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Abstract: Bone age is commonly used to reflect growth and development trends in children, predict
adult heights, and diagnose endocrine disorders. Nevertheless, the existing automated bone age
assessment (BAA) models do not consider the nonlinearity and continuity of hand bone development
simultaneously. In addition, most existing BAA models are based on datasets from European and
American children and may not be applicable to the developmental characteristics of Chinese children.
Thus, this work proposes a cascade model that fuses prior knowledge. Specifically, a novel bone
age representation is defined, which incorporates nonlinear and continuous features of skeletal
development and is implemented by a cascade model. Moreover, corresponding regions of interest
(RoIs) based on RUS-CHN were extracted by YOLO v5 as prior knowledge inputs to the model. In
addition, based on MobileNet v2, an improved feature extractor was proposed by introducing the
Convolutional Block Attention Module and increasing the receptive field to improve the accuracy of
the evaluation. The experimental results show that the mean absolute error (MAE) is 4.44 months
and significant correlations with the reference bone age is (r = 0.994, p < 0.01); accuracy is 94.04% for
ground truth within ±1 year. Overall, the model design adequately considers hand bone development
features and has high accuracy and consistency, and it also has some applicability on public datasets,
showing potential for practical and clinical applications.

Keywords: multi-point distribution label; cascade model; prior knowledge; bone age assessment;
deep learning

1. Introduction

Bone age is one of the independent indicators used to measure the biological maturity
of the human body [1,2]. It is often used clinically to diagnose a series of endocrine diseases
such as short stature, obesity, and metabolic disorders [3,4]. Physicians can make accurate
judgments about developmental abnormalities in children based on the difference between
their bone age and chronological age.

Currently, bone age is mainly assessed by an experienced physician utilizing certain
assessment methods based on the X-rays of a child’s infrequently used hand (usually the
left hand). The most common assessment methods are the Greulich–Pyle (GP) method,
proposed in 1999 [5], and the Tanner–Whitehouse (TW3) method, proposed in 2002 [6].
Since the development trends of the hand bones between eastern and western children
are different due to the influences of race, nutrition, genetics, and other factors [7–9],
the methods mentioned above, which use a sample of western children, might be inaccurate
in Asian children. Therefore, Chinese 05 assessment criteria were developed, which used
samples of contemporary Chinese children [10]. This criterion incorporates TW3-C RUS,
TW3-C Carpal, and RUS-CHN methods. Compared to TW3, Chinese 05 assessment criteria
have added more areas of RoIs and established more detailed rating rules. Since Chinese
05 criteria were proposed, a multitude of studies have evaluated their feasibility and have
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shown that the RUS-CHN method is more suitable for assessing the bone ages of Chinese
children [11].

Automatic bone age assessment (BAA) has been one of the research focuses in radiol-
ogy and other related fields due to the time-consuming and subjective factors of manual
assessment, which lead to inconsistent results between the two assessments. For example,
in the field of intelligence-assisted diagnosis and treatment, Toddberg et al. proposed the
first commercially available automated BAA system, called BoneXpert [12]. Although this
method shortens assessment time, it does not use the carpal bone, which is necessary for
infant age assessment [13]. In addition, the above method also requires the input images
with extremely high quality, which poses an obstacle to its wide application.

Many machine learning (ML) methods are often applied to BAA in previous stud-
ies. For example, Tong et al. [14] used Multiple Kernel Learning (MKL) to incorporate
heterogeneous features of the dataset into the network and then used Support Vector
Regression (SVR) for classification, resulting in a mean absolute error (MAE) of 0.428 years.
Pietkaet et al. [15] performed a series of image preprocessing such as background denoising,
RoIs extraction, and distance length determination for hand bone images and developed
BAA of semantic features. In addition, many researchers have solved BAA tasks using
the decision tree method , K-Nearest-Neighbors (KNN) classification [16], and Support
Vector Machine (SVM) [17]; however, the above methods utilize manual prior knowledge
extraction, which is time-consuming and less accurate.

With the development of deep learning (DL), DL models have been gradually applied
to the medical field and have achieved certain goals. Compared with traditional manual
methods that extract features using ML methods, DL models can automatically extract
features quickly; thus, a multitude of BAA models based on DL have developed. For
example, Spampinato et al. [18] proposed the first BAA model based on convolutional
neural networks (CNNs), called BoNet. Son S. J. et al. [19] proposed a BAA model based on
prior knowledge provided by the TW method. The RoIs of the TW method were extracted
as prior knowledge, and then prior knowledge was input into the classification network
to obtain bone age prediction values. In addition, some researchers have used DL models
instead of ML methods for background denoising, improving accuracy while eliminating
manual operations. Among them, Salem et al. [20] used the Visual Geometry Group
network (VGG) and the mask region-based convolutional neural network (Mask R-CNN)
to extract hand regions for background denoising. Ren et al. [21] proposed a multichannel
evaluation model that preprocesses images to extract coarse and fine attention maps with a
multichannel input regression network. Han et al. [22] extracted 17 RoIs of the hand using
Residual Network (ResNet), and the extracted RoIs were input into the Spatial Transformer
Network (STN) for bone age assessment. Overall, using a deep learning model to solve the
BAA problem can improve the accuracy of the evaluation process, shorten the evaluation
time, and avoid the inconsistency between evaluation results caused by subjective factors.
However, the above model is based on children from the same countries/regions. Due to the
different characteristics of hand bone development in different countries/regions, models
need to be experimented on different regional datasets to demonstrate the generalisability
of the model.

