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Abstract: With the spread of the modern media industry, harmful genre contents are indiscriminately
disseminated to teenagers. The password identification method used to block sensational and violent
genre content has become a problem that teenagers can easily steal. Therefore, a user identification
method with less risk of theft and hacking is required. The surface EMG (sEMG) signal, which
is an electrical signal generated inside the body and has individual features, is being studied as
a next-generation user identification method. sEMG involves measuring an individual’s unique
muscular strength activated over time as digital signals, thus giving it the advantage of generating
different signal patterns. However, it is difficult to constantly and repeatedly acquire each motion
signal and the number of repetitions for each motion is insufficient, thus there is a limit to improving
user identification accuracy. In this paper, we propose a user identification system that solves the
problem of insufficient data by applying the matching pursuit that enables signal generation to the
sEMG signal from which the resting signal has been removed and improves classification accuracy by
extracting STFT-based time–frequency features. As a result of the experiment, the user identification
accuracy of the sEMG spectrogram with the resting state signal removed was 85.4%. In addition,
when the training data were increased through data generation, the accuracy was improved, showing
a user identification accuracy of 96.1%. Improved user recognition accuracy was confirmed when
the training data of the sEMG signal from which the resting signal was removed were increased and
multidimensional features including time–frequency were used.

Keywords: biometrics; sEMG; user recognition; spectrogram; CNN

1. Introduction

As the modern media industry expands due to the development of mobile devices
such as smartphones and tablet PCs, media can be conveniently accessed without any place
or time constraints [1]. Through such mobile devices, videos of harmful genre content
such as crime and pornography are indiscriminately distributed and, in particular, youth
with insufficient discriminant ability can easily access them, causing adverse social impacts
such as imitation crimes [2]. Existing hazardous genre content approaches use a method
of entering an ID and password permitted to access or an authentication method through
personal information such as a phone number. However, the disadvantage is that anyone
can access when the personal information is leaked. Therefore, as shown in Figure 1, it is
necessary to strengthen user awareness to prove personal identity in order to block harmful
genre content from youth with the most serious impact.

Existing methods that involve inputting passwords designated by users or using
specific devices are accompanied by problems of password forgets, device misplacement,
or theft [3]. Accordingly, biometric-information-based user identification technology using
unique information or behavioral characteristics of users is garnering popularity. Biometric-
information-based user identification technology is a technique of extracting unique fea-
tures of an individual and converting them into information to identify different features
for each person instead of using conventional passwords [4].
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Figure 1. Block harmful genre content through user recognition. 

Biosignals are electrical signals generated inside the body and contain features that 
are unique to an individual. Representative biosignals include electromyogram (EMG), 
electrocardiogram (ECG), and electroencephalogram (EEG) [5]. Among such biosignals, 
various studies are being conducted to improve the performance of user identification 
technology using ECG signals that contain individual attributes based on the electrophys-
iological factors of the heart, the location and the size of the heart, and physical conditions. 
However, ECG signals cannot be changed when they are exposed externally because of 
problems including hacking. Furthermore, in ECG signals, the heart rate and waveform 
can change because of an individual’s physical activity, the measurement time, or psycho-
logical effects. EMG signals, which can mitigate these drawbacks of ECG signals, are bi-
osignals that are uniquely generated for each individual and generated by the muscle 
from behavioral characteristics, such as activities based on the development degree of 
each muscle and the muscle development degree between individuals. Additionally, as 
shown in Figure 2, surface electromyography (sEMG) signals can be measured on the skin 
surface of the desired muscle region to be acquired, rendering it easier to acquire signals 
compared with electrocardiography and electroencephalography. Moreover, sEMG sig-
nals can generate different signal patterns based on the muscles analyzed [6]. 

 
Figure 2. sEMG signal acquisition using various muscles. 

However, the databases used in existing user identification studies involving sEMG 
signals do not contain a sufficient number of subjects or repetitions for each motion. Be-
cause sEMG signals identify users using signals generated by muscles based on behav-
ioral characteristics, they can be applied to user identification only when each motion is 

Figure 1. Block harmful genre content through user recognition.

