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Abstract: Space-based wide-field surveillance systems are of great significance in maintaining the
security of space resources by avoiding collisions between space targets. However, their performance
is hindered by stray light phenomena. The nonuniform background noise caused by stray light
significantly hampers subsequent target detection, leading to a high frequency of false alarms. To
solve this problem, we propose a robust and accurate nonuniform background elimination method
based on image block self-adaptive gray-scale morphology (IBSGM). First, we define two kinds of
structural operators with different sizes and domains, which make full use of the difference between
the target pixels and surrounding background pixels. Then, we block the original surveillance
image and find the size of the largest target in each block by the minimum bounding rectangle
method to determine the optimal size of the structural operator suitable for each block. Finally, we
perform morphological processing using the defined structural operators to eliminate nonuniform
backgrounds from images. Experimental results on simulated and real image datasets demonstrate
that the proposed IBSGM method has higher precision in eliminating the nonuniform background
when compared to other methods.

Keywords: stray light; wide-field surveillance; minimum bounding rectangle; gray-scale morphology;
background elimination

1. Introduction

Since Sputnik-1 was launched in 1957, the pace of space exploration quickened [1,2],
and the number of targets in space (including satellites and space debris) has increased
rapidly [3,4]. According to the Union of Concerned Scientists’ satellite database, as of 1
January 2022, there were 4852 satellites in orbit accompanied by a mass of space debris.
The famous scientist Kessler pointed out that once these targets collide, every collision
could trigger a cascade of collisions that create more space debris and pose a massive threat
to operational satellites [5]. For example, space debris of about 10 cm in diameter can
destroy any operational satellite it collides with, which would have severe implications for
human space activities [6]. To address the growing demand for space exploration while also
assuring the security of the space environment, countries all over the world are installing
a strategic layout of space-based surveillance systems; for example, the Fengyun satellite
program of China [7], the Space Surveillance System of Canada (CSSS), the Space-Based
Space Surveillance system (SBSS) [8,9], the Space Tracking and Surveillance System (STSS)
and the Space-Based Infrared System (SBIRS) [10] of the USA. However, as space-based
surveillance systems operate in outer space, most of the detected space targets are dim
with high magnitude. Accordingly, stray light can have a severe impact on the detection
performance of space-based surveillance systems [11]. In such cases, the surveillance image
is the only data source. If stray light cannot be effectively suppressed, it will create a harsh
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nonuniform background signal in the surveillance image, reducing its clarity and dynamic
range. Furthermore, substantial degradation effects can appear in surveillance images
that greatly obstruct the subsequent recognition and detection of space targets [12,13]. In
conclusion, stray light noise badly affects the normal operation and detection ability of
these systems. In addition, a surveillance image may represent a vast number of targets of
various sizes [14]. Precisely eliminating nonuniform backgrounds generated by stray light
without losing targets of various sizes is a challenge that remains. As a result, research on
nonuniform background elimination methods for surveillance images is urgently needed.

In recent years, the reduction of stray light has become a problem not only in the field
of instrument measurement, but also in the preprocessing of faint target detection and
tracking. At present, current nonuniform background elimination methods for surveillance
images can be roughly divided into two types: a (1) parametric model-based method, and
an (2) image feature-based method. In parametric model-based methods, the nonuniform
background is eliminated by constructing a parametric model. Specifically, abundant
images are collected in advance, then classified to create a training data set to build a
parametric model, such as a spline function or polynomial model, or recent deep learning-
based models [15,16]. However, these algorithms are not very effective in eliminating
nonuniform backgrounds from surveillance images. On the one hand, parametric models
must be accurate, such as the order or the number of terms in the polynomial. However,
in practice, there are huge differences in the distributions of nonuniform backgrounds in
different images, which makes it difficult to accurately determine the parameters under
different conditions or scenes. In addition, even if we have enough surveillance images for
training a parametric model, there may still be some unknown cases that make it difficult
for fixed-parameter models to eliminate nonuniform backgrounds from surveillance images
that are not included in the dataset. On the other hand, some targets with low signal-to-
noise ratios (SNRs) exist in surveillance images. Minor flaws in the parametric model
development process could result in target losses or greater false alarm rates, lowering the
accuracy of subsequent target recognition [17].

