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Abstract: Object tracking is aimed at tracking a given target that is only specified in the first frame.
Due to the rapid movement and the interference of cluttered backgrounds, object tracking is a
significant challenging issue in computer vision. This research put forward an innovative feature
pyramid and optical flow estimation based on the Siamese network for object tracking, which is
called SiamFP. The SiamFP jointly trains the optical flow and the tracking task under the Siamese
network framework. We employ the optical flow network based on the pyramid correlation mapping
to evaluate the movement information of the target in two contiguous frames, to increase the accuracy
of the feature representation. Simultaneously, we adopt spatial attention as well as channel attention
to effectively restrain the ambient noise, stress the target area, and better extract the features of the
given object, so that the tracking algorithm has a higher success rate. The proposed SiamFP obtains
state-of-the-art performance on OTB50, OTB2015, and VOT2016 benchmarks while exhibiting better
real-time and robustness.

Keywords: object tracking; Siamese network; optical flow; feature pyramid; attention mechanism

1. Introduction

Visual object tracking is regarded as one of the hottest investigation contents in the
field of computer vision, which is highly concern by a large number of researchers. Visual
target tracking technology has been widely used in military visual analysis [1], intelligent
transportation [2], smart city [3], and many other domain. In recent years, although deep
learning technology has greatly improved the robustness of tracking algorithms, the process
of target tracking still faces challenges such as illumination changes, target occlusion, and
motion blur. Therefore, it remains a huge challenge to invent a fast and accurate tracker.

Around 2000, beginning with the LK-tracker, although the classical algorithms and
machine learning is applied to target tracking, the robustness, and accuracy of these
algorithms are relatively low. From 2010 to 2016, with the proposal of MOEES [4], the
correlation filtering method had become a research hotspot. Since 2016, the deep learning-
based method had greatly improved the robustness and accuracy of the algorithm, such
as represented by dual-network tracers represented by SINT [5] and SiamFC [6]. Though
some trackers have utilized optical flow for the purpose of enhancing performance [7,8],
these optical flow features have not been trained end-to-end, thus, these algorithms are
unable to fully utilize the optical flow information.

In this paper, the SiamFP tracking algorithm for feature pyramid optical flow estima-
tion is proposed, which utilizes optical flow information and pyramid features to enhance
feature representation and tracking accuracy. The evaluation shows that our tracker pos-
sesses better performance on the VOT2016 benchmark and the OTB2015 benchmark. The
major contributions of this work can be summarized as follows.
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(1) This study puts forward an optical flow pyramid Siamese network, which is able to
enhance the character representation as well as tracking precision.

(2) This paper trains the end-to-end feature pyramid optical flow network, which makes
it better solve the occlusion problem of the objective.

(3) Experiments on OTB2015 and VOT2016 reveal that compared to the current state-of-
the-art approaches, the approach which is put forward possesses better performance.

2. Related Work

This part will make a brief introduction to the associated approaches and techniques
for tracking. Three aspects of in-depth feature-based tracking, Siamese-based tracking
network as well as optical flow in vision tasks are highlighted.

2.1. Deep Feature-Based Tracking

In recent years, deep features have greatly improved the performance of trackers, so
they have been applied by many scholars. The work based on deep convolution networks
is mainly divided into two parts. Firstly, a pre-trained object recognition network is used
and built on a discriminant or regression model. The tracker combines the depth features
with the correlation filter. For example, for the purpose of further enhancing the SRDCF
algorithm, the convolutional features were introduced by Danelljan et al. [9]. Ma et al. [10]
substituted HOG (Histogram of Oriented Gradient) features by depth-wise convolutional
features and fused the confidence figures which are gained by the means of percolating three
layers of features separately. Dai et al. [11] put forward a tracking approach which combines
depth-wise convolutional features with adaptive spatially regularized correlation filters.
Another method uses classification or regression networks to introduce deep features. For
example, Hong et al. [12] put forward a tracker which consists of CNN and SVM. David
et al. [13] directly regress the target position by the means of training a neural network,
which is considered as the first algorithm on the basis of deep learning to achieve 100 fps.
The above approaches are computationally slow, difficult to track in real time, and difficult
to achieve the highest performance for non-end-to-end training.