Biosignals are electrical signals generated inside the body and contain features that
are unique to an individual. Representative biosignals include electromyogram (EMG),
electrocardiogram (ECG), and electroencephalogram (EEG) [5]. Among such biosignals,
various studies are being conducted to improve the performance of user identification
technology using ECG signals that contain individual attributes based on the electrophysi-
ological factors of the heart, the location and the size of the heart, and physical conditions.
However, ECG signals cannot be changed when they are exposed externally because of
problems including hacking. Furthermore, in ECG signals, the heart rate and waveform
can change because of an individual’s physical activity, the measurement time, or psy-
chological effects. EMG signals, which can mitigate these drawbacks of ECG signals, are
biosignals that are uniquely generated for each individual and generated by the muscle
from behavioral characteristics, such as activities based on the development degree of
each muscle and the muscle development degree between individuals. Additionally, as
shown in Figure 2, surface electromyography (sEMG) signals can be measured on the skin
surface of the desired muscle region to be acquired, rendering it easier to acquire signals
compared with electrocardiography and electroencephalography. Moreover, sEMG signals
can generate different signal patterns based on the muscles analyzed [6].
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However, the databases used in existing user identification studies involving sEMG
signals do not contain a sufficient number of subjects or repetitions for each motion. Because
sEMG signals identify users using signals generated by muscles based on behavioral
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characteristics, they can be applied to user identification only when each motion is acquired
using a sufficient number of repetitions. If the number of repetitions is insufficient, each
motion may not be recognized, thereby hindering the application of the signals to user
identification. In addition, most existing sEMG-based user identification studies applied
temporal domain feature extraction methods to one-dimensional (1D) sEMG signals and
applied signals to identification algorithms. However, sEMG signals are continuous signals
with features that change constantly over time; furthermore, it is difficult to derive a clear
cycle from them as it is difficult to repeat the same motion while maintaining a constant
muscle strength based on time change. In other words, analyzing 1D sEMG signals acquired
without a constant muscle strength and time in the temporal domain results in degraded
user identification performance [7].

Hence, a preprocessing method was used in this study to address the problems
of irregular signals and insufficient data to apply 1D sEMG signals acquired based on
behavioral characteristics to the user identification system; furthermore, a user identification
method using multidimensional feature sEMG spectrograms, including time–frequency
information, is presented. First, irregular resting state signals and noise contained in
sEMG signals were removed and sEMG signals were generated using matching pursuit,
which enables data generation using a small amount of available data. Subsequently, the
preprocessed 1D sEMG signals were applied to short-time Fourier transform (STFT), which
is a method of extracting multidimensional features including time–frequency information.
After adjusting the sEMG signals to a resolution that can be efficiently analyzed, they were
transformed into sEMG spectrograms, and a convolutional neural network (CNN) was
used to identify users in the final step. The experiment’s results revealed a 78.7% user
identification accuracy based on the transformation of the raw sEMG signals into sEMG
spectrograms for 40 subjects. By contrast, when the resting state signals were removed
and transformed into sEMG spectrograms, as proposed herein, the user identification
performance was 85.4%, which was a 6.7% improvement compared with using raw signals.
Furthermore, when data were augmented by generating sEMG signals after removing the
resting state signals, the performance increased by 10% to 96.1%, compared with before
increasing the data amount.

This paper is organized as follows: The research trend involving sEMG signals is
presented in Section 2. The proposed sEMG spectrogram-based user identification of this
study is described in Section 3. The experimental methods employed for the proposed user
identification and results analysis are presented in Section 4. Finally, the conclusions and
future research directions are presented in Section 5.

2. Related Works

Techniques applied to existing user identification systems using sEMG signals are
analyzed in this section. Figure 3 illustrates the user identification system using sEMG
signals. First, sEMG signals are acquired independently or by using open databases to
construct data. Subsequently, data preprocessing and normalization are conducted to
remove noise in the data signals. The preprocessed signals are passed subjected to feature
extraction and then the user identification performance is evaluated using a classifier.