With image feature-based methods, the problems of nonuniform background elim-
ination can be solved well in unknown situations because only the imaging features of
the image itself need to be considered. These methods can be divided into frequency
domain and spatial domain methods. For the frequency domain method, wavelet-based
and curvelet-based approaches are most common [18,19]. Due to the demand for domain
conversions, these methods are too complex and require much computation time. We need
to utilize the difference between the target and background noise in the frequency domain
to eliminate the background; however, they are very similar in the frequency domain,
which can cause confusion. Since it is difficult to distinguish a low-SNR target from a
nonuniform background [20], the accuracy to eliminate the nonuniform background is
limited. For the spatial–domain method, since the image is processed directly in the spatial
domain, it tends to have a faster runtime than frequency–domain filtering. Methods in-
clude mean iterative filtering [21], filtering based on average or gradient thresholding [22],
new star target segmentation (NSTS) [23], morphology operation [24] and improved new
top-hat transformation (INTHT) [25]. Although these spatial–domain filtering methods
can be used to eliminate nonuniform backgrounds from surveillance images, they have
some disadvantages: (1) the calculation includes all pixels in the filter, which will have a
significant impact on the accuracy of nonuniform background estimation, and (2) they are
quite sensitive to the size of the filter. An unreasonable size will decrease the background
elimination effect and could even cause some targets to be lost. Therefore, effective and
reliable elimination of nonuniform backgrounds from surveillance images while retaining
targets remains an open challenge.

To solve these problems, a new, accurate and robust stray light nonuniform back-
ground elimination method is proposed, named image block self-adaptive gray-scale
morphology (IBSGM). A flowchart of the procedure is shown in Figure 1, which can be
broken down into three steps: (1) definition of structural operators, (2) division of the
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original surveillance image into blocks and determination of the optimal size of the struc-
tural operator suitable for each block by the method of the minimum bounding rectangle,
and (3) a morphological operation based on constructed structural operators to estimate
and eliminate the nonuniform background. In the first step, two structural operators with
varying sizes and domains are defined. We analyze the features of surveillance images and
the gray value difference between the target pixels and surrounding background pixels,
which provides evidence for constructing new structural operators. In the second step, we
block the original surveillance image and find the size of the largest target in each image
block by the method of the minimum bounding rectangle. This establishes the optimal size
of structural operator suitable for each image block. In the third step, we perform morpho-
logical processing on the surveillance images using the designed structural operators. With
structural operators of the optimal size, we can reliably conserve target pixels while only
using pixels from the surrounding background in the morphological operations. In this
way, we solve the problem of surveillance images being sensitive to the size of the filter,
which plagued previous methods. Finally, experiment with simulated image datasets and
real acquired image datasets show that the proposed ISSGM approach eliminates stray
light nonuniform backgrounds with greater accuracy and robustness than other methods.

Figure 1. Flowchart of the proposed IBSGM method.

2. Principles of the Formation and Elimination of Stray Light Backgrounds

Stray light is non-imaging light that radiates to the detector surface or imaging light
that propagates via an abnormal path and reaches the detector. The influence of the
formation mechanism and the principle of eliminating nonuniform backgrounds from
surveillance images will be discussed in detail in this section. There are different sources of
stray light, which are of three main types: (1) internal radiation stray light, which is the
infrared heat radiation generated by high-temperature optomechanical components such
as control motors and temperature-controlled optics inside the system during its normal
operation; (2) non-target stray light beyond the field of view, which refers to non-target
optical signals that propagate directly or indirectly on the focal plane of the image sensor,
and which come from radiation sources located outside the field of view of an optical
telescope; and (3) imaging target stray light in the field of view, which can be understood
as light rays from targets that reach the focal plane of the detector via abnormal means.

