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Abstract: The future motion prediction of vehicles in the front is widely valued for its great potential
to improve a vehicle’s safety, fuel consumption, and efficiency. However, due to the uncertainty of a
driver’s driving intentions and vehicle dynamics, future motion prediction faces great challenges.
In order to break the bottleneck in the prediction of leading vehicle motion, this paper proposes a
prediction idea of decoupling the prediction of leading vehicle motion into vertical vehicle speed
prediction based on the Gaussian process regression algorithm and horizontal heading angle pre-
diction based on the long short-term memory method, which combines the predicted vehicle speed
and heading angle to derive the future trajectory of the leading vehicle. Moreover, we propose a
prediction algorithm of the leading vehicle motion based on the combination of driving intention
recognition and multimodel prediction results by the Fuzzy C-means algorithm, which tries to solve
the problem of the unclear driving intention of the predicted object and the nonlinearity between
the future motion of the vehicle and the environment. Finally, the algorithm is validated using real
vehicle data, proving that it has high prediction accuracy.

Keywords: vehicle motion prediction; speed prediction; trajectory prediction; driving intention
recognition

1. Introduction

The future driving actions of the leading vehicle have a considerable influence on the
operation behavior of the vehicle, which in turn affects the fuel consumption, driving secu-
rity, and transportation efficiency of the vehicle, especially in the lane change, overtaking,
and ramp merging scenarios. However, there are limited data collection sources related
to the front car’s trajectory. Therefore, the dynamics of the front car cannot be accurately
calculated, thus affecting the accuracy of the front car’s action prediction. In addition, there
is uncertainty about the driving intention of the leading vehicle. Finally, the trajectory
prediction should not only predict the future coordinate points of the vehicle but also focus
on the vehicle’s future heading angle and the leading vehicle’s future speed.

As a result, the trajectory forecasting of major vehicles is challenged by uncertainties
about a driver’s driving intentions and dynamics and limited data sources.

Therefore, the accuracy of the trajectory prediction of the front vehicle is largely
influenced by the uncertainty of the driving intention and dynamics of the leading ve-
hicle. Current vehicle trajectory prediction methods are mainly divided into maneuver-
based models and end-to-end models [1–3]. Xie [4] considered kinematic models in a
physics-based prediction model. Deo [5] designed a trajectory prediction module based
on the amalgamation of an interacting multiple model (IMM) based motion model and
maneuver-specific variational Gaussian mixture models (VGMMs). The performance of
the model-based parameterization method is influenced by the accuracy of the kinetic
properties of the object [6]. The method has strong environmental adaptability. However,
with limited data sources, it is impossible to build complex vehicle behavior models to
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describe factors, including road structure and traffic rules, and derive complex trajectory
prediction algorithms.

Historical data-driven parameterization is mainly used in model training to under-
stand the nonlinear relation between prediction and output. For example, Ballan [7] learns
scene-specific motion patterns based on the shroom role between the state of moving objects
and the semantic information of the scene and applies them to new scenes featuring similar
elements for motion prediction. Ye [8] performs vehicle trajectory prediction based on a
hidden Markov model with parameters determined from historical trajectory data. The
authors of [9] proposed a recurrent neural network model for urban vehicle trajectory
prediction based on attention mechanism. In [10], LSTM (long short-term memory) is used
to learn the mapping from the input of the original sensor to the object coordinates in an
unsupervised manner. In [11], the sequence of vehicle coordinates obtained from sensor
measurements is fed to the LSTM, and probabilistic information about the future location
of the vehicle on the occupancy grid map is generated. Choi et al. [12] proposed a trajectory
prediction method based on a random forest (RF) algorithm and a long short-term memory
(LSTM) encoder–decoder architecture. Shen et al. [13] based their process on visual recog-
nition of lane lines and vehicles and input the vehicle coordinate sequence into the LSTM
algorithm to predict the future coordinates of the target vehicle. These methods do not take
into account the driver’s driving intention but only focus on the future trajectory points of
the car in front of it and do not predict or modify future speeds by default.