2.2. Siamese Network-Based Tracking

An end-to-end network is utilized with the intention of improving tracking perfor-
mance. The approach gains excellent tracking performance through offline pre-training
on mass data. Li et al. [14] proposed to predict object locations through a Region Proposal
Network (RPN) [15]. The whole structure is made up of a Siamese network and RPN,
while the model is trained end-to-end. Wang et al. [16] pointed out that correlation filters
can be regarded as a special layer in the Siamese framework, which is able to respond to
environmental changes by the means of continuously regenerating the filter. Xu et al. [17]
put forward a novel algorithm on the foundation of the Siamese network, where one
branch forecasts the confidence of the target location by the means of forecasting each pixel,
while the other branch regresses the four edges between the specimens and the earth truth
distance [18]. Gao et al. [19] proposed a Siamese attention key point network and obtained
bounding boxes by the means of forecasting the coordinates of the upper left, center and
lower right corners of the target.

2.3. Optical Flow for Visual Tasks

Optical flow information is broadly applied during the course of conducting computer
vision tasks. Li et al. [20] and Nicola A. Piga et al. [21] applied optical flow networks for pose
estimation. FlowTrack [22] trains an end-to-end optical flow network and utilities rich flow
information in consecutive frames with the intention of boosting character representation
and tracking performance. Zhou et al. [23] used an optical flow network for end-to-end
training, which was able to forecast the movement trend of the target more precisely. Chen
et al. [24] fitted optical flow characteristics to a temporally noisy turbulent environment
and constructed an online tracking algorithm.
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3. Methodology

The SiamFP algorithm proposed in this article draws on the network structure of the
SiamFC algorithm. The complete course of SiamFP algorithm is displayed in Figure 1. The
main process is divided into the following four steps:

(a) Feature pyramid extractor [25]. Given two input images I1 and I2, we generate L-level
pyramids of feature representations, with the bottom (zeroth) level being the input
images, i.e., C0

t = It. To generate feature representation at the lth layer, cl−1
t , we use

layers of convolutional filters to downsample the features at the (l−1)th pyramid level,
cl−1

t , by a factor of 2.
(b) Optical flow network. The first and second frame images are used as the existing

tracking frame and the prior frame to enter the optical flow estimation network to
assess the approximate position of the target in the next frame. Then, the center of the
search area is cropped in accordance with the assessed position with the intention of
obtaining a more precise search area.

(c) Siamese network. Input template image and search image into convolutional neural
network to generate template feature map and search feature map.

(d) Attention network. Template features and search features obtain new template fea-
tures and search features through spatial and channel attention mechanism networks,
respectively, and the new features perform cross-correlation operations to obtain
response graphs.
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3.1. Fully Convolutional Siamese Network

Recently, the fully convolutional Siamese network SiamFC algorithm has been exten-
sively applied in various fields of target tracking. The algorithm consists of two inputs,
one is the template branch, that is, the object to be tracked, and the first frame of the video
sequence is usually selected as the template input to obtain the template feature map; the
other is the search branch, that is, the image search area of each subsequent frame is used
as the search image input to obtain the search feature map. SiamFC regards tracking as
a process of template matching. That is, feature extraction, followed by cross-correlation
operation on the generated feature maps, that is, the convolution computation, so as to
generate a heat-map. The cross-correlation operation is as Equation (1) follows.

f (Z, X) = ϕ(Z) ∗ ϕ(X) + b·I (1)

where, Z and X indicate the template image and the search image, respectively. ϕ is the net-
work for feature representation of templates and search areas, referring to AlexNet [26]. ϕ
is a transformation operation, and the highest corresponds of the response value represents
the predicted position of Z. I is the identity matrix, and b is the bias term.
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3.2. End-to-End Feature Pyramid Network