Regarding the internal radiation stray light, its wavelengths are mostly distributed
on the micrometer scale, so this kind of stray light mainly influences the infrared imaging
system rather than the space-based wide-field surveillance systems applied to visible light
in this paper. Hence, we ignore its effect on surveillance images. Non-target stray light
beyond the field of view exists widely in all kinds of optical telescopes, especially in the
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large field optical telescopes used to detect faint targets. After strong stray light enters
the optical system, it causes a nonuniform noise signal to reach the detector, increasing
the image gray values and spreading the gray scale from one edge to the other. The main
reason for this is a gradual change in the material scattering intensity. Furthermore, since
stray light is beyond the field of view, the gray value is maximized at the corresponding
edge of a surveillance image, as shown in Figure 2a. We name this the first type of stray
light background. Imaging target stray light in the field of view also causes a nonuniform
noise signal and increases the gray values of surveillance images, resulting in a relatively
bright area in the surveillance image with gray scale spreading from the center to the
periphery, as shown in Figure 2b. The primary cause of this is the complete reflection in the
lens that occurs when light from brighter stars reaches the lens at a specific angle. We name
this the second type of stray light background. Any complex image can be regarded as a
combination of these two forms of background.

Figure 2. Two types of simulated stray light background gray-scale images. (a) the first type; (b) the
second type.

To better comprehend the features of nonuniform backgrounds in surveillance images,
we will analyze them using energy transfer equations [26]. To simplify the complex stray
light transmission process, we can divide the transmission path into several parts, including
several emitting and receiving surfaces where the receiving surface of each process is the
emitting surface of the next. The transmission of stray light on any two surfaces conforms
to the radiation transfer theory [27], the principle of which is shown in Figure 3.

Figure 3. Radiation transfer schematic.
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According to the radiative transfer theory, between two media surfaces, light energy
propagates as follows [28]:

dΦC =
LSdASdAC cos θC cos θS

RSC
2 (1)

where AC and AS are the areas of the receiving and the source surfaces, respectively, RSC
refers to the center length between the source and receiving surfaces, Ls is the radiance of
the source surface, ΦC represents the receiving surface flux, and θC and θS are the angles
between the center line and the normal line of the respective surfaces. Equation (1) can be
simplified by breaking it into three parts, as follows [29]:

dΦC =

(
LS
ES

)
(ES · dAS)

(
cos θS · cos θC · dAC

RSC
2

)
(2)

dΦC = BRDF · dΦS · dΩsc (3)

where ES represents the incident irradiance, dΦS is the output flux, and BRDF is the
bidirectional reflectance distribution function, which refers to the scattering properties of
the material surface and defines the ratio of the scattering radiance to the incident irradiance
of a rough surface, and dΩSC represents the projected solid angle between the source and
receiving surfaces. In terms of the differential form of Equations (2) and (3), we are roughly
aware that the distribution of a nonuniform background affected by stray light exhibits a
gradual form rather than an abrupt change.

In general, for space-based wide-field surveillance systems, the influence of stray
light can be suppressed by optomechanical structures such as the hood and light-blocking
ring [30]. However, the absorption rates of baffles and blades are always between 95%
and 97%. At this time, the rest of the stray light will still be received by the detector,
resulting in a nonuniform background. We still need to eliminate the background through
image processing.

The surveillance image is described in the following way:

F(i, j) = T(i, j) + S(i, j) + B(i, j) + N(i, j) (4)

where (i, j) denotes the pixel coordinates, F is an original surveillance image, T refers to the
space target, S is the star, the light from stars is the cause of the second type of stray light
background, and B represents the background and N refers to the noise. The fundamental
principle of nonuniform background elimination is to estimate B accurately and robustly
while preserving S and T. Based on the above analysis, an original surveillance image F
has the following two features: (1) Most of the pixels in F are occupied by background-
region pixels, whose gray values are different from those of target-region pixels, and
(2) the nonuniform background caused by stray light exhibits a gradual rather than an
abrupt change. Based on the first feature of the original surveillance image, we define two
structural operators to take advantage of this difference. Based on the second feature, a
morphology-based method can be used to eliminate the nonuniform background, since it
features a slow change.

3. Nonuniform Background Elimination

In this section, we will introduce the IBSGM method in detail for eliminating nonuni-
form background while retaining stars and space targets.

3.1. Definition of Structural Operators

Based on the features of surveillance images described in Section 2, we can eliminate
stray light nonuniform backgrounds by using the information of varying gray values
between the target and background pixels. We define two structural operators, ∆B and Bb,
to better utilize this difference, as shown in Figure 4a,b.
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Figure 4. Defined structural operators used in the IBGSM method. (a) structural operator ∆B;
(b) structural operator Bb.