Because it is difficult to detect driving intentions directly through sensors, Liu et al. [14]
developed a driving behavior estimation-based model that uses a hidden Markov model
to classify whether a vehicle makes a lane change or not. Gindele et al. [15] proposed
a dynamic Bayesian network-based filter that estimates whether future vehicles have
acceleration, deceleration, and overtaking operations and predicts future trajectories based
on current driver decision behavior. Rákos et al. [16] used variational autoencoder (VAE)
to classify driving intentions into lane-keeping, left turn, and right turn. Woo et al. [17]
used the SVM algorithm to classify driving intentions into keeping, changing, arrival, and
adjustment. Yuan et al. [18] developed a prediction method for lane change maneuvers
of the vehicle in front using a hidden Markov model based on the distance between the
primary vehicle and the vehicle in front and the lateral and longitudinal speed of the vehicle
in front. Han et al. [19] predicted the vehicle lane change left (LCL), lane change right (LCR),
and lane-keeping (LK) predictions based on the LSTM algorithm and selected the behavior
with the highest probability from them as the future the driving behavior. However, most
methods classify lane-changing operations, lane-keeping, and vertical driving intentions
as aggressive and moderate [20], with low classification accuracy, and do not accurately
describe the lane-changing process [21–23]. Instead of outputting discrete values, the
classification results of the FCM algorithm output the probabilities belonging to different
outcomes, which can improve the resolution and classification accuracy of the classification
results, thus avoiding overly aggressive or conservative results of the prediction model. For
example, Wang et al. [24] used acceleration and deceleration behavior, overspeed behavior,
and operational stability as feature parameters to classify driver driving behavior using the
FCM clustering method. Liu et al. [25] used speed, acceleration, and gas pedal opening as
feature quantities for the FCM algorithm to classify driving styles.

According to the uncertainty of driving behavior and vehicle dynamics characteristics,
this paper decomposes the problem of driving behavior recognition prediction into vertical
speed prediction and horizontal heading angle prediction. The FCM method was applied
to classify driving intentions to improve the accuracy and resolution of driving behavior
pattern recognition. The model is trained with real vehicle data for different driving
intentions. To accurately predict the future actions of the leading car, the action prediction
is decoupled into vertical velocity prediction and horizontal heading angle prediction
instead of just predicting coordinate points. For the horizontal prediction problem, the
LSTM algorithm is used to predict the heading angle of the leading car, and for the vertical
prediction problem, the GPR algorithm is used to predict the speed of the leading car
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and combine it with the calculated future trajectory. Finally, real vehicle data are used to
validate the algorithm proposed.

The rest of this article is arranged as follows. Section 2 describes the proposed trajectory
prediction model, including the principle of the algorithm and the framework of the
trajectory prediction algorithm. Section 3 introduces the research object and evaluation
criteria and analyzes the experimental results, and Section 4 concludes the paper.

2. Methods

For the problem of predicting the future motion of the front vehicle, there is the
problem of unclear driving intention and dynamics characteristics of the front vehicle,
and the following ideas are proposed in this paper. First, for the problem of the unclear
driving intention of the front vehicle, the driving intention is divided into vertical driving
intention and horizontal driving intention, and FCM is used to extract the corresponding
feature parameters by using vehicle acceleration and trajectory-related information; the
driving intention is then automatically recognized through offline training. Secondly, the
leading vehicle motion prediction problem is decomposed into vertical speed prediction
and horizontal heading angle prediction. The GPR and LSTM methods are used to predict
future vehicle speeds and heading angles using historical and current vehicle speeds and
coordinate information combined with weight coefficients of different driving intentions.
Then, based on the classification results of different driving intentions, three predicted
speeds and heading angles are fused, and the 1s rolling prediction is made using an
iterative method. Finally, the predicted vehicle speed and heading angle are combined to
calculate the final vehicle trajectory. The structure diagram of the forward vehicle trajectory
prediction algorithm is shown in Figure 1.

Figure 1. Structure of the leading vehicle motion prediction algorithm.

2.1. Driving Intent Classification

In general, drivers need to turn on their turn signals in the appropriate direction before
making a lane change operation. However, statistics [26] show that turn signals were used
in only 78.6 percent of lane changes, and that some drivers turned on their signals after the
lane change began rather than during the initial phase, with less than 50 percent of drivers
turning on their signals during the initial phase. Therefore, it is not enough to use turn
signals to identify driving intentions, and other characteristic parameters are also needed
to distinguish driving intentions.