Most DL models treat BAA as a regression or multiclass classification problem at
present, and most of the models were built based on data from populations different from
Chinese, which may be less applicable to contemporary Chinese children. Clinically, the de-
velopment of hand bones exhibits the characteristics of continuity and nonlinearity [13].
A regression network excessively simplifies the entire developmental process and does
not consider the nonlinearity caused by the different developmental rates experienced by
hand bones at each stage, rendering the network vulnerable to the influence of outliers and
prone to cause overfitting in training [23]. A classification network ignores the continuity
caused by the similarity among the forms of hand bones at adjacent ages; however, the use
of ordered labels allows the model to achieve a good assessment [24]. In order to improve
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the above-mentioned shortcomings and limitations, this paper proposes a cascade model
fusing of prior knowledge for BAA. The main contributions of this paper are as follows:

• The bone age label is redefined by transforming it into a multi-point distribution label
with semantic information. The proposed label, which considers the nonlinear and
continuous characteristics, is embedded in the network through a cascade model;

• Base on a data sample of contemporary Chinese adolescents, the RoIs of the RUS-CHN
method is applied to the model as prior knowledge to improve accuracy;

• A new feature extractor is proposed based on MobileNet v2, which can capture more
detailed features of hand bone;

• The network is trained with an improved Focal loss function to prevent model’s
overfitting and to address the impact of uneven data distribution on the network.

This paper proposes a new representation of bone age labels and embeds it into the
network through a cascade model to address the problem that the existing models did not
consider nonlinearity and continuity simultaneously. In addition, the model fuses RoIs of
RUS-CHN as prior knowledge, improving the adaptability of the model to children in the
Chinese region.

The rest of this paper is organized as follows. Section 2 presents details of our proposed
model and the dataset. Section 3 demonstrates the model’s assessment results. Section 4
provides relevant discussion and analysis of the strengths and weaknesses of our model,
followed by conclusions in Section 5.

2. Materials and Methods

As shown in Figure 1, our model consists of two phases, i.e., RoIs extraction and BAA,
and the details of the two phases will be elaborated as follows.

Figure 1. Our method consists of two stages. In the first stage, an object detector is trained to locate
the coordinates of RoIs for the RUS-CHN method and image after background denoising, and the
localized coordinates are used to crop high-resolution RoIs from the original image. All RoIs is
aggregated and used to train a cascade module in the second stage.

2.1. Dataset

As there is no publicly available database based on the RUS-CHN method, our dataset
was constructed in this paper. From January 2020 to June 2022, the left hand X-ray images
of 753 subjects (382 males and 371 females) aging from 1 to 18 years who went to the clinic



Appl. Sci. 2022, 12, 7371 4 of 18

of West China women’s and children’s Hospital for health screening, height prediction, etc.,
were collected, and those of developmental anomalies and endocrine dysfunction disease
were excluded. Additionally, the ages of the hand bones shown in the X-ray images were
assessed based on the RUS-CHN method by two experienced radiologists. the dataset
mentioned above is divided randomly into two parts, namely, a training set and a test set,
at a ratio of 8:2 during the bone age assessment stage (i.e., the second stage). The bone age
and gender distributions of the entire dataset are shown in Figure 2.

Figure 2. Statistical chart of the distribution of men and women by age in the dataset.

2.2. RoIs Extraction

For the model to focus on the area of interest for physician assessment, the RoIs of
the RUS-CHN method were fused into the BAA model as prior knowledge to learn more
significant hand bone features. At the same time, considering the detrimental effect of
background noise on network learning, the entire hand region was extracted to reduce
interference from the background.The total number of RoIs to be extracted is shown in the
red box part of Figure 3.

Figure 3. The markers 1–14 in the image are the RoIs of the RUS-CHN method (including the
metacarpals and phalanges, i.e., the yellow part in Figure 1, and the carpal bones, i.e., the green part
in Figure 1). The red boxes in the images indicate all RoIs to be extracted, including the hand bone
image after the background denoising and the RoIs of the RUS-CHN method.

This paper applies the You Only Look Once version 5 (YOLOv5) [25] algorithm to
extract RoIs. The workflow of this task is shown in Figure 4.
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Figure 4. Workflow of faster R-CNN (Conv Layer: convolutional layers; FC Layer: fully
connected layers.

First, the network divides the input image into S× S grids, and each grid is responsible
for detecting objects for which their centers fall in the grid and then outputs the coordinates
of the object boxes and the predicted class of objects in the object boxes. The probability
formula is described as follows:

Pr(classi|object) ∗ Pr(object) ∗ IoUtruth
pre = Pr(classi) ∗ IoUtruth

pre (1)

where Pr(object) is the probability that the bounding box contains an object, IoUtruth
pre

(intersection over union) is the intersection ratio between the predicted box and the ground
truth, Pr(classi|object) is the conditional probability at the confidence level of each bounding
box, and Pr(classi) is the probability to which the class of the object box belongs.

According to the object box coordinates positioned by YOLOv5, high-quality RoIs
images are cut out from the original images, and the process of extracting hand bone RoIs
in the middle is shown in Figure 5.

Figure 5. The change processof the RoIs extraction module in the first stage of image input. (a) is the
original image. (b) is a picture of RoIs localized by YOLOv5. (c–e) are the RoIs outputted by YOLOv5
of 3 parts, i.e., hand (hand bone image by background denoising), carpal bone, and phalanx bone
(RoIs of RUS-CHN method).



Appl. Sci. 2022, 12, 7371 6 of 18

2.3. Bone Age Assessment

This paper proposes a cascade model based on MobileNet v2 [26]. The model’s overall
structure is shown in Figure 1b, and the specific improvement method and the construction
process of the model are described in the following.

2.3.1. Improved Feature Extractor Structure

In order to maximize the model’s ability to extract hand bone features, we optimized
the feature extractor in MobileNet v2.

Firstly, expanding the size of the depth-separable convolution kernel from 3 × 3 to
5 × 5 expands the receptive field (RF) of the feature extractor. If the RF is larger, more
features can be obtained [27]. The relationship between the size of the convolution kernel
and RF is as follows:

RFk = RFk−1 + ( fk − 1) ∗
k−1

∏
i=0

si) n ≥ 2 (2)

where RFk−1 denotes the size of the RF corresponding to the k-th layer, fk is the k-th layer
convolution kernel size, and s denotes the step size of the convolution operation.