In Figure 4, Bo and Bi are defined as the outer and inner structural operators of ∆B,
respectively. ∆B = Bo − Bi refers to the ring-like area between Bo and Bi. Bb represents a
uniform square area, whose size is bigger than Bo, and K, L and Q refer to the sizes of Bi, Bo
and Bb, respectively, with K < L < Q.

For the structural operator ∆B, the coordinate of its center point O is (x0,y0), x ∈
(
− L

2 , L
2

)
,

y ∈
(
− L

2 , L
2

)
.

∆B = f (x, y) =

1,
√
(x− x0)

2 + (y− y0)
2 > K

2

0,
√
(x− x0)

2 + (y− y0)
2 ≤ K

2

(5)

For the structural operator Bb, x ∈
(
−Q

2 , Q
2

)
, y ∈

(
−Q

2 , Q
2

)
.

Bb = g(x, y) = 1 (6)

With the current algorithms, due to all the pixels covered in the filter being used for
calculation, it is difficult to distinguish a complex background region from a target region
with high accuracy. The structural operators that we define contribute to resolving it.

3.2. Self-Adaptive Size Adjustment

Surveillance images contain targets of different sizes. A structural operator with a
fixed size will influence the background elimination effect and even reduce the information
of faint targets. Before performing morphological processing, we block the original surveil-
lance image and find the optimal size of the structural operator suitable for each image
block by the minimum bounding rectangle method. To solve the problem of surveillance
images being sensitive to the fixed-size structural operators used in other methods, the
self-adaptive size adjustment of the structural operator is conducted as follows:

An original surveillance image F0 with 1024 × 1024 imaging pixels is divided into
several image blocks fc with 32 × 32 pixels, where c is the index of the image blocks. Each
block is binarized with the threshold obtained by the following equations:

Thc = µc + ασc (1 ≤ c ≤ k) (7)

µc =
1

M× N

M

∑
i=1

N

∑
j=1

f (i, j) (8)
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σc =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

( f (i, j)− µc)
2 (9)

where k represents the number of image blocks, µc and σc are the mean and standard
deviation of each block, respectively, M and N refer to the rows and columns of each image
block, respectively, and α is a coefficient, where α = 2 is selected according to the features
of the surveillance images.

The binarized image bc can be obtained by:

bc(i, j) =
{

0, f (i, j) < Thc
1, f (i, j) ≥ Thc

(10)

In order to determine the size (K and L) of the optimal structural operator ∆B for each
image block fc, we find the set of the minimum bounding rectangle sides of the connected
domain in each binary image block bc. As shown in Figure 5, the value of the largest
side in each set is used as the K value of the structural operator ∆B, while the value of
parameter L can be obtained by the value of K. Since the sizes of the largest targets differ
in different image blocks, we use self-adaptive adjustable structural operators to perform
morphological operations.

Figure 5. Process of finding the maximum target size in an image block.

3.3. Gray-Scale Morphological Operation

First, we use the self-adaptive adjustable structural operator ∆B to execute a dilation
operation ⊕ on each image block fc, and then stitch the operated image blocks into the size
of the original image to obtain image F1, as shown in Equation (11).

F1 =
k

∑
c=1

fc(i, j)⊕ ∆B =
k

∑
c=1

max
{

fc(i−m, j− n) + ∆B(m, n)
∣∣∣(i−m), (j− n) ∈ D fc , (m, n) ∈ D∆B

}
(11)

where D fc and D∆B refer to the domains of fc and ∆B, respectively. In terms of the definition
of the dilation operation, if a target is exactly in the internal structural operator Bi, since it
is not in the defined domain of ∆B, the pixel value of this part will not participate in the
dilation procedure. As a result, the dilation process will only use pixels in the background
surrounding targets. In this way, the target pixels are replaced by background pixels to
protect them from being eliminated. We choose the value of the largest side in each image
block to be the K-value of the structural operator ∆B to ensure that targets are in the
internal structural operator Bi. As most stars and space targets are circular, the internal
structural operator Bi, which is also circular, can perform the replacement most accurately.
This is equivalent to a “keying” operation and fundamentally improves the accuracy of
nonuniform background elimination.

