). The addition of PGPR
bacteria (first set of isolates) is indicated with a “+” sign. Values are the mean of three replicates, and
the error bars show the standard deviation. Values with different letters are significantly different at
the 5% probability level (Tukey’s test).

Of the plant species tested, corn showed the best growth with the highest biomass
production. In particular, corn was the only species that managed to grow on PZ soil, albeit
with a reduced biomass production compared to that of other soils.

The data show that the addition of phosphate and the presence of PGPR bacteria in
general favor the growth and biomass production of plant species. The most obvious case
occurs for all plants in SW soil.

Regarding the absorption of arsenic by plants, the results in Table 3 show rather limited
absorption and that even the treatment with phosphate does not bring the concentration
of As to such levels as to allow a phytoextraction process to be completed in a short time,
although the amount of As absorbed by plants increases.
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Table 3. Arsenic concentration (mg kg−1) in the roots and shoots of Z. mays, C. sativa, and B. juncea
grown on control (CT) and As-contaminated soil treated with phosphate (P). The addition of PGPR
bacteria (first set of isolates) is indicated with the “+” sign. Values are reported as mean (n = 3) ± SD.
Values with different letters are significantly different at the 5% probability level (Tukey’s test).

Soil Treatment
Z. mays C. sativa B. juncea

Root Shoot Root Shoot Root Shoot

S2
CT 0.10 ± 0.01a 0.05 ± 0.01a 0.05 ± 0.01a 0.03 ± 0.01a 0.11 ± 0.01a 0.05 ± 0.01a
P 0.77 ± 0.07b 0.38 ± 0.03b 0.19 ± 0.02b 0.15 ± 0.03b 1.27 ± 0.11b 0.61 ± 0.06b

P+ 0.82 ± 0.07b 0.35 ± 0.04b 0.21 ± 0.02b 0.16 ± 0.02b 1.22 ± 0.10b 0.62 ± 0.05b

S6
CT 0.12 ± 0.02a 0.06 ± 0.01a 0.03 ± 0.01a 0.02 ± 0.01a 0.21 ± 0.03a 0.10 ± 0.01a
P 0.47 ± 0.05b 0.23 ± 0.03b 0.14 ± 0.02b 0.11 ± 0.02b 0.85 ± 0.08c 0.41 ± 0.04c

P+ 0.57 ± 0.05b 0.24 ± 0.02b 0.12 ± 0.01b 0.09 ± 0.01b 0.69 ± 0.06b 0.35 ± 0.03b

SW
CT 0.07 ± 0.01a 0.04 ± 0.01a 0.09 ± 0.01a 0.03 ± 0.01a 0.18 ± 0.02a 0.11 ± 0.01a
P 0.29 ± 0.03b 0.15 ± 0.02b 0.19 ± 0.02b 0.09 ± 0.01b 0.39 ± 0.04b 0.41 ± 0.05b

P+ 0.40 ± 0.04c 0.16 ± 0.01b 0.25 ± 0.03c 0.10 ± 0.01b 0.34 ± 0.03b 0.38 ± 0.04b

PZ
CT 0.12 ± 0.02a 0.07 ± 0.01a — — — —
P 0.21 ± 0.03b 0.11 ± 0.01b — — — —

P+ 0.25 ± 0.03b 0.10 ± 0.01b — — — —

After treatment with phosphate (with and without the addition of PGPR bacteria), the
absorption of arsenic by corn increased approximately 7 times in soil S2 and approximately
4 times in soils S6 and SW. A certain increase also occurred in the case of PZ soil, character-
ized as mentioned by a very difficult growth. The treatments also increased the absorption
of arsenic by hemp by about 5 times in soils S2 and S6 of the external area and by about
3 times in that of the internal SW area. The addition of PGPR bacteria did not change the
amount of arsenic absorbed, although it had a positive effect on biomass production, which
generally tends to increase with the addition of PGPR bacteria.

Figure 5 provides a comparative evaluation of the phyto-extractive capacity of the
different plant species considered. As known, the total amount of removed arsenic is
obtained by multiplying its concentration in plant tissues by the biomass produced.

Figure 5. Arsenic uptake by (a) roots and (b) shoots of Z. mays, C. sativa, and B. juncea grown on soil
control (CT) and As-contaminated soil treated with phosphate (P). The addition of PGPR bacteria
(first set of isolates) is indicated with the “+” sign. Values are the mean of three replicates, and the
error bars show the standard deviation. Values with different letters are significantly different at the
5% probability level (Tukey’s test).

Figure 5 also allows an evaluation of the positive effect of phosphate addition for all
plant species, highlighting the best results obtained with S2 soil. A positive but not so
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evident effect was also obtained with the addition of PGPR bacteria. This effect, which
occurs with all soils, also depends on the plant species. Under the growth conditions of the
microcosm test, where biomass production is limited, the total removal value confirms that
hemp is the plant species with the lowest arsenic phyto-extraction capacity.

