
Citation: Ahmad, G.N.; Shafiullah;

Fatima, H.; Abbas, M.; Rahman, O.;

Imdadullah; Alqahtani, M.S. Mixed

Machine Learning Approach for

Efficient Prediction of Human Heart

Disease by Identifying the Numerical

and Categorical Features. Appl. Sci.

2022, 12, 7449. https://doi.org/

10.3390/app12157449

Academic Editors: Atsushi Teramoto

and Tomoko Tateyama

Received: 6 June 2022

Accepted: 21 July 2022

Published: 25 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Mixed Machine Learning Approach for Efficient Prediction of
Human Heart Disease by Identifying the Numerical and
Categorical Features
Ghulab Nabi Ahmad 1,*, Shafiullah 2,* , Hira Fatima 1, Mohamed Abbas 3,4 , Obaidur Rahman 5, Imdadullah 6,*
and Mohammed S. Alqahtani 7,8

1 Institute of Applied Sciences, Mangalayatan University, Aligarh 202145, India; hirafatima2014@gmail.com
2 Department of Mathematics, K.C.T.C. College, Raxaul, BRA, Bihar University, Muzaffarpur 842001, India
3 Electrical Engineering Department, College of Engineering, King Khalid University,

Abha 61421, Saudi Arabia; mabas@kku.edu.sa
4 Computers and Communications Department, College of Engineering, Delta University for Science and Technology,

Gamasa 35712, Egypt
5 Department of Electrical Engineering, Jamia Millia Islamia, New Delhi 110025, India;

obaidrahman47@gmail.com
6 Electrical Engineering Section, University Polytechnic, Aligarh Muslim University, Aligarh 202002, India
7 Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University,

Abha 61421, Saudi Arabia; qmalak46@gmail.com or mosalqhtani@kku.edu.sa
8 BioImaging Unit, Space Research Center, Michael Atiyah Building, University of Leicester,

Leicester LE1 7RH, UK
* Correspondence: ghulamnabiahmad@gmail.com (G.N.A.); shafi.stats@gmail.com (S.); imdadamu@gmail.com (I.)

Abstract: Heart disease is a danger to people’s health because of its prevalence and high mortality
risk. Predicting cardiac disease early using a few simple physical indications collected from a routine
physical examination has become difficult. Clinically, it is critical and sensitive for the signs of
heart disease for accurate forecasts and concrete steps for future diagnosis. The manual analysis
and prediction of a massive volume of data are challenging and time-consuming. In this paper, a
unique heart disease prediction model is proposed to predict heart disease correctly and rapidly
using a variety of bodily signs. A heart disease prediction algorithm based on the analysis of the
predictive models’ classification performance on combined datasets and the train-test split technique
is presented. Finally, the proposed technique’s training results are compared with the previous
works. For the Cleveland, Switzerland, Hungarian, and Long Beach VA heart disease datasets,
accuracy, precision, recall, F1-score, and ROC-AUC curves are used as the performance indicators.
The analytical outcomes for Random Forest Classifiers (RFC) of the combined heart disease datasets
are F1-score 100%, accuracy 100%, precision 100%, recall 100%, and the ROC-AUC 100%. The Decision
Tree Classifiers for pooled heart disease datasets are F1-score 100%, accuracy 98.80%, precision 98%,
recall 99%, ROC-AUC 99%, and for RFC and Gradient Boosting Classifiers (GBC), the ROC-AUC
gives 100% performance. The performances of the machine learning algorithms are improved by
using five-fold cross validation. Again, the Stacking CV Classifier is also used to improve the
performances of the individual machine learning algorithms by combining two and three techniques
together. In this paper, several reduction methods are incorporated. It is found that the accuracy of
the RFC classification algorithm is high. Moreover, the developed method is efficient and reliable for
predicting heart disease.