For user identification, sEMG data are first constructed. sEMG data consist of muscle
and motion data to be used. As summarized in Table 1, there are Ninapro DB2 and sEMG
Basic Hand Movement Upatras databases for hand or wrist movement. Ninapro DB2 was
composed by acquiring movements of fingers and wrists and holding movements from
40 subjects, and sEMG Basic Hand Movement Upatras is a database composed by acquiring
daily hand holding movements from five subjects. The database for finger movement is
Rami Khushaba’s sEMG, and it is a database constructed by acquiring data from eight
subjects by performing finger movements. Finally, the EMG dataset in lower limb dataset
using the leg muscles was constructed by acquiring the sEMG signals generated when
performing leg movements from 22 subjects [8–11].
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Table 1. sEMG open databases.

Database Name Channel Individuals Motion Remarks

sEMG Basic
Hand Movement

Upatras
2ch 5 subjects 6 hand motions

• Duration for each
motion: 6 s.

• Repetitions for
each motion:
30 times.

EMG (Dr. Rami
Khushaba)

2ch 8 subjects
10 finger
motions

• Duration for
each motion: 5 s.

• Repetitions for
each motion:
6 times.

Ninapro DB2 12ch 40 subjects
49 hand and

wrist motions

• Duration for
each motion: 5 s.

• Repetitions for
each motion:
6 times.

Benchmark
Datasets for

Bilateral
Lower-Limb

7ch 10 subjects 3 leg motions
• Repetitions for

each motion:
3 times.

However, the problem regarding insufficient data in sEMG DBs (an insufficient number
of acquired subjects or motion repetitions) has been continuously problematic. Although
multiple DBs can be synthesized to address this issue, limitations exist when combining
multiple DBs into one, because each sEMG DB employs different motions, muscle channels,
number of motion repetitions, and motion durations as initial acquisition conditions.
Furthermore, when increasing the amount of data by segregating the sEMG signals of one
motion cycle into predefined windows, it is difficult to identify the same motion signal
because the frequency component changes over time even for the same motion [12].

The constructed sEMG DB must undergo preprocessing as it contains noise generated
from various environments. The noise that should be removed includes power line noise
generated from the measuring device, modulated waves from 60 Hz band, white noise from
broadband, noise occurring from differences in performance and functions of disposable
electrodes, noise caused by physiological interference, and noise caused by characteristics
of muscle tissues. Preprocessing should be conducted to remove such noises. First, they
were identified through frequency analysis and then removed by using various filters, such
as high-pass, low-pass, band-pass, Butterworth [13], and notch filters [14].
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After that, features are extracted from the preprocessed EMG signal. Feature extraction
can be mainly classified into time domain, frequency domain, and time–frequency domain.
The time and frequency domain functions include the mean absolute value (MAV) for
detecting muscle activity, the slope sign change (SSC) expressing the frequency domain
characteristics of the EMG signal calculated in the time domain, and the root mean square
(RMS) related to continuous force and contraction. In addition, there are waveform lengths
(WL) indicating the waveform length with respect to time segment, variance (VAR) indicat-
ing the characteristic of force and the integrated EMG (IEMG) used as an onset detection
index, and zero crossing (ZC), indicating the number of times the amplitude of the EMG
signal crosses zero. Table 2 summarizes the formulas used for each feature extraction [15].

Table 2. Formulas for temporal domain features.

Feature Name Formula

MAV 1
N

N
∑

n=1
|xn|

SC

N−1
∑

n=2
[ f [ (xn − xn−1)× (xn − xn+1)]],

f (x) =
{

1, i f x ≥ threshold
0, otherwise

RMS
√

1
N

N
∑

n=1
x2

n

WL N−1
∑

n=1
|xn+1 − xn|

VAR 1
N−1

N
∑

n=1
x2

n

IEMG N
∑

n=1
|xn|

ZC

N−1
∑

n=1
[sgn(xn × xn+1)∩|xn − xn+1| ≥ threshold],

sgn(x) =
{

1, i f x ≥ threshold
0, otherwise

sEMG signals are continuous signals with features that change over time; therefore, it
is difficult to locate a clear periodicity in them as it is difficult to repeat the same motion
at a constant time and intensity. One of the most widely used feature extraction methods
for the frequency domain is fast Fourier transform (FFT). The FFT transforms signals of a
temporal domain into a frequency domain. However, the FFT is restricted in evaluating
the frequency component for the desired time point because of temporal limitations [16].