We classified vertical driving intentions into slightly changing, slowly, and fast-
changing conditions. The horizontal driving intent is classified into lane-keeping conditions,
normal lane change conditions, and emergency lane change conditions. The probability of
belonging to each driving intention in the future is identified to improve the accuracy and
resolution of the identification, and the identification results are used as weighting factors
for the predicted vehicle speed and heading angle fusion module.
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In order to distinguish between vertical and horizontal driving intentions, the corre-
sponding feature parameters are extracted for classifying driving intentions in the horizon-
tal and vertical directions, respectively. Tables 1 and 2 show the selected feature parameters.

Table 1. Table of horizontal characteristic parameters.

No. Characteristic Parameters

1 Vehicle current speed (m/s)
2 Relative change of horizontal coordinates (m)
3 Relative change of vertical coordinates (m)

Table 2. Table of vertical characteristic parameters.

No. Characteristic Parameters

1 Maximum Acceleration (m/s2)
2 Minimum Acceleration (m/s2)
3 Range of Acceleration (m/s2)

A portion of the real vehicle data is selected as the training set, and the historical 4-step
and current moment data are composed as a set. The extracted feature parameters of each
set are used as the input of the FCM algorithm, and the clustering center and affiliation
matrix are updated until the conditions of the objective function are satisfied. The final
degree of similarity between data of the same category is maximized.

The FCM algorithm is applied to determine the clustering center and affiliation matrix.
Before satisfying the objective function shown in Equation (1), the clustering centers and
affiliation functions are iterated according to Equations (2) and (3) to obtain the clustering
centers for lane-keeping condition cH1, normal lane change condition cH2, and emergency
lane change condition cH3 in the horizontal direction, and the clustering centers for slightly
changing conditions cV1, slowly changing conditions cV2 and fast-changing conditions cV3
in the vertical direction.

Jm =
N

∑
i=1

C

∑
j=1

um
ij
∥∥xi − cj

∥∥ (1)

cj =
∑N

i=1 um
ij xi

∑N
i=1 um

ij
(2)

uij =
1

∑C
k=1 (

‖xi−cj‖
‖xi−ck‖

)
− 2

m−1
(3)

where jm is the objective function, ci denotes the cluster center of class j, uis denotes the
affiliation of the sample xi belonging to class s, and for a single sample xi, the sum of the
affiliation for each class is 1.

In order to solve the problem of driving intention classification, the current and
historical 4-step sampling time data are used as a group in the process of actual vehicle
driving, and the feature values of this group are extracted. Furthermore, the distance from
the current moment data to each cluster center and the respective affiliation function are
calculated using Equation (3), which represents the probability of its belonging to that
cluster center.

2.2. Speed Prediction

Gaussian Process Regression (GPR) methods have shown great potential in dealing
with the uncertain relationship between inputs and outputs compared to existing popular
nonparametric forecasting methods such as neural networks [27,28]. In [29], the results
showed that traffic flow prediction using Gaussian models outperformed the commonly
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used methods. In [30], a conditional linear Gaussian model is proposed for multistep
prediction of leading velocity, and the model is trained to estimate the probability distri-
bution of leading velocity using actual measurement data. Authors of [31] developed a
multistep Gaussian process regression model to predict the driver’s future power demand
using vehicle–vehicle and vehicle–road information. Authors of [32] used a Gaussian
process approach to estimate future vehicle motion from vehicle-to-vehicle and vehicle-to-
infrastructure information. However, the above papers require the use of a priori roadwork
information in vehicle speed prediction. Because the vehicle-to-vehicle information can
be obtained without identifying the driving intention of the previous vehicle, the accurate
prediction of the speed of the previous vehicle cannot be made when the data sources are
limited, especially when the vehicle-to-road information and vehicle-to-vehicle information
are not available, but there is room for further improvement.

GPR considers f (x) to be related to some specific models compared to Gaussian pro-
cesses, which can represent f (x) indirectly but rigorously by allowing the data to represent
the input–output relationship of the object. Gaussian process regression is a form of
supervised learning method with fewer parameters.