3.4. Microcosm Tests with Oxalate

The biomass values (aerial part) obtained from plants grown in soils treated with
potassium hydrogen oxalate with or without PGPR bacteria are shown in Figure 6.

Figure 6. Dry weight (mg pot−1) of (a) roots and (b) shoots of Z. mays, C. sativa, and B. juncea grown
on soil control (CT) and As-contaminated soil treated with oxalate (O). The addition of PGPR bacteria
(first set of isolates) is indicated with the “+” sign. Values are the mean of three replicates, and the
error bars show the standard deviation. Values with different letters are significantly different at the
5% probability level (Tukey’s test).

The values of produced biomass were quite homogeneous, moving from control soils
to contaminated soils, with or without the addition of PGPR bacteria. In general, the
treatment with oxalate does not seem to influence the biomass yield, and plant species
developed more on S2 soil. In the period of growth of the microcosms, the species that
afforded the best results was corn, in S2 soil, while hemp showed some growth difficulties.

The concentration values of As in plant tissues are shown in Table 4. The data obtained
show how the treatment was important in the process of absorption of As by the plants.
The concentrations of As detected in the plants cultivated as a control did not exceed
0.2 mg kg−1, while values of just over 13 mg kg−1 were detected in the roots of corn grown
on SW soil. These values are also much higher than the As concentration found in plants
after phosphate treatment in the first set of microcosms.

Figure 7 shows the total removal of As by the plants.
Since the total removal is a quantity that depends not only on the biomass developed

but also on the concentration of As absorbed by the specific plants, and considering that
the biomass values were quite homogeneous (at least within each set relating to a specific
type of plant, Figure 6), the role of oxalate treatment and PGPR bacteria is evident.

Corn is the species that managed to develop best, while hemp, being the least-known
species, needs to be further tested to understand its adaptability to the specific experimen-
tation of the soil under consideration.

Finally, the biomass values of the aerial part and of the roots obtained for the plants
grown in the controls and in the soils treated with potassium hydrogen oxalate in the
presence of PGPB bacteria from the second set of isolates (third set of microcosms) are
shown in Figure 8. In general, the treatment with oxalate did not influence the biomass
yield, but hemp again encountered difficulties growing in these soils.
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Figure 7. Arsenic total uptake by (a) roots and (b) shoots of Z. mays, C. sativa, and B. juncea grown on
soil control (CT) and As-contaminated soil treated with oxalate (O). The addition of PGPR bacteria
(first set of isolates) is indicated with the “+” sign. Values are the mean of three replicates, and the
error bars show the standard deviation. Values with different letters are significantly different at the
5% probability level (Tukey’s test).

Table 4. Arsenic concentration (mg kg−1) in roots and shoots of Z. mays, C. sativa, and B. juncea grown
on soil control (CT) and As-contaminated soil treated with oxalate (O). The addition of PGPR bacteria
(first set of isolates) is indicated with the “+” sign. Values are reported as mean (n = 3) ± SD. Values
with different letters are significantly different at the 5% probability level (Tukey’s test).

Soil Treatment
Z. mays C. sativa B. juncea

Root Shoot Root Shoot Root Shoot

S2

CT 0.10 ± 0.02a 0.05 ± 0.01a 0.03 ± 0.01a 0.02 ± 0.01a 0.15 ± 0.02a 0.07 ± 0.01a
CT+ 0.11 ± 0.01a 0.04 ± 0.01a 0.04 ± 0.01a 0.01 ± 0.01a 0.13 ± 0.01a 0.08 ± 0.01a

O 4.24 ± 0.34b 2.08 ± 0.10b 5.10 ± 0.61b 3.96 ± 0.20b 10.5 ± 0.95b 5.06 ± 0.30b
O+ 5.02 ± 0.35b 2.13 ± 0.09b 5.03 ± 0.45b 3.85 ± 0.12b 12.9 ± 1.03b 6.57 ± 0.26c

SW

CT 0.07 ± 0.01a 0.04 ± 0.01a 0.03 ± 0.01a 0.01 ± 0.01a 0.18 ± 0.02a 0.11 ± 0.01a
CT+ 0.06 ± 0.01a 0.04 ± 0.01a 0.02 ± 0.01a 0.02 ± 0.01a 0.16 ± 0.01a 0.11 ± 0.01a

O 6.07 ± 0.55b 3.19 ± 0.16b 5.32 ± 0.48b 2.54 ± 0.15c 3.87 ± 0.43b 4.03 ± 0.28b
O+ 13.2 ± 0.53c 5.22 ± 0.21c 4.96 ± 0.40b 1.98 ± 0.08b 4.42 ± 0.31b 4.97 ± 0.25b

Figure 8. Dry weight (mg pot−1) of (a) roots and (b) shoots of Z. mays and C. sativa grown on
soil control (CT) and As-contaminated soil treated with oxalate (O). The addition of PGPR bacteria
(second set of isolates) is indicated with the “++” sign. Values are the mean of three replicates, and
the error bars show the standard deviation. Values with different letters are significantly different at
the 5% probability level (Tukey’s test).
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As regards the concentration of As absorbed by the plant species, the data in Table 5
confirm the trend of the previous tests, i.e., a significant increase in uptake following
treatment with oxalate. Figure 9 shows the total removal of As by the plants considered in
the third set of microcosms.