STFT is used as a representative feature extraction method in the time–frequency
domain [17]. The STFT is a method that compensates for the temporal limitations of
the FFT; it selects the desired window length, partitions the time into short segments,
and Fourier transforms each of the partitioned segments. Accordingly, because the STFT
analyzes the frequency components based on the temporal domain, it has been proven to
be more efficient as an analysis method than using temporal and frequency features as
it analyzes time–frequency multidimensional features by applying sEMG signals, whose
features change over time [7].

Methods used for sEMG signal classification include machine learning and deep
learning approaches. Machine learning is a technique that trains a machine to perform a
task on behalf of humans to achieve the desired result. Machine learning can be primarily
categorized into supervised learning and unsupervised learning. In supervised learning, a
model is trained with correct answers to obtain correct predictions; one of the most widely
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used supervised learning methods is the support vector machine [18]. Unsupervised
learning is a method of obtaining similar patterns through clustering without using correct
answers. One of the most widely used unsupervised learning methods is the k-nearest
neighbor (KNN) algorithm. In addition to the KNN, other classifiers used include decision
tree learning, random forest, principal component analysis [19], and linear discriminant
analysis [20]. Deep learning, a subset of machine learning, is a technique that uses artificial
neural networks as its basis; it attempts to solve the problem of weak training by deeply
configuring neural networks. The most widely used deep learning networks include CNNs
and long short-term memory (LSTM). LSTM is an algorithm that solves the long-term
dependence problem of recurrent neural networks and is often used for data with temporal
characteristics. The CNN is the most widely used deep learning method and is useful for
obtaining patterns in images [21].

3. Proposed sEMG Spectrogram-Based User Identification

This section presents a preprocessing method for removing resting state signals and
noise to solve the irregularity problem of sEMG signals, as well as a user identification
system that applies a time–frequency multidimensional analysis method to 1D sEMG
signals. Figure 4 illustrates the overall flowchart of the proposed sEMG spectrogram-based
user identification.
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Among the open databases, Ninapro DB2 is used to compose the sEMG signal dataset.
Subsequently, sEMG signals are partitioned into one motion cycle signals, and a preprocess-
ing process that includes removing noise and irregular resting state signals generated in the
signal acquisition process is performed. Noise occurring in the sEMG signals is removed
using filters such as band-stop and band-pass filters. Additionally, the sEMG signals of
one motion cycle are partitioned into non-overlapping frames; the energy and spectrum
center for each frame are calculated to set a threshold value and the irregular resting state
signals are removed by extracting only signals containing activity information. The final
step of the preprocessing increases the amount of sEMG data through matching pursuit.
Subsequently, the preprocessed 1D sEMG signals are transformed into two-dimensional
(2D) sEMG spectrogram images by applying a time–frequency multidimensional feature
extraction method. Finally, the user identification performance is verified using the CNN,
the most widely used technique for image classification.
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3.1. Noise Removal Including Resting State Signals

In Ninapro DB2, raw signals are acquired by repeating 40 hand and wrist motions six
times each. To partition the sEMG signals into one motion cycle signals for each motion,
the signals are partitioned using the label assigned to each motion in the data, as shown in
Figure 5.
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After partitioning them into one motion cycles, noise contained in the sEMG signals
is removed. The types of noises contained in the sEMG signals include power line noise
caused by the measuring device, noise occurring from differences in performance and
functions of disposable electrodes, and noise caused by physiological interference. In
this study, a band-pass filter was used to pass the 10–500 Hz frequency band containing
activity information without attenuating it, whereas the remainder of the frequency band
was attenuated and removed. The power line noise, which was generated by the poor
grounding of the measuring device or by high power cables around the device, was
generally observed at 60 Hz. To remove such power line noise, a band-stop filter was
employed to remove the 60 Hz frequency band.