Secondly, a convolutional block attention module (CBAM) [28] is added to the feature
extractor to adjust the spatial and channel weights separately. CBAM consists of a channel
attention module (CAM) and a spatial attention module (SAM) and is calculated as follows.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

Ms(F) = σ( f 7×7([AvgPool(F)); MLP(MaxPool(F)]))
(3)

Here, F denotes the input feature map, Mc(F) is CAM features, Ms(F) denotes SAM fea-
tures, AvgPool and MaxPool denote the average pooling and maximum pooling, σ denotes
the sigmoid activation function, and MLP denotes the multilayer perceptron structure.

The baseline module of the improved feature extractor is shown in Figure 6, which is
used to replace the depth separable convolutional block of MobileNet v2, thus enhancing
the feature extraction capability of the model and permitting the extraction of more detailed
features of the hand bone.

Figure 6. The baseline module of the improved feature extractor(Conv Layer: convolutional layers;
GAP: global average pooling; GMP: global max pooling).

2.3.2. Multi-Point Distribution Representation of Bone Age

Considering that a single bone age regression label does not well represent the nonlin-
ear and continuous characteristics of skeletal development of the hand. Inspired by the
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facial age assessment task [29], we proposed a novel method for representing bone age.
Given any bone age label yn, it can be represented as a convex combination of a set of point
sequences with the formula shown below:

y
′
n =

1
min

[
min

∑
i=0

(1− yn − xi
2i− 1

)xi +
min

∑
j=0

(1−
zj − yn

2j + 1
)zj

]

s.t.
min

∑
i=0

λ1
i +

min

∑
j=0

λ2
j = 1

0 ≤ λ1
i ≤ 1

0 ≤ λ2
j ≤ 1

(4)

where min = Min{bync − 0, dyn − ke}, zj = bync − i, and xi = dyne+ i; here, b·c and d·e
denote the ceiling function and the floor function, respectively. The expressions for λ1

i and
λ2

j in Equation (5) are shown below.

λ1
i =

1
min

(1− yn − xi
2i− 1

)

λ2
j =

1
min

(1−
zj − yn

2j + 1
)

(5)

For instance, as shown in Figure 7, if k = 10 when yn = 3.6 and yn = 7.8, the
corresponding λ is shown in the Figure 7.

Figure 7. Multi-point distribution of bone age labels with semantic information.

The bone age label is translated into adjacent “min” bins. We let k = 216, i.e., one
bin represents one month, and a sequence of k bins simulates each stage of skeletal devel-
opment. Since each bin represents a different developmental stage, translating a single
label into multi-point distribution labels that disperse in multiple different bins considering
the non-linear features of different stages. The adjacency between bins can explain the
relative continuity of hand bone morphology between adjacent age stages. Thus, this new
representation of bone age uses distribution vectors containing rich semantic information
to incorporate clinical features of skeletal development into the sequence.

2.3.3. Model Design for Cascade Training

Cascade operations are used to embed this vector of bone age labels containing
semantic information into the BAA model, allowing the network to utilize information
from classification, regression, and distribution learning simultaneously.

First, the hand bone X-ray image is input into the improved convolutional feature
extractor to output feature map X. Then, considering the difference in hand bone develop-
ment speed due to gender [30], we incorporate it into the network as a trainable neuron.
Specifically, X is compressed into a vector by flattening layers and then feature vector Z is
output by concatenating with gender (G).

Z = Concat( f latten(X), G) (6)



Appl. Sci. 2022, 12, 7371 8 of 18

Second, feature vector Z is passed through the FC layer and SoftMax activation
function σ to output the probability that the bone age label belongs to each month (i.e., each
bin), and we set the number of neurons in the FC to 216, corresponding to each month of
the age range 0–18:

y
′
n = σ(W1 ∗ Z + b) (7)

where y
′
n denotes the output of the FC layer, i.e., the probability that the network makes

predictions each month, W1 denotes the weight between z and FC, and b is the bias in
network learning. The SoftMax activation function is the key to embedding the semantic
distribution information labels into the network, which is represented as follows.

σi(y
′
n) =

eyi

∑k
j=1 eyj

(8)

Finally, the bone age probabilities obtained in the FC layer for each month are inputted
into a regression layer with only one neuron to obtain the final bone age assessment results.
This is performed as follows: y

′
n is multiplied with the weight W2 from FC to regression

layer plus bias to obtain the final bone age prediction output.

yn = W2 ∗ y
′
n + b (9)

We call the design of the FC layer to the regression layer a cascade module, which al-
lows the model to utilize classification, regression, and distribution learning simultaneously
to maximize the use of the bone age label information.

2.4. Loss Function Optimization

In this paper, the focal loss (FL) function [31] and MAE function are chosen to train
the cascade model together, where FL is used as the loss function for label distribution
learning in the FC layer, and MAE is the loss function for predicting bone age values in the
regression layer.

Due to the small and unevenly distributed characteristics of the dataset of medicine,
the training network is prone to overfitting, so the loss function is improved in this paper to
prevent overfitting and low accuracy. Specifically, for the uneven distribution of samples in
the dataset, FL is chosen as the loss function in the label distribution learning phase. FL can
automatically reduce the weight of simple samples during the training process by adding
scale and quickly focusing the model on the hard-to-score samples to solve the category
imbalance problem with the following expressions:

FL(p, y) = −
N

∑
i=1

(1− pi)
γlog(pi), pi =

{
p i f y = 1

1− p otherwise
(10)

where y is the ground truth, and p ∈ [0, 1]is the estimated probability of the model with
label of y = 1. Then, optimization is performed at FL to prevent the overfitting problem;
i.e., label smoothing regularization (LSR) [32] is added. LSR is a label smoothing process,
which turns the label into a soft label with probability values. The probability value at
the ground truth label is the maximum, and the probability value at other locations is a
minimal number, and its expression is as follows.

y
′
= (1− ε)y + εu (11)

Here, u is a prior overview distribution, and ε is the hyperparameter that controls
the weight, and we set it to 0.2. The optimized label distribution learning loss function is
shown below.

FL
′
= −(1− ε)FL(p, y)− εFL(u, y) (12)
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MAE is used to measure the evaluation results. The concrete form is expressed as
follows, where yi is the ground truth, and ŷiis the predicted bone age value, and it represents
the total amount of data.