Keywords: heart disease; mixed machine learning techniques; numerical features; categorical
features; RFC; DT; LDA; QDA; Nu SVC; NB; NN; SVM; GBC; KNN; LR

1. Introduction

Cardiovascular diseases are a group of ailments that disrupt the proper functioning
of the heart. Cardiac failure (HF), coronary artery disease (CAD), vascular disease, heart
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rhythm abnormalities, and other conditions are among the various types of heart disease.
The condition where the blood channels constrict or block, resulting in a heart attack
(myocardial infarction) and chest discomfort, is known as heart disease. Chest heaviness,
shortness of breath, chest pain (angina), irregular heartbeats, and heart abnormalities are
key symptoms of heart disease [1]. Heart failure is a long-term condition that damages the
heart chambers. Cardiovascular illness interrupts the heart’s natural function, which is
to pump enough blood into the whole body without raising intracardiac pressure. When
the heart fails to supply enough blood to the entire body, the fluid level of the body
will be maintained by the kidney, producing lung obstruction and edema in the legs
and arms. Congestive heart failure (CHF) is a major health problem in today’s world,
impacting 26 million people globally [2]. Around 17.9 million people are killed each
year from cardiovascular disease, accounting for 31% of all deaths globally [3]. Many
uncontrolled risk factors for heart failure include gender, family history, rising age, etc.,
whereas hypertension, high cholesterol, smoking, and obesity are in control label health
conditions [4]. We research and review the most common types of heart failure problems
in order to better understand heart failure. Figure 1 depicts the four right atria that are
responsible for regulating blood pumping.

Recently, healthcare manufacturing has collected a vast amount of patient data. How-
ever, researchers and clinicians are not effectively utilizing this information for illness
diagnosis. The healthcare industry is experiencing significant problems in terms of superi-
ority of service (SS), which assures accurate and fast illness analysis and competent patient
treatment. Improper diagnosis leads to negative outcomes that are unacceptable [5].
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1.1. Main Kind of Cardiovascular Ailments

A coronary artery disease (CAD) is a kind of cardiovascular disease in which the
narrowing or blockage of the coronary arteries is caused by plaque build-up. It is also
known as coronary heart disease and ischemic heart disease. It is caused by fatty deposits
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(plaque) forming inside the arteries. As a result of the artery blockage, the blood supply
to the heart muscles is restricted, causing the cardiac function to deteriorate. Coronary
arteries are blood vessels that supply oxygen-rich blood to the heart muscle, allowing
it to keep hiding. The coronary arteries cross the heart muscle in a straight line. The
four principal coronary arteries are the right coronary artery (RCA), left coronary artery
(LCA), left forward descending artery (LAD), and left circumflex artery. The medical
name for this ailment is myocardial ischemia. A partial or total blockage of blood vessels
causes irreversible damage to the heart, resulting in a heart attack. The four chambers of
the human heart are the upper receiving chambers (right and left atria) and the bottom
pumping chambers (true and left ventricle (LV)). The right atrium collects deoxygenated
blood, while the right ventricle pumps it to the lungs to be oxygenated. The left atrium
receives oxygenated blood from the lungs, which is subsequently delivered to all areas of
the body by the left ventricle. Because of its size and purpose, the left ventricle chamber is
an important and accountable component of the heart. As a result, left ventricle chamber
injury is the most common cause of heart failure. By analyzing or monitoring the heart for
the course of CAD and the formation of wall motion anomalies, echocardiography assists
in the identification of CAD [6]. LV measurement and wall motion score can both be used
to determine if a patient has CAD. As a result, LV monitoring is essential for preventing
long-term damage to the LV’s size, shape, and function. Ultrasound recordings are used
in echocardiography to capture different viewpoints, structures, and motions of the heart.
Echocardiography is a test that evaluates the functional and anatomical properties of the
heart to detect cardiac disease [7]. In addition, echocardiography is utilized to assess the
left ventricle discharge portion and cardiac output [8].

1.2. Congestive Heart Failure

Congestive Heart Failure (CHF) is a kind of heart failure in which the blood arteries
become clogged. The cause of congestive heart failure is the insufficient pumping of blood
through the heart muscle in the body. Due to this, blood and fluid collection in the lungs
causes breathing problems. Because of this, the heart weakens or stiffens over time and
causes cardiovascular diseases, such as clogged-up arteries in the heart (coronary artery
disease) or extreme blood pressure. As a result, the blood will not be filled efficiently.
The long-living life of a human being can be maintained by reducing the signs of cardiac
attack and proper treatment. The quality of life can be improved by reducing weight,
doing continuous exercise, applying restrictions on salt, and reducing the stresses of life.
Congestive heart failure may cause severe symptoms and result in heart surgery, or a
myocardial perfusion device may be required. One technique for avoiding heart failure
is preventing and treating conditions that might contribute to it, such as atherosclerosis,
hypertension, obesity, and being overweight.