GPs extend multivariate Gaussian distributions to an infinite number of dimen-
sions. Formally Gaussian processes distribute the data in regions where any finite sub-
set follows a multivariate Gaussian distribution. For all x = [x1, x2, . . . , xn], f (x) =
[ f (x1), f (x2), . . . , f (xn)] which obey a multivariate Gaussian distribution, f is said to be a
Gaussian process, denoted as:

f (x) ∼ N((µ(x), c(x, x))) (4)

where µ(x) is the mean value function and c(x, x) is the covariance matrix.
The Gaussian noise model is used to represent the measured and noise values during

data observation, which means:

y = f (x) + N(0, σ2
n) (5)

where x is the vector of independent variables, i.e., the eigenvector. f (x) assumes that there
is a Gaussian process prior to this, which means:

f (x) ∼ GP(0, C) (6)

The effect of noise is also introduced in the covariance function, as in Equation (7):

c(x− x′) = σ2
f exp[

−(x− x′)2

2l2 ] + σ2
nδ(x− x′) (7)

where σ2
f is the maximum covariance, and l and σf are the hyperparameters determined

during model training using the maximum likelihood estimation method. The covariance
function can be understood as a measure of similarity between two x. δ(x− x′) is Kronecker
delta function, whose independent variables are usually two integers, and its output value
is 1 if they are equal, otherwise it is 0.

With the covariance function, the covariance matrix is calculated for all input observa-
tions as in Equation (8):

C =


c(x1, x1) c(x1, x2) · · · c(x1, xn)
c(x2, x1) c(x2, x2) · · · c(x2, xn)

...
...

. . .
...

c(x1, xn) c(xn, x2) · · · c(xn, xn)

 (8)

For the new point x∗, the covariance matrix f ∗ corresponding to the point is

C∗ = [c(x∗, x1), c(x∗, x2), . . . , c(x∗, xn)] (9)
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C∗∗ = c(x∗, x∗) (10)

The Gaussian process defines the joint distribution as a Gaussian distribution, then
the corresponding prior distributions for the training set output y and the test point output
y∗ are shown in Equation (11): [

y
y∗

]
∼ N(0,

(
C CT

∗
C∗ C∗∗

)
) (11)

The posterior probability distribution and best estimate of y∗ is calculated as shown in
Equations (12) and (13):

y∗|y ∼ N(C∗C−1y, C∗∗ − C∗C−1CT
∗ ) (12)

y∗ = C∗C−1y (13)

The actual speed data with different driving intentions, five steps of historical data as
input, and 1 step of future speed data [v1, v2, v3] as output are used to train the GPR model
separately to form the GPR speed predictor for different driving intentions, respectively.

The GPR model takes the speed data of 5 historical sampling steps as input, and
the results of the FCM-based driving intention classification [ε1, ε2, ε3] introduced in the
previous section are used as the result weights of each GPR model to finally predict the
speed of the future 1 step.

vp = v1 × ε1 + v2 × ε2 + v3 × ε3 (14)

2.3. Trajectory Prediction

Recurrent neural networks (RNNs) are widely used to analyze the time-series data
structure. The long short-term memory (LSTM) model is a variant of RNN that learns
long-term dependent information, and the main difference between the long short-term
memory network and the traditional recurrent neural network is its added gate structure,
which is input gate, forgetting gate, and output gate [33]. The relevant formula for the
LSTM is:

ft = σ
(

W f ht−1 + U f xt + b f

)
(15)

it = σ(Wiht−1 + Uixt + bi) (16)

C′t = tanh(Wcht−1 + Ucxt + bc) (17)

Ct = ft × Ct−1 + it × C′t (18)

Ot = σ(WOht−1 + UOxt + bO) (19)

ht = Ot × tanh(Ct) (20)

where ft denotes the forgetting gate, it denotes the input gate, C′t denotes the state update,
Ot denotes the output gate, and ht denotes the final output value. W f , U f , Wi, Ui, Wc, Uc,
Wo, Uo denotes the weight coefficient; b f , bi, bc, bo denotes the bias; and σ = 1

1+e−x is the
activation function.