MAE =
1
m

m

∑
i=1
|(yi − ŷi)| (13)

The total loss function of the our model is written as follows. λ is a hyperparameter
used to control the weight of the two loss functions, and we set it to 0.25.

Loss = MAE + λFL
′

(14)

3. Results
3.1. Implementation Details

The deep learning framework used in this paper is PyTorch, and the hardware config-
uration includes an Intel (R) core (TM) i7-8700k CPU and an NVIDIA GeForce GTX 1080ti
GPU. The software configuration contains the Ubuntu 16.04 operating system, CUDA 9.0,
cuDNN 7.0, PyTorch 1.7, and Python 3.7. The hyperparameters of the first stage module are
set as follows: Epoch = 600; input image size = 640 × 640; initial learning rate = 0.01 and
One Cycle Policy was used to adjust the learning rate; optimizer is SGD; batch size = 16;
and the activation function is Swish. The hyperparameters of the second stage module
are set as follows: batch size = 16; epoch = 600; input image size = 640 × 640; learning
rate = 0.001, 10% reduction in learning rate for every 10 epochs without reduction in loss;
optimizer is Adam; and activation functions is ReLU. Moreover, to further prevent overfit-
ting, we performed data enhancement operations such as flipping, rotating, and cropping
on the training samples.

3.2. Evaluation of the RoIs Extraction

To validate the localization performance of the RoIs extraction model, we randomly
selected 200 images to test YOLOv5. Table 1 shows the mean Average Precision (mAP) of
different RoIs. The expression of mAP is as follows.

mAP =
∑k

i=1 APi

k
(15)

Here, AP = IoU>γ
N , IoU > γ denotes the number of Intersection over Union (IoU)

between the predicted object boxes, and the ground truth is greater than threshold value γ.
N denotes the total number of test samples, mAP is the average of all category APs, and k
is the number of different categories contained in the test set. In Table 1, mAP@0.5 denotes
the mean average precision for IoU > 0.5, and mAP@0.5:0.95 denotes the mean average
precision for increasing the IoU threshold from 0.5 to 0.95 (in steps of 0.05).

Table 1. mAP for different RoIs positioning.

RoIs mAP@0.5 mAP@0.5:0.95

Hand (H) 0.99 0.91
Carpal (C) 0.99 0.80
Phalanx (P) 0.99 0.60

H+C+P 0.99 0.70

It can be seen from Table 1 that the localization accuracy of “H”, “P”, “C”, and “H+P+C”
RoIs are close to 1 when the threshold value of IoU is 0.5. When the threshold of IoU is
limited to 0.5, an IoU of 0.5 between the ground truth and the predicted object box is
considered as a successful localization, resulting in a high value of mAP. In addition, since
the hand bone background is single and the pose and position of the hand are required
when taking X-rays, the position of the hand bone in the image is relatively fixed and is
conducive to the improvement of localization accuracy. Second, the mAP@0.5:0.95 of “H”,
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“P”, and “C” in the table gradually decreases due to the relatively small RoIs objects of “C”
and “P”, resulting in the inability of the network to locate them accurately. In particular,
the RoIs of “P” also has interference from the same parts of other fingers. To ensure that
the model can smoothly cut the corresponding RoIs object boxes, the threshold value of
IoU in the training network is set to 0.5 in this paper.

To validate the classification performance of the model for RoIs, the normalized
confusion matrix is also analyzed in this paper. The confusion matrix is a matrix with the
number of the predicted category as the vertical axis and the number of the ground truth
as the horizontal axis. The diagonal of its normalized matrix represents the probability of
accurately predicting the category as its ground truth category.

As shown in Figure 8, the confusion matrix’s high diagonal values indicate the model’s
high classification accuracy. We believe that this is due to the large morphological gap
between the “H”, “C”, and “P” RoIs. Therefore, the model classifies them correctly with
high accuracy.

Figure 8. Confusion matrix of RoIs.

3.3. Evaluation of Bone Age Assessment

Baseline networks We pre-trained on five baseline models to select a better performing
baseline network for the BAA task, including ResNet50, MobileNet v3, AlexNet, VGG,
and MobileNet v2. All baseline networks were trained from scratch, no pre-trained weights
were loaded, and the networks were initialized randomly. The MAE assessed by the
baseline model and the parametric model size are shown in Table 2.

Table 2. Test results for different baseline models.

Baseline MobileNet
v2

MobileNet
v3 ResNet50 VGG AlexNet

MAE
(month) 7.21 7.73 8.49 8.77 10.23

Para-size (M) 3.4 3.2 25 138 61
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As observed from Table 2, the MobileNet v2 baseline model has the best evaluation
results with the least number of model parameters and, thus, runs efficiently. This is
attributed to the fact that the feature extractor of MobileNet v2 is composed of deep-
separable convolution, which makes the network light, effectively prevents overfitting of
the model, and is suitable for small datasets such as medical datasets. Therefore, MobileNet
v2 is chosen as the baseline network for the BAA task in this paper.

Fusion of RoIs after background denoising and RoIs of prior knowledge. In order
to verify the effectiveness of background denoising and fusion of prior knowledge for the
BAA task, we compare the original image (O) and the background denoising hand image
(Hand, H) input model. In clinical practice, if the error between the chronological age and
bone age is within one year of the ground truth [33], it is considered that the development of
this bone is within the normal range. This paper sets three accuracy standards for different
ranges of time (that is, 6 months, 12 months, and 24 months) to evaluate the accuracy of the
proposed model in a multiscale manner. Above this, the RoIs of RUS-CHN (i.e., Carpal and
Phalanx and C and P) multi-channel input networks are compared, and the experimental
results are shown in Table 3.

Table 3. Test results for different inputs base on baseline models.