1.3. Abnormal Heart Rhythms, Irregular Heartbeat, Cardiac Arrhythmia, Abnormal Electrocardiography

A person’s description of symptoms can often aid clinicians in making an initial
diagnosis and determining the severity of an arrhythmia. The most important things to
look for are whether the palpitations are rapid or slow, regular or irregular, and whether
they are caused by a problem with the heart’s electrical system. The heart’s electrical
system controls when it beats and how much blood it pumps to each part of the body [9].
The most frequent symptoms of an irregular cardiac rhythm are palpitations, fatigue,
loss of consciousness, dizziness, and shortness of breath. Because the signs of HF are
challenging to detect, it is often known as the “silent killer”, which is shown in Figure 2.
For the diagnosis of heart failure, doctors offer a variety of medical tests [10], such as
an echocardiogram, which uses ultrasound waves to evaluate blood flow through the
heart. Another technique to identify cardiac abnormalities involving the heart’s rhythm
is an electrocardiogram (ECG). Holter monitoring is a portable gadget that records the
patient’s continuous ECG data. The heart failure of the patient’s heart can be computed
by tomography (CT) scans which provide an X-ray cross-sectional image of the patient’s
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heart. Cardiovascular magnetic resonance imaging (MRI) uses powerful magnets and radio
waves to create an image of the heart and its tissues.

The most widespread socioeconomic and public health problem is heart disease, affect-
ing both men and women and resulting in many fatalities and other impairments [11,12].
Despite being one of the most common chronic conditions, heart ailment is one of the
most preventable and controlled diseases worldwide, causing a substantial percentage of
disability and mortality globally, with 17.9 million fatalities each year, and each second,
one person dies. Under the age of 70, one-third of these fatalities occur. Researchers from
all across the globe are working hard to find ways to prevent, treat, and ultimately cure
heart disease. In December 2020, Carmat, a French firm, is situated in Peris has obtained
authorization to carried out its implant of an artificial heart in Europe for the first time [13].
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Excess cholesterol, obesity, and high triglyceride levels are just a few of the harmful
habits that people engage in [14]. Early cardiac disease detection reduces the risk of
developing severe symptoms and complications [15,16]. These symptoms are similar to
those of other diseases that affect the elderly, making a precise diagnosis challenging to
obtain and potentially fatal. More study data and hospital patient records are becoming
available as time goes on. There are multiple open sources for patient data, and a study
might be done to investigate if different computer technologies can be utilized to diagnose
the patients accurately and detect this problem before it becomes fatal.
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2. Prediction of Heart Disease Using Machine Learning

A great variety of diagnostic systems for the automated diagnosis of various ailments,
such as human heart disease, have recently been created. Methods of machine learning
and optimization in machine learning have been effectively deployed on several datasets
for automated heart disease identification, and it is now commonly considered to have a
substantial impact in medical science. Several ML models are used to diagnose the disease
and categorize or forecast the results. Large volumes of genetic data can be analyzed quickly
using ML methods. To enhance projections, medical data may be used and analyzed more
fully, and algorithms could be taught to predict pandemics [17,18]. Several insights are
extracted from the dataset to understand the importance of each variable and how they are
related to one another. Moreover, the primary aim of this work is to determine whether or
not someone has a severe cardiac disease.

2.1. Linear Discriminants Analysis (LDA)

LDA is employed when all populations’ variation covariance grids are homogenous.
Our selection strategy in LDA is based on the linear score function, which is the population
element, and the set difference covariance frames the linear score function’s features.

2.2. Random Forest Classifier

The supervised learning approach is used by Random Forest, a well-known machine
learning algorithm. It may be used for both classification and regression problems in ma-
chine learning. It is based on ensemble learning, which is a technique for combining a large
number of classifiers to solve a difficult problem and improve the model’s performance.
“A random forest is a classifier that contains a number of decision trees on various subsets
of a given dataset and takes the average to improve the dataset’s prediction accuracy”, as
suggested by the name. Rather than relying on a single decision tree, the random forest
considers the predictions from each tree and predicts the final output based on the majority
votes of projections.