First, three LSTM algorithm models were trained using data from different driving
intentions, with the historical 4-step length and current heading angles as inputs and the
future 1-step heading angle [θ1, θ2, θ3] as output. Then the probability [ω1, ω2, ω3] of three
lane change patterns is determined by combining the FCM algorithm, the future heading
angle of the three LSTMs deviation model is obtained with multimodel fusion, and the
future vehicle position is calculated with Equations (22) and (23) based on the current speed
of the vehicle.

θp = θ1 ×ω1 + θ2 ×ω2 + θ3 ×ω3 (21)

∆x = vp × sin θp (22)
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∆y = vp × cos θp (23)

2.4. Multistep Prediction

Currently, multistep prediction tasks can be performed either by explicitly training
a direct model to predict the overstep, called the direct method, or by repeating the
one-step overstep prediction until the desired horizon, called the iterative method [34].
The results show that the direct method requires a much higher training data volume
and computational effort than the iterative method [35,36]. In this paper, the prediction
of speed and trajectory is chosen for the iterative method; furthermore, to reduce the
cumulative error caused by the iterative method, the driving intention is identified for each
prediction step.

As an example of predicting a future 2-step trajectory, with the input data of historical 3-
step and current moment trajectory information, as well as predicted future 1-step trajectory
information, after extracting the corresponding feature parameters, the probability that the
set of data belongs to different driving intentions is identified by the FCM algorithm. The
trajectory data and the probability of driving intention data are input in the LSTM trajectory
predictor, and the driving intention probability data are used as weight parameters, which
are combined with the trajectory prediction results calculated based on different driving
intentions to finally predict the car’s trajectory ahead of the next two steps.

3. Experimental Results and Analysis
3.1. Research Subjects

The research object of this paper is a purely electric bus, with the configuration
parameters shown in Table 3.

Table 3. Table of electric bus parameters configuration.

Parameter

Length (mm) 6605
Width (mm) 2320
Height (mm) 2870
Weight (kg) 5800

Maximum Speed (km/h) 69

The data for this study were obtained from the millimeter-wave radar loaded on
the vehicle and mounted at the vehicle’s front windshield. The collected vehicle data
C = [V, X, Y], where each data set in C is the speed and relative position information of
the leading vehicle in the horizontal and vertical directions. The data cover a wide range
of operating conditions and are collected at a frequency of 100 ms. The dataset includes
different operating conditions, including uniform speed, acceleration, rapid acceleration,
deceleration, rapid deceleration, lane change, and abrupt lane change, covering different
vehicle behaviors, and is used to simulate vehicle conditions under different operating
conditions in order to improve the algorithm’s ability to adapt in different environments.
The collected data are divided into training, validation, and test sets, which train, validate,
and test the driver intention classification algorithm and prediction algorithm.

3.2. Evaluation Indicators

In this paper, root mean square error (RMSE) and mean absolute error (MAE) were
chosen as the indicators to evaluate the accuracy of trajectory prediction. Among them,
RMSE measures deviations between predictions and real values and is more sensitive to
outliers in data. MAE represents the average of absolute errors between predictions and
observations, denoted as:
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RMSE(X, p) =

√
1
m

m

∑
i=1

(p(xi)− Ti)
2 (24)

MAE(X, p) =
1
m

m

∑
i=1
|p(xi)− Ti| (25)

where m is the number of samples, p(xi) is the predicted result, and Ti is the real operating
data of the vehicle.

3.3. Experimental Results Analysis

In the driving intention classification, 20 groups of vehicle operation data, totaling
20,238 sample points, were randomly selected for testing. The average recognition ac-
curacy of vertical driving intention is 94.83%, and the average recognition accuracy of
horizontal driving intention is 93.25%, which has a good recognition effect on driving
intention. Figure 2 shows the driving intention classification results from one set of vehicle
data, with different colors representing different driving intentions in the horizontal and
vertical directions.

Figure 2. Driving intent classification results: (a) vertical driving intention classification results;
(b) horizontal driving intention classification results.

The results of the multistep prediction of future velocity using the iterative method
are shown in Figure 3, and the graphs show the comparison curves of velocity prediction
results for the third, fifth, and tenth steps of the prediction. From the figure, it can be
seen that the error of velocity prediction increases with the increase in the prediction step
length. Secondly, in the case of drastic speed changes, the other two methods have more
aggressive prediction results than the algorithm used in this paper, and the difference is
more obvious in the case of frequent acceleration and deceleration. The GPR prediction
curve based on FCM is closer to the real speed of the vehicle in front, and the prediction
error is significantly reduced.
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Figure 3. Comparison of multistep velocity prediction results: (a) comparison of the results of 3-step
speed prediction; (b) comparison of the results of 5-step speed prediction; (c) comparison of the
results of 10-step speed prediction.