O H C P MAE ±0.5 ±1 ±2

X 7.21 56.82% 79.23% 96.86%
X 6.45 58.86% 83.33% 97.22%
X X 6.31 58.75% 86.71% 97.92%
X X X 6.17 59.01% 88.89% 98.31%

As shown in Table 3, compared to using “O” as input, the effect of “H” as the input
network was improved and MAE decreased by 0.76 months, and accuracy is improved
by 2.04%, 4.1%, and 0.36% for ground truth within ±0.5 year, ±1 year, and ±2 year,
respectively. This illustrates that background denoising can improve the accuracy of model
evaluation and has a positive effect on BAA model evaluation. In addition, Table 3 shows
that the MAE of the model decreases by 1.04 when “H+C+P” is used as input compared
to “H” as input, and accuracy is improved by 2.19%, 9.66%, and 1.45% for ground truth
within ±0.5 year, ±0.5 year, and ±0.5 year, respectively. The experimental results in Table 3
illustrate that background denoising and fused prior knowledge can effectively improve
the evaluation accuracy of the BAA model and bring a positive impact to the BAA task.

BAA model ablation experiments. To evaluate the effectiveness of the improved
feature extractor and the proposed bone age assessment label representation for the BAA
task, ablation experiments were conducted. Where the improved feature extractor contains
two modules for ablation experiments, i.e., CBAM and 5 × 5 convolution kernel size (k:
5 × 5), “MP” in Table 4 represents the proposed Multi-point distribution of bone age labels,
and “G” denotes the gender information vector.

Table 4. BAA model ablation experiments.

Improved Feature Extractor MP G MAE ±0.5 ±1 ±2
CBAM k: 5×5

X 5.05 66.11% 92.23% 98.81%
X 5.53 62.51% 90.79% 98.61%

X X 5.01 66.67% 92.25% 98.65%
X 4.86 71.11% 93.33% 98.67%
X X 4.72 74.81% 93.60% 98.67%

X X X X 4.53 78.15% 94.04% 99.34%

From Table 4, we can see that, compared to the baseline model, applying the im-
proved feature extractor decreases MAE by 1.16 and accuracy is improved by 7.66%, 3.36%,
and 0.34% for ground truth within ±0.5 year, ±1 year, and ±2year, respectively. We believe
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this increase in the size of the convolutional kernel can expand the range of the RF, thus
enhancing the local feature extraction capability of the model, which can extract more
local features of the hand bone and improve the performance of the model. Meanwhile,
the adaptive assignment of channel weights by CAM allows the model to automatically
place larger weights on the more important RoIs channels, thus improving the evaluation
accuracy, and the SAM module enables the model to focus attention on the spatial region
of the hand bone, further improving evaluation accuracy. After adding Multi-point dis-
tributed bone age labels containing rich semantic information to the model, compared to
the baseline model, MAE decreased by 1.31 and accuracy is improved by 12.1%, 4.44%,
and 0.36% for ground truth within ±0.5 year, ±1 year, and ±2 year, respectively. It is
shown that the proposed multi-point distribution bone age label, which well interprets the
characteristics of skeletal development, contains the semantic information of classification,
regression, and distribution learning within the label such that the model fully utilizes
the label information and achieves a better assessment effect. In addition, we add the
gender information to the network, and MAE decreased by 0.08 and accuracy is improved
by 3.70% and 0.27% for ground truth within ±0.5 year and ±1 year, respectively. This is
because adding gender information to the bone age label can further enrich the semantic
information of the label, allowing the model to learn more useful information to help bone
age assessment.

Loss function comparison experiment. In order to verify the effectiveness of the
improved label distribution learning loss function, we conducted ablation experiments.
At the same time, we compared it with the commonly used probability distribution learning
loss function Kullback–Leibler Divergence (KL), and the experimental results are shown in
Table 5. Note that the loss functions of the regression layers are all using the MAE.

Table 5. Loss function comparison experiment.

MAE ±0.5 ±1 ±2

KL 4.69 75.32% 93.71% 98.80%
FL 4.53 78.15% 94.04% 99.34%

FL + LS 4.44 79.47% 94.70% 99.34%

From the Table 5, compared to KL, using the FL cascade to train the model, MAE
decreased by 0.16 and the accuracy is improved by 2.83%, 0.33%, and 0.54% for ground
truth within ±0.5 year, ±1 year, and ±2 year, respectively. We believe this is because FL is
more applicable to data with uneven sample distribution such as medical datasets, which
enables the model to adaptively adjust the weights of difficult samples, thus focusing
the model’s attention on difficult sample discovery and improving the model recognition
performance. In addition, evaluation performance is further enhanced by the combined
loss function of FL + LS, MAE decreased by 0.09, and accuracy is improved by 1.32% and
0.66% for ground truth within ±0.5 year and ±1 year, respectively. That is, the proposed
loss function can improve the uneven distribution of samples in medical data sets and the
characteristics of overfitting caused by the small amount of data to a certain extent.

Assessment performance at different ages. In order to detect the performance of the
model in each age group, the paper divides 0–18 years into 18 age intervals to verify the
performance of the model. A new evaluation metric, RMSE, is also introduced, which will
provide a higher weight to larger errors than with MAE will, and for larger errors, RMSE is
the most useful evaluation metric with the following expression.

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)2 (16)

From Table 6, we can find that the model assessment results are more stable at (0, 15]
years of age, with low MAE and RMSE, while the error in the assessment is larger at (15,
18] years of age, especially between (17, 18] years of age. We speculate is due to the fact
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that from 15 to 18 years of age, the skeletal development of the hand gradually matures,
and its morphology no longer changes significantly, making it difficult for the model to
accurately assess bone age.

Table 6. MAE and RMSE for different age groups.

Age Groups MAE RMSE

(0, 1] 3.30 3.92
(1, 2] 4.29 4.69
(2, 3] 3.86 4.64
(3, 4] 3.57 4.26
(4, 5] 4.20 4.82
(5, 6] 3.80 4.27
(6, 7] 3.67 4.40
(7, 8] 4.13 4.65
(8, 9] 3.63 4.70
(9, 10] 3.10 4.63

(10, 11] 2.11 2.53
(11, 12] 3.10 3.81
(12, 13] 2.69 3.83
(13, 14] 3.62 4.29
(14, 15] 4.09 4.69
(15, 16] 5.20 5.94
(16, 17] 6.00 7.84
(17, 18] 11.00 11.59

Comparison experiments with advanced models To verify the performance as well
as the applicability of the proposed model, it is validated on the RNSA2017 public dataset,
and since this dataset is not evaluated using the RUS-CHN method, only background
denoising RoIs are used in the comparative experiments on the public dataset, and the
results of the comparative experiments are shown in Table 7.