Subsequently, the resting state signals in the sEMG signals were removed. The resting
state signal defined in this study refers to a resting signal included before and after motion
is performed during the motion execution time set as the signal acquisition condition. To
remove the resting state signal, the sEMG signals of one motion cycle are partitioned into
non-overlapping frames and the mean energy for each frame is calculated and set as the
threshold. Based on the configured threshold, if the signal is greater than the threshold
value, then it is regarded as a motion signal containing activity information and is extracted;
otherwise, it is regarded as a resting state signal and is removed. Because the sEMG signals
extracted in this process involve different durations, the size of all signals is adjusted to be
the same through resampling. Figure 6 illustrates the result of removing the resting state
signals from the sEMG signals partitioned into one motion cycle signals.
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3.2. Data Increase Using Matching Pursuit

For the sEMG signals processed through noise and resting state signal removal, the
amount of data was increased by generating sEMG signals. The generative adversarial
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network (GAN) is the most widely used technique for data generation. GAN comprises a
generator that generates data and a discriminator that assesses the generated data; during
training, the generator and the discriminator compete against each other to improve the
performance. The GAN requires a substantial amount of data in advance to generate
data [13]. However, it is difficult to apply the GAN for generating sEMG signals as the
sEMG database is acquired using a small number of motion repetitions, i.e., the amount
of data obtained is insufficient. Hence, matching pursuit, which can generate signals
using a small amount of data and enables quick data generation using a relatively simple
formula compared with other data generation techniques, was employed in this study.
The matching pursuit algorithm was first introduced by Mallat and Zhang [16]. The basic
idea of matching pursuit is to first select atoms individually to identify the atom with the
highest inner product using the current signal after expressing signals with approximation,
subtracting an approximation that uses only that one atom from the signal, and repeating
the process until the residual signal is decomposed. The approximate decomposition of the
matching pursuit algorithm can be expressed as shown in Equation (1) below, where ℛ(m)

denotes the residual signal and, based on the number of repetitions (m), the index ri is
obtained and αr is derived.

S =
m

∑
i=1

αri∅ri +ℛ(m) (1)

Accordingly, a signal that is similar to the current signal can be generated by applying
matching pursuit to the sEMG signals. Signals can be generated by changing the similarity
based on the number of repetitions. The signals were generated to exhibit cross-correlation
similarity between 90% and 99%. In this study, preprocessing was performed as follows.
First, noise and resting state signals in the signals were removed using the band-pass and
band-stop filters mentioned earlier. Subsequently, sEMG data signals were generated using
matching pursuit. All the preprocessed one motion cycle EMG signals were convenient to
visually check muscle activation and are combined into 12-channel signals in the temporal
domain, as shown in Figure 7.
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3.3. User Identification Using sEMG Spectrogram

In this study, multidimensional features were extracted from the preprocessed and
normalized 1D sEMG signals by applying the STFT, a time–frequency feature extraction
method. The STFT is a method that compensates for the disadvantages of the existing FFT, a
frequency–domain feature extraction method; it enables the extraction of multidimensional
features, including time and frequency, by analyzing the frequency components at a desired
time point for signals that change over time [22]. The application of the STFT is expressed
as shown in Equation (2).