The results of multistep prediction for heading angle are shown in Figure 4 for the
leading car, respectively, and the graphs show the prediction curves of heading angle for
the third step length, the fifth step length, and the tenth step length. As seen from the graph,
first of all, with the increase in the prediction step, each algorithm’s prediction results will
appear with corresponding lag. The more prediction steps there are, the more significant
the lag. Secondly, the prediction results of the other two methods are more aggressive than
those of the algorithm adopted in this paper, which leads to an increase in the prediction
error, especially in the course change operation; where the course angle changes more in a
short period, the difference of the prediction results of the three methods is more obvious.
The linear stability model based on FCM is more similar to the actual angle of attack of the
vehicle in front of it, and the prediction error is reduced.
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Figure 4. Comparison of multistep heading angle prediction results: (a) comparison of the results
of 3-step heading angle prediction; (b) comparison of the results of 5-step heading angle prediction;
(c) comparison of the results of 10-step heading angle prediction.

As shown in Figure 5, the comparison of RMSE and MAE of prediction in horizontal
and vertical coordinates in the third step, fifth step, and tenth step using different predic-
tion methods. Firstly, the three methods’ RMSE and MAE increased with the prediction
step’s increase, especially in the tenth step. The RMSE and MAE values of the prediction
algorithm without driving intent classification increased significantly in the horizontal
coordinate compared to the fifth step, which proved that the prediction algorithm without
driving intent classification was less effective at longer steps. Second, the RMSE and MAE
values of the algorithm in this paper, both lower than the other two algorithms, prove the
effectiveness of this algorithm.
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Figure 5. Comparison figure of multistep prediction error.

The trajectory prediction results of this algorithm are compared with the actual tra-
jectory as shown in Figure 6. A 95% prediction error is less than 0.013 m for the tenth
step horizontal distance. Of all the projected results, the maximum distance forecast error
is 0.56 m. Of the vertical distance predictions, 95% had a prediction error of fewer than
0.025 m, and the maximum distance prediction error is 0.63 m.

Figure 6. Figure of multistep trajectory prediction results.

4. Conclusions

In this paper, we aimed to improve the prediction accuracy, reduce the influence of
uncertainty of driving intention and dynamics of the leading vehicle on the prediction
results, and construct a prediction algorithm based on driving intention classification. In
order to accurately predict the future actions of the leading vehicle, instead of just predicting
the coordinate points, this paper used the LSTM algorithm to predict the heading angle
of the leading vehicle and the GPR algorithm to predict the speed. It combined them to
calculate the future trajectory.

First, the impact on the future trajectory of the vehicle ahead under different driving
intentions was fully considered, and the FCM algorithm was used to train the driving
intentions of the vehicle ahead offline by taking the previous trajectory information and
acceleration as input and using the information related to the speed and trajectory of the
vehicle ahead under various complex working conditions. The output of FCM was the
probability that the current input belongs to each category, and the final classification result
was a probability set by the training dataset and the output classification probabilities to
improve the resolution and accuracy of classification.

Second, the GPR model and the LSTM model were trained with the historical and
current moment speed data and trajectory data of different driving intentions, and after the
training was completed, the models output the speed and heading angle prediction results
under different driving intentions.
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Third, the FCM output affiliation function was used as the weight of each model to
realize the variable gain weighted fusion of different driving intention prediction results
and the joint calculation of heading angle and speed. An iterative rolling method predicts
the target’s trajectory in the next 1s.

Finally, the algorithm was verified using real vehicle data, and the results showed
that none of the horizontal prediction errors of the future 1s trajectory prediction results
were greater than 0.013 m. All prediction results’ maximum values of horizontal distance
prediction error reached 0.56 m. The vertical prediction error was no more than 0.025 m,
and the maximum prediction error of the vertical distance among all the prediction results
reached 0.63 m.
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