The optical flow network can forecast the movement trend of the target more precisely.
This paper performs end-to-end offline pre-training on the optical flow network. The
network structure is displayed in Figure 2. First, based on a coarse-to-fine scheme, this
paper uses pyramid features instead of ordinary images as input. Then, FlowNet2 [27] is
fine-tuned, using FlowNetC as the first block followed by two FlowNetS blocks to crop
the optical flow map in accordance with the target location, and finally, for the purpose
of reduce the number of parameters, the image features are distorted to output 4 different
scales, 64 × 64 × 2, 32 × 32 × 2, 16 × 16 × 2, 8 × 8 × 2. Based on our findings, we found
that end-to-end trained networks perform outstanding than untrained networks.
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3.3. Attention Network

In recent years, Attention Model has been widely used in various types of deep
learning tasks, such as natural language processing [28,29], image recognition [30,31] and
speech recognition [32,33]. It is one of the core technologies of deep learning that deserves
the most attention and in-depth understanding. The attention mechanism gathers the
information of a certain part and focuses on a certain area in the image in terms of image
processing. In other words, the attention mechanism gathers the most effective information
of the target to better apply it in all aspects.

The attention mechanism mainly involves two parts. First, it is necessary to confirm
which part should gain more attention; second, it extracts features from the critical parts
with the intention of gaining significant information. Since targets in complex scenarios
will be affected by background interference, appearance distortion and other problems, the
attention mechanism was introduced into the task of terrorist tracking in order to extract
the target in the video frame from the background, so as to focus on the target of the
tracking model and reduce the background interference to a certain extent. In this paper,
the attention mechanism combining channel attention and spatial attention was used, as is
displayed in Figure 3.
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To be specific, the channel attention module uses a feature map as a unit. Each channel
of the feature map is able to be considered as a special feature detector, which uses the
feature vector α = {α1, α2, . . . , αd} obtained by the feature M ∈ Rw∗h∗d passing the global
average pooling layer as the input of the completely connected layer to maintain the
adaptability of the target appearance in the deep network. ReLU is the activation function,
after passing the next fully connected layer, the Sigmoid function was selected as the
non-linear activation function. So as to strengthen the non-linear relationship between the
channels to promote better mutual learning, the output vector obtained β = {β1, β2, . . . , βd}
was multiplied with the input feature for the purpose of gaining the channel attention
feature map N ∈ Rw∗h∗d.

The spatial attention module uses each pixel in the feature map as a unit. For the sake
of uplift the feature representational capacity of the model, the structural dependency of
spatial information was first established, and then weight was assigned to each pixel in the
feature map. First, the input feature map x was convolved using a 1 × 1 convolution kernel,
and then transformation functions f (x), g(x) and h(x) were used in order to transform
three convolutions, respectively. As shown in Equation (2).

f (x) = W1·x, g(x) = W2·x, h(x) = W3·x (2)

where, W1, W2, W3 represent the weight of f (x), g(x) and h(x), respectively. After that,
the result output by the function f (x) was transposed for matrix multiplication with the
output result, and the result obtained was calculated by utilizing the Softmax function with
the intention of obtaining the spatial attention map. The spatial attention is calculated by
the following Equation (3).

Yb,a =
e f (xa)

T ·g(xb)

∑WH
K=1 e f (xa)

T ·g(xb)
(3)

where, a and b represent the a-th and the b-th position on the input image, respectively.
After that, matrix multiplication was performed on the obtained spatial attention map and
the function h(x). The feature map which is regulated by the spatial attention module is
calculated as Equation (4) follows.

Ob = xb + α·
(
∑WH

a=1 Yb,a·h(xa)
)

(4)

where, α is the weight parameter. The final output of the multi-attention mechanism is the
element addition of the channel attention feature and the spatial attention feature. In this
way, better feature appearance information can be acquired. As shown in Equation (5).