Table 5. Arsenic concentration (mg kg−1) in roots and shoots of Z. mays and C. sativa grown on
soil control (CT) and As-contaminated soil treated with oxalate (O). PGPR bacteria (second set
of isolates) were added to all soil samples, as indicated by the “++” sign. Values are reported as
mean (n = 3) ± SD. Values with different letters are significantly different at the 5% probability level
(Tukey’s test).

Soil Treatment
Z. mays C. sativa

Roots Shoots Roots Shoots

S2
CT++ 0.21 ± 0.02a 0.26 ± 0.01a 0.12 ± 0.01a 0.04 ± 0.01a
O++ 8.01 ± 0.72b 4.11 ± 0.16b 11.4 ± 0.91b 5.57 ± 0.22b

SW
CT++ 0.11 ± 0.01a 0.07 ± 0.01a 0.11 ± 0.01a 0.05 ± 0.01a
O++ 15.6 ± 1.09b 6.69 ± 0.27b 7.82 ± 0.63b 3.85 ± 0.19b

Figure 9. Arsenic total uptake by (a) roots and (b) shoots of Z. mays and C. sativa grown on soil control
(CT) and As-contaminated soil treated with oxalate (O). PGPR bacteria (second set of isolates) were
added to all soil samples, as indicated by the “++” sign. The values are the mean of three replicates,
and the error bars show the standard deviation. Values with different letters are significantly different
at the 5% probability level (Tukey’s test).

On a more in-depth analysis, comparing the data in Tables 4 and 5, it appears clear
that in the third microcosm set, the plants were able to adsorb larger quantities of As than
in the second set of tests. This can reasonably be attributed to the different composition of
the bacterial consortium.

Figure 10 compares the total removals in the two different series of microcosms (second
and third sets) performed using oxalate and the two different types of bacterial consortia.
The data confirm what has already been observed in relation to soil S2 and the concentration
of As in plants: there is an increase in the “total uptake” in the third growth compared to
the second, both for corn and hemp. This difference does not appear as significant in the
case of SW soil.
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Figure 10. Arsenic total uptake comparison in shoots of Z. mays and C. sativa grown on soil control
(CT) and As-contaminated soil samples treated with oxalate (O): (a) S2 soil, (b) SW soil. PGPR bacteria
(second set of isolates) were added to all soil samples, as indicated by the “++” sign. The values are
the mean of three replicates, and the error bars show the standard deviation. Values with different
letters are significantly different at the 5% probability level (Tukey’s test).

4. Conclusions

Through numerous microcosm tests organized in three successive campaigns, the
efficacy of potassium hydrogen oxalate versus phosphate as an arsenic mobilizing agent
and of two different consortia of PGPR bacteria was evaluated. The tests confirmed that the
use of oxalate led to a significant increase in the bioavailability of arsenic in soils, and that
the addition of PGPR bacteria improves the absorption of As, although the effect is more
evident at the level of the roots (probably due to the short growth times at the microcosm
scale). This effect was confirmed by the improvements in terms of total uptake obtained
with a second set of PGPR bacteria, as demonstrated by the direct comparison between the
second and third series of microcosms.

After treatment with 0.2 M KHC2O4 and the second set of PGPR bacteria (third
microcosm set), the total uptake of arsenic in the aerial part of the plants increased from
0.19 to 3.11 µg (S2) and from 0.06 to 4.25 µg (SW) for Z. mays compared to the treatment with
KH2PO4 and the first consortium of bacteria (first microcosm set). Similarly, the absorption
of C. sativa increased from 0.04 to 1.53 µg (S2) and from 0.02 to 0.48 µg (SW). Overall, the
pot experiments revealed that Z. mays performed better than C. sativa.

The concentration of arsenic in plants confirms the validity of the Italian legislation
(Legislative Decree No. 152 of 2006), which prohibits the placing on the agricultural market
of vegetables from reclaimed areas. In this specific case, since the site is intended for
industrial use, there is no possibility that any part of the area under study is intended for
agriculture. The possibility of people coming into contact with the contaminated plants, as
well as that of arsenic transfer into the food chain, can therefore be excluded. An interesting
possibility, alternative to disposal and in line with the provisions of the European Union,
is the exploitation of biomass for energy purposes. This is allowed only for the energy
self-production of the company but allows to increase the sustainability of the remediation
activity. In the case of hemp, there are also numerous constraints that govern its cultivation.
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