X (ℛ,w) =

∞∫
−∞

x(t)w(t−ℛ)e−iωtdt = s (2)
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The spectrogram transformation is performed based on the FFT length using the input
signal X (t) and the window function w(t), where ℛ denotes the window length, w the
angular frequency, and s the spectrogram value. Hence, the frequency information over
time can be included by applying Equation (1) to 1D sEMG signals, such that multidimen-
sional features containing time–frequency information can be extracted. In the process, the
temporal resolution was enhanced by applying a 50% overlap, because both the time and
frequency resolutions cannot be improved simultaneously. Figure 8 illustrates the result of
transforming the extracted multidimensional features into the sEMG spectrogram.
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The transformed 2D sEMG spectrogram images were derived by adjusting the window
length ℛ to verify the time–frequency resolution based on the change in the window length
ℛ, which is a parameter used in the STFT. The minimum value of the window length ℛ
was set to 64, and it was increased by two-fold increments until the maximum length of
512 was attained. The change in the frequency resolution increases and the time resolution
decreases based on the increases in the window length as illustrated by the spectrograms
shown in Figure 9 [23].
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In the final user identification, a typical deep learning CNN based on a 2D image
input was employed. The constructed CNN comprised three convolutional layers, two
max pooling layers, two fully connected layers, and a ReLu activation function. The final
classification was proceeded by the softmax function. Figure 10 illustrates the overall
network structure. The filter size of the CNN’s convolutional layers was set to 3 × 3,
whereas those of the pooling layers and stride were set to 2 × 2 and 2, respectively. The
maximum number of iterations was set to 150, the initial weight of each layer was set to
random, and the user was identified in the output layer by the softmax function in the final
step [21].
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Furthermore, DenseNet201, which is designed with a deep neural network, and
MobileNet-v2 network, which can be applied to limited environments without a high-
performance computer, were used in addition to the CNN constructed in this study to
compare the identification performance. DenseNet201 was designed with a densely con-
nected CNN structure. This model improves the flow between layers by connecting the
feature maps of the previous layer with the inputs of the subsequent layer. Such a structure
is applied to supplement the problem of information loss that occurs as the information on
input passes through multiple layers with the increase in the depth of the network. There-
fore, DenseNet201 can improve the vanishing gradient, strengthen feature propagation,
encourage feature reuse, and reduce the number of parameters [24].

MobileNet is a network designed based on studies regarding lightweight networks that
can be used in a limited environment without requiring a high-performance computer. The
early MobileNet network was designed to achieve fast training and accuracy improvement
under low power consumption through its small size. The core idea of MobileNet is to
perform convolution operations on filters corresponding to each channel after segregating
the input data by channels using depthwise separable convolutions obtained from Xception.
Hence, the number of filters is equivalent to the number of channels of the input data,
and the feature map that has completed a convolution operation is again passed on to the
convolution operation to be output as a final result of the 1-channel [25]. MobileNet-v2 was
designed based on MobileNet-v1. In the second version, the number of required tasks and
memory was reduced, while the same accuracy was maintained by segregating the entire
convolution into two separate layers with different strides [26].

4. Experimental Methods and Results

Ninapro DB2, a representative open database, was used to evaluate the reproducibil-
ity of the proposed sEMG spectrogram-based user identification performance. Table 3
summarizes the detailed composition of the database. A total of 40 subjects were used
in the database, and Figure 11 illustrates the hand motions employed in this study. The
hand motions included in Ninapro DB2 comprised movements of an entire arm or a hand.
However, motions with large movements were not suitable for use as user identification
passwords; hence, such motions were removed and the data were constructed using mo-
tions one to seven, which can be performed within the palm range. Each motion was
repeated six times for 5 s with a 3 s break; the data were acquired at a sampling rate of 2000
Hz and 12 channels were used, including the forearm periphery, biceps, and triceps [9]. As
the amount of data was insufficient because each motion was repeated only six times, the
training and test data for each motion were initially composed of three data entries each
when the data were partitioned by applying a ratio of 5:5. In other words, the total amount
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of data for one subject was 21 training data and 21 test data; hence, the total amount of data
for 40 subjects was 840 training data and 840 test data.

Table 3. sEMG signal database composition.