Regarding the two parameters of ∆B, K is ascertained in Section 3.2. For L, it controls
the number of background pixels involved in calculation. If L is too large, some targets
will mistake their neighboring target pixels as their surrounding background pixels during
the dilation operation. Incorrect replacement causes mutual interference between targets.
Therefore, we assign L a value of K + 2, which not only avoids interference, but also ensures
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that enough background pixels are included in the calculation, thereby ensuring accuracy.
The result of this process is shown in Figure 6b.

Figure 6. Morphological operation results. (a) Original real surveillance image; (b) dilation operation
result after Equation (11); (c) erosion operation result after Equation (12); and (d) minimum value
result after Equation (14).

Then, as described by Equation (12), we employ the structural operator Bb to execute
an erosion operation Θ on image F1.

F2 = F1ΘBb = min
{

F1(i + m, j + n)− Bb(m, n)
∣∣(i + m), (j + n) ∈ DF1 , (m, n) ∈ DBb

}
(12)

where DF1 and DBb refer to the domains of F1 and Bb, respectively. The optimal structural
operator ∆B for each image block is presented in Section 3.2. If the target is too large
(bigger than 32 × 32 pixels) or does not appear completely within an image block, some
target pixels will be mistaken as background pixels and will remain in image F1. Hence,
we need to retrieve these lost targets by performing an erosion operation through the
structural operator Bb on image F1. Considering the previously acquired surveillance
image information, the majority of targets will not exceed 50 × 50 pixels. Furthermore, in
terms of the surveillance image features described in Section 2, most of the pixels in F are
occupied by background-region pixels. As a result, we set the value of parameter Q to 50,
which not only ensures that large targets are retrieved, but also confirms that stray light
backgrounds are not confused for targets.

Moreover, the dilation operation in Equation (11) will improve the overall gray value
of the image and dilate the range of the nonuniform background region. The erosion
operation not only adjusts the overall brightness of image F1, but also further reduces the
target-region gray value that is replaced by the surrounding background region in the
dilation process, which ensures that the brightness of the target is not overly diminished.
The result is shown in Figure 6c.

Since the size of Bb in the erosion process is larger than the size of ∆B in the dilation
process (Q > L), it reduces the nonuniform background region that needs to be eliminated.
Consequently, we reuse Bb to execute a dilation operation on image F2 as shown in Equa-
tion (13). In short, the nonuniform background region that needs to be eliminated will
not change.

F3 = F2 ⊕ Bb = max
{

F2(i−m, j− n) + Bb(m, n)
∣∣(i−m), (j− n) ∈ DF2 , (m, n) ∈ DBb

}
(13)

The above is the case when targets are fully or partially in the definition domain of the
inner structural operator Bi. However, if there are no target pixels in the definition domain
of Bi, at this time, the relationship of this substitution is uncertain. Therefore, we take the
minimum value of F3 and the original image F0 as shown in Equation (14).

F4 = min(F0, F3) (14)
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The result is shown in Figure 6d, where F4 is the final nonuniform background needing
to be eliminated.

Based on the IBSGM method, we can eliminate nonuniform backgrounds accurately
while retaining stars and space targets.

4. Experiments and Discussion

To verify the advantages of the IBSGM method, we compared it with three other
methods: top-hat transformation (THT), mean iterative filtering (MIF), improved new
top-hat transformation (INTHT). These methods were used with the same simulated and
real images.

4.1. Simulation Experimental Principles and Results

A flowchart of the simulation image experiment is shown in Figure 7.

Figure 7. Flowchart of the simulation image experiment.

First, an image only containing stars and space targets with a uniform background was
simulated and generated according to the Tycho-2 Catalogue and the relevant parameters of
the optical system with a 80◦ × 35◦ field of view. Tycho-2 Catalogue contains a large number
of stars and has a limiting magnitude V~11 and mean sky density of 60 objects per square
degree. It was used as a surveillance image without a nonuniform background, as shown in
Figure 8a. In the simulation process, the parameter of the GSENSE6060 detector produced
by Gpixel incorporation were referenced, which has a 10 µm pixel size and 3 s exposure
time. Typical PSF (point spread function) could be fitted to a gaussian function. Then, we
simulated the two types of stray light backgrounds described in Section 2 by ray tracing, as
shown in Figure 2, which are synthesized with the simulated uniform surveillance image.
Two types of simulation surveillance images with nonuniform backgrounds are shown in
Figure 8b,c. Finally, different algorithms are used to eliminate the two types of stray light
nonuniform backgrounds in the simulated surveillance images. The experimental results
are shown in Figures 9 and 10.
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methods, respectively.