Table 7. Performance comparison experiments.

Dataset
Improved Feature Extractor

MAE ±0.5 ±1 ±2Background
Denoise

Prior
Knowledge

Miao, J. et al. [34] RNSA2017 10.41 - 68.80 93.20
Salim, I. et al. [20] RNSA2017 X 6.38 - - -
Hao, P. et al. [35] RNSA2017 X X 6.29 54.45% 90.80% 98.50%

Iglovikov,
V.I. et al. [23] RNSA2017 X X 4.97 - - -

Our RNSA2017 X 4.95 70.00% 95.20% 99.40%
Son, S.J. et al. [19] Privacy X 5.52 - - -

Mutasa, S. et al. [2] Privacy X 7.64 - - -
Our Privacy X 4.79 72.45% 93.80% 98.81%
Our Privacy X X 4.44 79.47% 94.70% 99.81%

Table 7 shows that when the model uses only background denoised RoIs, it achieves
good levels of accuracy on both private and public datasets, with model evaluation accu-
racies of 93.80% and 95.20% for ground truth within ±1 year. Compared with other BAA
models using background denoising on public datasets, MAE is lower, and the evaluation
accuracy is higher. We believe that this is due to the cascade model proposed in this paper
being more consistent with the characteristics of skeletal development and makes full use
of the bone age labeling information, thus improving the evaluation of the BAA model.
Meanwhile, Table 7 shows that the cascade model proposed in this paper also has some
applicability for the public dataset.
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3.4. Consistency Analysis

The intraclass consistency coefficient (ICC) and Pearson’s correlation coefficient (r) are
used to analyze the consistency between the assessment results of the model and experts.
The experimental results show that ICC = 0.997 and r = 0.994, p < 0.01, demonstrating a
significant positive correlation between the two assessment results. i.e., the results of the
model evaluation and those of the physicians’ evaluation are highly consistent.

In addition, regression analysis plots as well as the Bland–Altman method are used
to visualize the consistency between the physician assessment results and the model
assessment results, as shown in Figures 9 and 10.

Figure 9. Regression Fitting Plot. A straight line represents ground truth, and discrete points represent
predicted bone age values.

In the Bland–Altman plot, the upper and lower horizontal solid lines represent the
limits of the 95% Confidence Interval (CI), i.e., 1.96 times the standard deviation, and the
middle horizontal dashed line represents the mean of the differences. The Bland–Altman
plot shows that most of the results predicted by the model are within the 95% CI, and only
a few results are outside the 95% CI. Moreover, the regression fit plots show that the
fit between the model evaluation results and the physician evaluation results is close.
In conclusion, Figure 10 fully demonstrates that the above evaluation results are highly
positively correlated.

Figure 10. Bland–Altman plot for the predicted bone age.

4. Discussion

Based on the skeletal growth and development characteristics of Chinese adolescents
and children since the start of the century, this paper proposes a cascade model that fuses
prior knowledge. First, the model is characterized by the simultaneous use of classification,
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regression, and distribution learning. Compared to traditional classification or regression
models, the proposed model combines the nonlinearity and continuity of hand bone
development. Second, the feature extractor of the model is improved based on the baseline
network, which allows the model to extract more hand bone features and, thus, improves
the evaluation accuracy. Third, the RoIs of the RUS-CHN method are considered prior
knowledge in the network, which also improve the accuracy of the model. The final MAE
of the model is 4.4 months, and the accuracy of the assessment within one year of the
ground truth is 94.04%.

On the one hand, aiming at the problem that the traditional network does not take the
nonlinearity and continuity of bone growth and development into account, a novel bone age
representation is proposed, where the semantic information is embedded in the BAA task
using a cascade model. In detail, a fully connected layer with a semantic distribution of 216
neurons (corresponding to each month in the age range of 0–18 years) is inserted between
the feature and regression layers. A multi-point distribution bone age label is output
between the fully connected layer and the regression layer, and this label subsequently
passes through the regression layer to obtain the corresponding predicted bone age value.
A single digital bone age label is converted into 216 discrete and adjacent bins. Because the
bins are discrete, each month of bone development between the ages of 0 and 18 is regarded
as an independent individual, thereby taking the phased characteristics into account. At the
same time, the adjacent bins between bins can be regarded as relatively continuous, as in
the development ages of hand bones in adjacent months, which are independent of each
other but have relative continuity. In brief, this design more closely reflects the reality of
skeletal development, thus improving the consistency of the model assessment.

On the other hand, the feature extractor is improved in three aspects, namely channel,
spatial, and RF. Among them, the weight sizes of the channels where the three RoIs are
located are newly assigned by CAM so that the model places a larger weight on top of the
channel where evaluation is more meaningful. Moreover, the model’s attention is spatially
integrated by SAM to focus the model learning region on the hand bone region. In addition,
increasing the RF size of the feature extractor allows the model to enhance the extraction
of global information and obtain more global features. The three improvements enhance
the feature extractor’s ability to obtain valuable features, thus improving the accuracy of
the evaluation.

As to comparison with the most recent works [36,37], our model considers the non-
linearity and continuity simultaneously of skeletal development by converting the bone
age label into a multi-point distribution label. In addition, we extracted the RoIs input
model using YOLO v5, allowing the model to catch more detailed features and reach better
assessment, with a 1.6 months reduction in MAE for our model compared to the work
of [36].

In addition, the proposed network adopts target detection algorithms to localize the
RoIs present in the RUS-CHN method and the region of the entire hand, and the corre-
sponding regions of the three types of bones (hand, carpus, and phalanges) are extracted
as prior knowledge, which can be subsequently learned by the model in a multichannel
manner. Among them, the carpal bone is very important for bone age evaluations in infants
and young children, and after the development and maturity of the carpal bone, observing
the morphology of the phalanges can help doctors diagnose bone ages. The employed prior
knowledge is based on the skeletal RoIs that are used by physicians in clinical evaluations,
so the evaluation accuracy of the model is further improved.