Item Data

Number of subjects 40
Number of motions 7
Number of channels 12

Number of repetitions 6
Sampling rate (Hz) 2000
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Noise, including resting state signals, was removed from the acquired sEMG signals;
subsequently, the amount of data was increased using matching pursuit. The sEMG
signals generated through the predefined number of repetitions in matching pursuit can be
confirmed by measuring the similarity with the actual signals through cross-correlation.
Table 4 summarizes the cross-correlation similarity between the actual sEMG signals and
the sEMG signals generated through matching pursuit. It was confirmed that the signals
were generated with a similarity between 90% and 99%. Accordingly, when the initial
training dataset was increased by ten times, the data of each motion were composed of
33 training data and 3 test data; the amount of training data was increased for the data of
40 subjects through such data generation to acquire a composition ratio of 9240 training
data and 840 test data.

Table 4. Similarity of sEMG signals generated for one motion cycle.

Item
Number of Repetitive Generations

1 2 3 4 5 6 7 8 9 10

Cross-correlation
similarity

0.908 0.919 0.927 0.934 0.942 0.955 0.96 0.973 0.985 0.99

0.903 0.913 0.922 0.932 0.941 0.949 0.956 0.964 0.971 0.981

0.907 0.918 0.928 0.937 0.944 0.956 0.963 0.971 0.979 0.989

0.900 0.912 0.923 0.933 0.94 0.952 0.959 0.966 0.972 0.983

0.904 0.916 0.924 0.934 0.943 0.953 0.961 0.969 0.974 0.986

0.907 0.917 0.925 0.937 0.949 0.956 0.961 0.968 0.972 0.988

0.909 0.919 0.927 0.936 0.945 0.955 0.964 0.971 0.977 0.989

To analyze the sEMG spectrogram-based user identification performance, the window
length, a parameter of the STFT, was set to 64, 128, 256, and 512, separately, and the sEMG
spectrogram was generated by changing the time–frequency resolution. As shown in
Figure 12, the highest identification accuracy of 85.4% was observed for the signals with
resting state signals removed when using the window length of 256. Therefore, the window
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length parameter having the most suitable time–frequency resolution for the sEMG signal
was set to 256.
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As shown in Figure 13, when the sEMG spectrograms were generated using the
window length of 256, the user identification accuracy for 40 subjects was 78.7% for the raw
signals before resting state signal removal and 85.4% for the signals after resting state signal
removal, indicating a 6.7% improvement after removing the static rest signal that did not
contain muscle information. Furthermore, the amount of training data increased through
matching pursuit after the resting state signals were removed to address the insufficient
data problem of the sEMG database. The sEMG signals were generated with a similarity of
90–99% for the signals of each motion; the user identification performance was evaluated
after augmenting the amount of data training data by 10 times from the existing insufficient
data. When the number of insufficient training data was increased by 10 times, the sEMG
spectrogram improved by more than 10%, showing 96.1% of user recognition performance,
and it was confirmed that when the number of training data was increased by 10 times or
more, it converged to a constant value.
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For performance comparison, the user identification performance was compared
using the DenseNet201 neural network, which is composed of a deep neural network,
and the MobileNet-v2 neural network, which can be applied to a mobile environment by
reducing the computational cost and model size. Figure 14 illustrates the user identification
performance using the raw signals and the user identification performance after noise
removal and data generation.
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In this paper, the number of learning data is increased tenfold by removing the resting
signal included in the sEMG signal and applying the matching pursuit. In addition, the
time–frequency resolution of STFT suitable for sEMG signals was set to 256 through an
experiment and converted into an sEMG spectrogram, and then the deep learning-based
CNN was directly constructed to confirm the user identification accuracy. The batch size of
CNN was set to 128, maxEpochs to 150, and filter size to 3× 3. As a result of the experiment,
when the method proposed in this paper was applied, the user recognition accuracy was
96.1%. Accuracy was improved by 22.4% compared with before increasing the training
data, and accuracy by 17.4% was improved compared with when a one-dimensional signal
was used as an input. When the user recognition accuracy was checked using MobileNet-v2
and DenseNet201, as well as the directly constructed CNN, it was confirmed that the user
recognition accuracy was improved in the directly constructed CNN.