For the evaluation of the reference image, we use the root mean square error (RMSE) to
evaluate the effect of nonuniform background elimination. Here, O and I are the simulated
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surveillance images with a uniform background and the processed surveillance image,
respectively.

RMSE =

√√√√ 1
m× n

m

∑
i=1

n

∑
j=1

(O(i, j)− I(i, j))2 (15)

where m and n refer to the rows and columns of O and I, respectively.
The smaller the RMSE value, the closer the corrected image is to the original image

with a uniform background, and the better the ability of the algorithm to eliminate the stray
light nonuniform background. The RMSE results are shown in Table 1.

Table 1. RMSEs of the surveillance images by different algorithms.

Stray Light Background THT MIF INTHT IBSGM

First type 8.4982 12.4052 5.0044 4.8320
Second type 4.7121 7.2477 3.1371 2.6711

Combining the results of Figures 9 and 10 and Table 1, the proposed IBSGM method
has higher accuracy in eliminating both types of stray light nonuniform backgrounds.
Therefore, the image processed image by our method is closer to the original simulated
image with a uniform background. Since more complex situations cannot be studied by
simulation, we used real images to further verify the performance of IBSGM and analyze
its advantages in comparison with other methods in the next subsection.

4.2. Real Image Experimental Results and Discussion

Real surveillance images were captured by a CMOS (complementary metal-oxide-
semiconductor) sensor with a 3 s exposure time. The detector has 10 K× 10 K pixels,
10◦ × 10◦ field of view and a 12-bit gray level. To see the experimental results more intu-
itively, we cropped the image to 1024× 1024 pixels. The results of nonuniform background
elimination are shown in Figure 11, where (a–c) are original surveillance images and (d–o)
refer to those obtained after eliminating the nonuniform backgrounds in various ways.

Unlike the simulation experiment, in the real image experiment, we cannot obtain
images without nonuniform backgrounds that only contain stars and space targets. As
a result, we cannot evaluate the effect of nonuniform background elimination in terms
of RMSE.

4.2.1. Accuracy of Nonuniform Background Elimination

To quantitatively compare the accuracy of the above four methods, we adopt residual
analysis. In the residual image, since the majority of pixels are background pixels, the
greater the mean, the higher the image’s overall gray value, so the residual background
of the first type of stray light is greater. The greater the standard deviation, the higher the
degree of gray-value fluctuation, so that more of the second type of stray light background
remains. In a word, the smaller the mean and standard deviation, the higher the accuracy
of the correction algorithm.

In the residual image, we applied an exclusion domain to remove the interference
of targets before calculating the mean and standard deviation. Specifically, the threshold
Th is obtained by adaptive threshold segmentation. We then establish the exclusion
domain eB as:

eB(i, j) =
{

0, fB(i, j) ≥ Th
1, fB(i, j) < Th

(16)

where fB refers to the processed surveillance image. Finally, we obtain the residual image
R as shown in Equation (17):

R(i, j) = fB(i, j)eB(i, j) (17)
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The results of the residual image means and standard deviations obtained by different
algorithms are shown in Table 2.
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Table 2. Means and standard deviations of the residual image obtained by different methods.