The weakness of this paper is found in the experimental results: A relatively poor
level of consistency was observed between the results of the model and those of physicians’
assessments after 15 years of age (180 months), as shown in Figure 9 and Table 6. It is spec-
ulated that poorer assessment results may be obtained since the form of the hand bone is
approximately stable and no longer changes significantly in the later stages of development.
For this reason, some specific bones, such as the knee and vertebrae, are generally used
to replace the hand bone in evaluations conducted during later developmental stages or



Appl. Sci. 2022, 12, 7371 16 of 18

in adulthood [38]. Moreover, the lack of data in some age groups may be another reason
why the characteristics learned by the model are insufficient. Further studies are needed
to determine whether the satisfactory results produced by the proposed model can be
maintained after the age of 15.

In future studies, we will consider improving the performance of the model in terms
of three aspects. First, we will enter knee X-rays that are used for assessing bone age
in adulthood into the model to enhance the accuracy of the model during later stages
of development. Second, the sample data will be expanded in each stage within 15-18
years, thereby enabling the model to fully learn the characteristics of each age group in
this range and achieve better assessment accuracy. The expansion of the data volume and
the operation of integrating multisite joints into the evaluation model may improve the
evaluation accuracy of our model. Third, based on the RoIs of different evaluation methods,
such as TW method and GP method, the priori knowlegde can be extracted and further
integrated into the model, which can expand the application scope.

5. Conclusions

In this paper, a cascade model incorporating prior knowledge is proposed. Compared
with the conventional model, the model is made to consider both nonlinearity and continu-
ity of bone development using the bone age label representation proposed in this paper,
thus improving the consistency of the model. In addition, the accuracy of the model is
improved by using an improved feature extractor and incorporating RoIs. Experimental
results show that the model proposed in this paper exhibits good performance on both
private and public datasets, which indicates that the model is adaptable and can be applied
to other fields.

Author Contributions: Drafting articles, building deep learning models, experimental analysis, and
experimental design, N.L.; data collation and experimental analysis, B.C.; revision of the article
and methodological suggestions, J.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: Sichuan Science and Technology Program (No. 2022YFS0178); Chengdu Science and
Technology Program (No. 2021-YF05-00916-SN); Smart Grid Sichuan Provincial Key Laboratory
Emergency Key Project (No. 2020IEPG-KL-20YJ01).

Institutional Review Board Statement: The West China Medical Board of Sichuan University con-
cluded that the study conducted was not characterized as a medical experiment and, therefore, agreed
to proceed with the work.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, F.; Gu, X.; Chen, S.; Liu, Y.; Shen, Q.; Pan, H.; Shi, L.; Jin, Z. Artificial intelligence system can achieve comparable results to

experts for bone age assessment of Chinese children with abnormal growth and development. PeerJ 2020, 8, e8854.
2. Mutasa, S.; Chang, P.D.; Ruzal-Shapiro, C.; Ayyala, R. MABAL: A Novel Deep-Learning Architecture for Machine-Assisted Bone

Age Labeling. J. Digit. Imaging 2018, 31, 513–519.
3. Nejedly, N. Normal and abnormal growth in the pediatric patient. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100771.
4. Lee, H.; Tajmir, S.; Lee, J.; Zissen, M.; Yeshiwas, B.A.; Alkasab, T.K.; Choy, G.; Do, S. Fully Automated Deep Learning System for

Bone Age Assessment. J. Digit. Imaging 2017, 30, 427–441.
5. Grculich, W.; Pylc, S. Radiographic Atlas of Skeletal Development of the Hands and Wrists; Stanford University Press: Redwood City,

CA, USA, 1959.
6. Liu, J.; Qi, J.; Liu, Z.; Ning, Q.; Luo, X. Automatic bone age assessment based on intelligent algorithms and comparison with TW3

method. Comput. Med Imaging Graph. 2008, 32, 678–684.
7. Nadeem, M.W.; Goh, H.G.; Ali, A.; Hussain, M.; Khan, M.A.; Ponnusamy, V.a. Bone age assessment empowered with deep

learning: A survey, open research challenges and future directions. Diagnostics 2020, 10, 781.



Appl. Sci. 2022, 12, 7371 17 of 18

8. Zhao, H.; Lazarenko, O.P.; Chen, J. Hippuric acid and 3-(3-hydroxyphenyl) propionic acid inhibit murine osteoclastogenesis
through RANKL-RANK independent pathway. J. Cell. Physiol. 2020, 235, 599–610.

9. Tamme, R.; Jürime, J.; Mestu, E.; Remmel, L.; Purge, P.; Mengel, E.; Tillmann, V. Physical Activity in Puberty Is Associated with
Total Body and Femoral Neck Bone Mineral Characteristics in Males at 18 Years of Age. Medicina 2019, 55, 203.

10. Zhang, S.; Liu, L. The Skeletal Development Standards of Hand and Wrist for Chinese Children China 05 1. TW3-C RUS, TW3-C
Carpal, and RUS-CHN Methods. Chin. J. Sport. Med. 2003. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/
wpr-587292 (accessed on 4 May 2022).

11. Guang, C.; Qile, P.; Rongxin, Z. A comparative study of the consistency between the Greulich-Pyle method and the China 05
method in normal children aged 6–18 years. Chin. J. Evid. Based Pediatr. 2020, 15, 441.

12. Thodberg, H.H.; Kreiborg, S.; Juul, A.; Pedersen, K.D. The BoneXpert method for automated determination of skeletal maturity.
IEEE Trans. Med Imaging 2008, 28, 52–66.

13. Liu, B.; Zhang, Y.; Chu, M.; Bai, X.; Zhou, F. Bone Age Assessment Based on Rank-Monotonicity Enhanced Ranking CNN. IEEE
Access 2019, 7, 120976–120983.

14. Tong, C.; Liang, B.; Li, J.; Zheng, Z. A deep automated skeletal bone age assessment model with heterogeneous features learning.
J. Med. Syst. 2018, 42, 1–8.