Pb = Nb + Ob b = 1, 2, I, d (5)

4. Experiments
4.1. Implementation Details

The algorithm in this paper is implemented based on the Python programming lan-
guage in the Pytorch framework on the computer hardware platform of Intel Broadwell
2.4 GHz GPU (Tesla V100) and Intel(R)Core(TM) i7-10700 CPU@2.90 GHz. Our method is
divided into two training parts. The optical flow estimation network is trained offline on
the ILSVRC-2015 [34] video dataset, and the pre-trained FlowNet2.0 is used as the backbone
network of the optical flow estimation network. Set the number of epochs to 20, and the
learning rate declines linearly from 0.01 to 0.001. The tracking network is trained on the
ILSVRC-2015 and YouTube-BB [35] datasets. ILSVRC-2015 has approximately 1.3 million
frames and approximately 2 million tracked objects with terrestrial real bounding boxes.
YouTube-BB consist of more than 100,000 videos annotated once in every 30 frames. The
pre-trained AlexNet [26] network is used as the backbone network of the tracking network,
randomly selecting a pair of images from the images, cropping out the central region z, and
the other one Figure crop out x. The network parameters were optimized by Stochastic Gra-
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dient Descent (SGD), the number of epochs was set to 50, and the learning rate decreased
from 0.01 to 0.001.

4.2. Ablation Experiments

In this section, ablation experiments are conducted in the OTB benchmark to verify
the effectiveness of the module and prove that the design of SiamFC is reasonable. The
result analysis included the success rate and accuracy of otb50 and otb2015. As shown in
Table 1. In this paper, SiamFC is used as a baseline tracker. The success rates of baseline in
otb50 and otb2015 were 0.519 and 0.586, respectively, and the accuracy was 0.693 and 0.772,
respectively. In baseline +PW, the optical flow estimation network is added, and the success
rate and accuracy are greatly improved, which can prove that the optical flow network can
more accurately predict the movement trend of the target. In baseline +PW +FP, the input
image is replaced by the feature pyramid, and the success rate and accuracy are improved,
indicating that the feature pyramid can suppress the target loss caused by illumination
changes. In baseline +PW+FP+Att, the dual attention mechanism is added, and the success
rate and accuracy have been significantly improved, indicating that the ability to use the
attention mechanism to resist background interference is enhanced. Overall, each module
in SiamFP can significantly improve the performance of the algorithm.

Table 1. Ablation Study of SiamFP on OTB Benchmarks. PW denotes Optical flow Estimated Network.
FP denotes Feature Pyramid. Att denotes Dual-attention Module.

Module
OTB50 OTB2015

Success Precision Success Precision

baseline 0.519 0.693 0.586 0.772
+PW 0.552 0.764 0.620 0.835

+PW+FP 0.577 0.781 0.634 0.857
+PW+FP+Att 0.604 0.829 0.658 0.880

4.3. State-of-the-Art Comparison

As we all know, OTB (Object Tracking Benchmark) and VOT (Visual Object Tracking)
are very comprehensive to the test of tracker, and they are universal platform for evaluating
computer vision algorithm. Therefore, the proposed SiamFP is compared with the most
advanced tracker on OTB and VOT benchmarks. Traditionally, the tracking speed exceeding
25 FPS is considered as real-time, and the tracking speed of SiamFP can reach 50 FPS.

4.3.1. Results on OTB

OTB benchmarks include OTB50 [36] and OTB2015 [37]. OTB2015 dataset contains 100
manually labeled video sequences, so the OTB2015 dataset is also called OTB100. OTB50
selects 50 difficult video sequences from OTB2015. Common evaluation metrics in the
OTB benchmarks are accuracy and success rate. Accuracy refers to calculating the Center
Location Error (CLE) between the model’s forecast location (bounding box) and the ground-
truth of the target given a threshold T. The success rate refers to the IoU between the
predicted position frame of the model and the target real position frame given a threshold
T. On the basis of the accuracy and success rate indicators, OTB proposed the One Pass
Evaluation (OPE) robustness evaluation indicator, which refers to initializing the first frame
with the position of the target in the ground-truth, and then running the tracking algorithm
for the purpose of gaining the average precision and success rate, generate OPE metrics.