In addition, the identification accuracy was compared with the previous study using
the same Ninapro DB2. Zhai [7] and Huang [17] conducted pattern identification by con-
verting a one-dimensional sEMG signal into a spectrogram. Zhai compared and analyzed
the accuracy according to the feature extraction method and confirmed the identification
accuracy of 77% using the spectrogram-based SVM. It was demonstrated that sEMG signals
can be efficiently analyzed when the spectrogram, a multidimensional feature extraction
method with time–frequency information, is applied rather than the time–domain feature
extraction method, which is a one-dimensional analysis method. In addition, Huang com-
pared and analyzed the accuracy according to the classifier and confirmed the identification
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accuracy of 79.4% using the spectrogram-based CNN-LSTM. The deep learning CNN-
LSTM network showed higher identification accuracy than the existing machine learning
SVM. In this paper, it was confirmed that the user recognition accuracy was improved to
96.1% of identification accuracy when the learning data were increased by applying the
matching pursuit that can generate a signal to the sEMG signal from which the resting
signal was removed, and the STFT-based time–frequency feature was used.

5. Conclusions

In existing user identification studies using sEMG signals, experiments with sEMG
signals were conducted after removing noise using only simple filters. sEMG signals
are time series data acquired over time and are generated based on different activity
degrees of each muscle when performing a motion; hence, they can be applied to user
identification once a sufficient amount of data is acquired. However, most sEMG databases
contain a minimal amount of data and signals are acquired irregularly as it is difficult
to acquire constant signals based on the conditions involved when acquiring data by
repeating motions. Furthermore, because sEMG signals, which are time series data, cannot
be repeated while maintaining a constant muscle strength over time, it is difficult to obtain
a clear periodicity; hence, user identification performance is degraded when analyzed as
1D features.

In this study, a preprocessing method was employed for solving problems of irregular
signals and insufficient data for a user identification system using 1D sEMG signals ob-
tained based on behavioral characteristics; furthermore, a user identification method using
multidimensional feature sEMG spectrograms containing time–frequency information was
proposed. After removing irregular resting state signals and noise included in the sEMG
signals, the sEMG signal data were generated using matching pursuit, which enables
signals to be generated using a small amount of data and quick data generation using a
relatively simple formula compared with other data generation techniques. The similarity
of the generated sEMG signals was verified using cross-correlation similarity, which yielded
90% to 99% similarity with the raw data. The preprocessed 1D sEMG signals were applied
with STFT, a multidimensional feature extract method containing time–frequency infor-
mation, and the resolution was changed to enable efficient analysis of the sEMG signals.
Subsequently, after transforming the signals into sEMG spectrograms, a CNN model was
used to perform final user identification. The proposed system comprised processes of
sEMG data composition, sEMG data preprocessing and normalization, transformation of
1D sEMG signals into spectrograms, and final classification.

Based on experiments, the user identification accuracy obtained using the 1D sEMG
signals was 59.3% before performing preprocessing and 66.7% after performing prepro-
cessing, indicating only a slight performance increase. Furthermore, the user identification
performance of 40 subjects using the proposed method was 78.4% before preprocessing
and 85.4% after preprocessing when the sEMG signals were transformed into spectrograms
by applying a window length of 256 in 12 channels; these results indicated 19.4% and
18.7% accuracy improvements, respectively, compared with the case of using 1D sEMG
signals. When the insufficient amount of data was increased by 10 times by applying
matching pursuit, the user identification performance was 96.1%, a 10% increase compared
with before data augmentation. By conducting user identification using DenseNet201 and
MobileNet-v2 networks in addition to the CNN employed in this study, it was demon-
strated that the user identification performance improved when applying the method
proposed. Accordingly, the possibility of performing user identification was verified based
on the use of multidimensional feature sEMG spectrograms transformed through the STFT
after the removal of noise and unnecessary resting state signals in the 1D sEMG signals, as
well as training data augmentation. In the future, we plan to acquire sEMG signals directly
from the wearable device environment, build a database, and conduct sEMG signal-based
user identification research that can be applied in real life.
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