15. Pietka, E.; Gertych, A.; Pospiech, S.; Cao, F.; Huang, H.K.; Gilsanz, V. Computer-assisted bone age assessment: Image
preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans. Med. Imaging 2001, 20, 715–729.

16. Dallora, A.L.; Anderberg, P.; Kvist, O.; Mendes, E.; Diaz Ruiz, S.; Sanmartin Berglund, J. Bone age assessment with various
machine learning techniques: A systematic literature review and meta-analysis. PLoS ONE 2019, 14, e0220242.

17. Dehghani, F.; Karimian, A.; Sirous, M. Assessing the bone age of children in an automatic manner newborn to 18 years range. J.
Digit. Imaging 2020, 33, 399–407.

18. Spampinato, C.; Palazzo, S.; Giordano, D.; Aldinucci, M.; Leonardi, R. Deep learning for automated skeletal bone age assessment
in X-ray images. Med. Image Anal. 2017, 36, 41–51.

19. Son, S.J.; Song, Y.; Kim, N.; Do, Y.; Kwak, N.; Lee, M.S.; Lee, B.D. TW3-based fully automated bone age assessment system using
deep neural networks. IEEE Access 2019, 7, 33346–33358.

20. Salim, I.; Hamza, A.B. Ridge regression neural network for pediatric bone age assessment. Multimed. Tools Appl. 2021,
80, 30461–30478.

21. Ren, X.; Li, T.; Yang, X.; Wang, S.; Ahmad, S.; Xiang, L.; Stone, S.R.; Li, L.; Zhan, Y.; Shen, D.; et al. Regression convolutional neural
network for automated pediatric bone age assessment from hand radiograph. IEEE J. Biomed. Health Inform. 2018, 23, 2030–2038.

22. Han, Y.; Wang, G. Skeletal bone age prediction based on a deep residual network with spatial transformer. Comput. Methods
Programs Biomed. 2020, 197, 105754.

23. Iglovikov, V.I.; Rakhlin, A.; Kalinin, A.A.; Shvets, A.A. Paediatric bone age assessment using deep convolutional neural networks.
In Deep Learning in mEdical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg,
Germany,2018; pp. 300–308.

24. Chen, S.; Zhang, C.; Dong, M. Deep age estimation: From classification to ranking. IEEE Trans. Multimed. 2017, 20, 2209–2222.
25. Jubayer, F.; Soeb, J.A.; Mojumder, A.N.; Paul, M.K.; Barua, P.; Kayshar, S.; Akter, S.S.; Rahman, M.; Islam, A. Detection of mold on

the food surface using YOLOv5. Curr. Res. Food Sci. 2021, 4, 724–728.
26. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

27. Xueli, X.; Chuanxiang, L.; Xiaogang, Y.; Jianxiang, X.; Tong, C. Dynamic Receptive Field-Based Object Detection in Aerial Imaging.
Acta Opt. Sin. 2020, 40, 0415001.

28. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference
on computer vision (ECCV), Munich, Germany, 8–24 September 2018; pp. 3–19.

29. Zhang, C.; Liu, S.; Xu, X.; Zhu, C. C3AE: Exploring the limits of compact model for age estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12587–12596.

30. Su, L.; Fu, X.; Hu, Q. Generative adversarial network based data augmentation and gender-last training strategy with application
to bone age assessment. Comput. Methods Programs Biomed. 2021, 212, 106456.

31. Tran, G.S.; Nghiem, T.P.; Nguyen, V.T.; Luong, C.M.; Burie, J.C. Improving accuracy of lung nodule classification using deep
learning with focal loss. J. Healthc. Eng. 2019, 2019, 5156416.

32. Mo, X.; Wei, T.; Zhang, H.; Huang, Q.; Luo, W. Label-Smooth Learning for Fine-Grained Visual Categorization. In Proceedings of
the Asian Conference on Pattern Recognition, Auckland, New Zealand, 26–29 November 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 17–31.

33. Zulkifley, M.A.; Abdani, S.R.; Zulkifley, N.H. Automated bone age assessment with image registration using hand X-ray images.
Appl. Sci. 2020, 10, 7233.

34. Miao, J.; Yue, H.; Wu, X.; Xu, D.; Chen, W. Bone age assessment based on SuperPoint features. In Proceedings of the 2020 Chinese
Automation Congress (CAC), Shanghai, China, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3921–3926.

35. Hao, P.; Ye, T.; Xie, X.; Wu, F.; Ding, W.; Zuo, W.; Chen, W.; Wu, J.; Luo, X. Radiographs and texts fusion learning based deep
networks for skeletal bone age assessment. Multimed. Tools Appl. 2021, 80, 16347–16366.

https://pesquisa.bvsalud.org/portal/resource/pt/wpr-587292
https://pesquisa.bvsalud.org/portal/resource/pt/wpr-587292


Appl. Sci. 2022, 12, 7371 18 of 18

36. Nguyen, Q.H.; Nguyen, B.P.; Nguyen, M.T.; Chua, M.C.; Do, T.T.; Nghiem, N. Bone age assessment and sex determination using
transfer learning. Expert Syst. Appl. 2022, 200, 116926.

37. Palaniswamy, T. Hyperparameter optimization based deep convolution neural network model for automated bone age assessment
and classification. Displays 2022, 73, 102206.

38. Dallora, A.L.; Berglund, J.S.; Brogren, M.; Kvist, O.; Ruiz, S.D.; Dübbel, A.; Anderberg, P. Age Assessment of Youth and Young
Adults Using Magnetic Resonance Imaging of the Knee: A Deep Learning Approach. JMIR Med. Inform. 2019, 7, e16291.


	Introduction
	Materials and Methods
	Dataset
	RoIs Extraction
	Bone Age Assessment
	 Improved Feature Extractor Structure
	 Multi-Point Distribution Representation of Bone Age 
	 Model Design for Cascade Training

	Loss Function Optimization

	Results
	Implementation Details
	Evaluation of the RoIs Extraction
	Evaluation of Bone Age Assessment
	Consistency Analysis

	Discussion
	Conclusions
	References