The comparative experiments between the SiamFP tracker and the more advanced
trackers SRDCF [38], Staple [39], CFNet, SiamFC, fDSST [40], and SiamRPN have achieved
leading levels in both OTB50 and OTB2015 benchmarks, and the OPE accuracy graph and
the success rate graph is displayed in Figure 4. The experimental outcomes show that in
the OTB50 and OTB2015 benchmarks, the tracking accuracy reaches 0.829 and 0.88, and the
success rate reaches 0.604 and 0.658, respectively. Compared with the SiamFC algorithm,
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the precision is increased by 13.6% and 10.8% correspondingly, and the success rate is
increased by 8.5% and 7.2% correspondingly. In the OTB2015 benchmark, the performance
is significantly improved, especially in three complex scenes, occlusion (OCC), illumination
variation (IV), and fast motion (FM). As shown in Figure 5. More results are summarized
in Table 2. For the purpose of determining the effective improvement of the algorithm in
this study in actual video sequences, video sequences with relatively complex scenes were
selected from the OTB dataset as the visualization results, as shown in Figure 6. To sum up,
the SiamFP algorithm adding optical flow network and attention mechanism has a good
ability to suppress background interference.
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4.3.2. Results on VOT

The VOT dataset is mainly derived from the Video Object Tracking Challenge (VOT,
Challenge). It not only provides open-source toolkits and many labeled videos, but also
provides evaluation criteria and test results for target tracking algorithms. In the VOT
dataset, VOT2016 [41] is the most commonly used dataset in order to assess the performance
of the algorithm. It has increased from 16 videos to 60 videos, and the difficulty has also
increased. VOT2016 mainly uses three indicators to verify the performance of the target
tracking algorithm. (1) Accuracy. Computational accuracy is equivalent to counting the
number of overlaps between the forecast bounding box and the ground-truth bounding box.
(2) Robustness. The steadiness of the tracking target is assessed by utilizing Robustness.
(3) Expected Average Overlap, EAO.

The EAO curve results of the VOT2016 assessment are shown in Figure 7 and Table 3.
As is revealed by the results in the figure, SiamFP ranks first among 70 trackers according
to the criteria for ranking trackers by EAO score, exceeding the performance of these
state-of-the-art trackers. Notably, SiamFP outperforms the second-ranked tracker SiamFC
by about 15%.
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Table 3. Tracking Results on VOT Dataset.

Tracker EAO Accuracy Robustness FPS

SiamFP 0.335 0.537 0.318 50
CCOT 0.331 0.529 0.238 0.3
TCNN 0.332 0.532 0.268 1.5
SSAT 0.321 0.534 0.496 <25

MLDF 0.301 0.489 0.574 <25
Staple 0.294 0.527 0.688 80
DDC 0.287 0.458 0.378 5
EBT 0.277 0.531 0.752 >25

SRBT 0.258 0.528 0.900 <25
STAPLEp 0.236 0.526 0.786 86

DTN 0.151 0.461 0.773 >25

5. Conclusions

With the intention of addressing the problem which the target tracking algorithm
fails to track due to fast movement and background interference, this paper proposes a
feature pyramid optical flow estimation Siamese network target tracking algorithm. The
algorithm jointly trains optical flow and tracking tasks under the framework of the Siamese
network. On the basis of the pyramid correlation mapping, the optical flow network is
utilized to assess the movement information of the target in two contiguous frames, thereby
improving the accuracy of feature representation. At the same time, SiamFP utilizes spatial
attention and channel attention to effectively suppress background noise and better extract
target features, effectively improving the success rate of the tracking algorithm. This paper
conducts comparative tests with various algorithms on the OTB50, OTB2015, and VOT2016
datasets, and conducts qualitative analysis of the video sequences. The experimental results
show that the SiamFP algorithm based on SiamFC reduces the occupation of computing
resources, improves the computing speed, and improves the tracking effect. The designed
SiamFP algorithm has good tracking effect in various challenging scenarios and shows a
good balance between accuracy and real-time performance.
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