Figure 11a Figure 11b Figure 11c

Background
Residual Mean Standard

Deviation Mean Standard
Deviation Mean Standard

Deviation

THT 21.2518 9.3417 21.7236 9.1999 21.8202 9.3119
MIF 3.1559 3.0220 2.1904 2.4297 2.4088 2.5845

INTHT 0.4408 0.4983 0.4270 0.4077 0.5071 0.5887
IBSGM 0.0231 0.1502 0.0249 0.1559 0.0245 0.1736

In the THT method, all pixels (target and background regions) covered by the fixed
structural operator participate in the calculation to eliminate the background, which leaves
a great deal of nonuniform background noise in the residual image. Therefore, the accuracy
of THT is relatively low. In the MIF method (five iterations), as in the THT method, the
size of the filter is fixed and the pixels (including target and background) participate in the
calculation, making it difficult to further improve the accuracy in complex environments
even by increasing the number of iterations. The INTHT method, in contrast to the above
two methods, uses structural operators with different domains to decrease the target
regions involved in the calculation. However, it uses a fixed-size structural operator to
distinguish target and background pixels, which does not work well for smaller-sized
targets and does not consider the sensitivity of the structural operator. The IBSGM method
defines two structural operators with a size that constantly self-adapts to the size of the
target. The optimum structural operators are used to perform morphological operations in
each image block. Thereby, the accuracy of nonuniform background elimination is greatly
improved. We can see that IBSGM has substantially greater accuracy in eliminating stray
light nonuniform backgrounds compared with the other methods.

4.2.2. Accuracy of Target Retention

The purpose of nonuniform background elimination is to better ensure subsequent
target recognition. Therefore, the algorithm should preserve targets in surveillance images
as much as possible. To see the result more intuitively, a nonuniform background requiring
elimination is shown in Figure 12, where (a–c) are the original surveillance images and
(d-o) refer to the nonuniform background that needs to be estimated and eliminated by
different algorithms.

To gain a better idea of how accurate different algorithms are at retaining their targets,
we determined the number of targets that are retained after background elimination based
on a connected domain method. The target retention results are shown in Table 3.

Table 3. Comparison of target retention rates using different methods.

Method Figure 12a Figure 12b Figure 12c

THT 83% 85% 81%
MIF 86% 88% 85%

INTHT 93% 96% 92%
IBSGM 98% 99% 97%

In the THT method, as explained in Section 4.2.1, the accuracy of nonuniform back-
ground elimination is relatively low. This means that some nonuniform background noise
remains in the processed image, significantly reducing target detection accuracy. In the
MIF method (5 iterations), the target gray value is decreased to some extent after several
iterations, resulting in the loss of low-SNR targets. Moreover, certain brighter targets are
mistaken for the nonuniform background noise that is to be deleted. The INTHT method is
limited by the fixed-size structural operator, leading to some targets being mistaken for
the background and lost. Hence, its target retention accuracy still needs to be improved.
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Meanwhile, with the IBSGM method, two structural operators are constructed with a size
that constantly self-adapts to the target size and combined with morphological operations.
This eliminates nonuniform backgrounds with high precision and robustness while retain-
ing more targets. In some instances, the rate of target retention cannot reach 100% due to
interference from too many targets in the surveillance image.
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4.2.3. Computation Time

Table 4 compares the computation times taken for different methods to process a
1024× 1024 test image. Image processing was undertaken in MATLAB R2020b on a PC
computer with an i5-9400f CPU (2.90 GHz) and 16 GB of main memory.

Table 4. Comparison of the computation times of different methods.

Method Computation Time (s)

THT 0.517
MIF 3.521

INTHT 0.436
IBSGM 6.934

Although the computation time of the proposed IBSGM method was higher due
to the self-adaptation process, the corresponding accuracy of nonuniform background
elimination and target retention were greatly improved, which is exactly what is required
for target recognition.

5. Conclusions

Stray light nonuniform background elimination is not only a requirement of space-
based surveillance, but is also an essential prerequisite for subsequent target detection
and tracking. To overcome the insufficiency of current methods in accurate stray light
nonuniform background elimination, we proposed a robust and accurate elimination
method based on image block self-adaptive gray-scale morphology (IBSGM).

In this study, we first analyzed the formation and elimination principles of stray light
nonuniform backgrounds. Then, we defined two structural operators with different sizes
and domains, which can make full use of the difference information between the target
region and surrounding background region. Finally, we blocked the original surveillance
image to obtain the optimal sizes of the structural operators suitable for performing mor-
phological operations on each image block. The experimental results on simulated and real
image datasets show that, compared with other methods, IBSGM has higher precision in
eliminating nonuniform backgrounds with nearly no target losses.
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