2.3. Gradient Boosting Classifier

Gradient boosting is a type of artificial intelligence (AI) that may be used to solve
regression and classification problems. As a prediction model, it provides a set of overall
prediction models and decision trees. It builds models in a stage-savvy approach, similar
to previous improvement strategies, and summarizes them by permitting arbitrarily distin-
guishable unpleasant work. In order to minimize the target work, in each cycle, we adjust
the basic learners to the negative angle of the negative gradient, progressively increasing
the expected value and adding it to the previously emphasized incentives:

2.4. Decision Tree Classifier (DTC)

In summary, trees are a type of supervised machine learning in which data are split
on a regular basis based on a parameter (in the training data, we define what the input is
and what the related output is). The leaves symbolize the decisions or final results. This
technique has a tree or structure like a flowchart, with the branches, leaves, nodes, and root
node in a tree. The features are kept in the internal nodes, whereas the branches indicate
the outcomes of each test on each node. DT is frequently used for classification applications
since it does not need considerable field experience or parameter setting.

2.5. Support Vector Machine (SVM)

A support vector machine (SVM) is a supervised machine learning algorithm that can
be employed for both classification and regression purposes. A support vector machine
is a statistical learning technique that classifies the datasets for solving both linear and
nonlinear problems. The technique creates a line or a hyperplane which separates the data
into classes.
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2.6. Nu-Support Vector Classifier (Nu-SVC)

The sole distinction between the Nu-support vector classifier and the support vector
classifier is the Nu parameter, which regulates the number of support vectors. In this lesson,
we’ll quickly go through how to use Python’s NuSVC class from Scikit-learn to categorize
data.

2.7. Logistic Regression (LR)

Logistic regression is a kind of supervised learning. It is used to calculate or predict
the probability of a binary (yes/no) event occurring. An example of logistic regression
could be applying machine learning to determine if a person is likely to be infected with
heart disease or not.

The nature of the target or dependent variable is dichotomous, which means there
would be only two possible classes.

2.8. K-Nearest Neighbors

As the name suggests, it considers K-Nearest Neighbors (data points) to predict the
class or continuous value for the new data point. The algorithm of the learning is:

• Select the number K of the neighbors
• Calculate the Euclidean distance of the K number of neighbors
• Take the K nearest neighbors as per the calculated Euclidean distance.
• Among these K neighbors, count the number of data points in each category.
• Assign new data points to that category for which the number of the neighbor is maximum.

2.9. Quadratic Discriminant Analysis (QDA)

It is a generative model which assumes Gaussian distribution for each class. The
fraction of data points that belong to the class is all that the class-specific prior entails. The
class-specific mean vector represents the average of the class-specific input variables. The
class-specific covariance matrix is nothing more than the covariance of the class’s vectors.

2.10. AdaBoost Classifier

A meta-estimator called an AdaBoost classifier starts by fitting a classifier to the
initial dataset. It then fits additional copies of the classifier to the same dataset, but
with the weights of instances that were incorrectly classified being changed so that later
classifiers would concentrate more on challenging cases. The first truly successful boosting
algorithm created for binary classification was called AdaBoost. Multiple “weak classifiers”
are combined into a single “strong classifier” using the boosting approach known as
“AdaBoost”, which stands for “Adaptive Boosting”.

2.11. Neural Network (NN)

An artificial intelligence technique called a neural network instructs computers to
analyze data in a manner modeled by human beings. Deep learning is a sort of machine
learning that employs linked neurons or nodes in a layered framework to mimic the
human brain.

2.12. k-5 Fold Cross-Validation

The k-fold cross-validation method is widely used for calculating how well a machine
learning algorithm performs on a heart disease dataset. Though five is a typical choice for
k, that is how this arrangement is acceptable for our heart disease dataset. The algorithms
are investigating the impact of various k values on the estimated model performance and
contrasting it with the ideal test condition. This can help in selecting the right value for k.
Whenever a k-value is determined, it can be used to assess a variety of algorithms on the
heart disease dataset. The distribution of the results may then be compared to the results of
an assessment of the same algorithms under the optimum test scenario to see whether or
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not they are strongly correlated. If the results are correlated, then it is confirmed that the
configuration chosen is reliable for the optimum test situation.

2.13. Stacking CV Classifier

An ensemble machine learning approach called stacking generalization is used. The
goal of stacking is to improve the analytical results of individual machine learning models
by ensembling the different machine learning models in the best possible way. The most
basic form of stacking can be characterized as an ensemble learning technique where the
predictions of various classifiers (referred to as level-one classifiers) are used as new features
to train a meta-classifier. Any classifier of the choice may serve as the meta-classifier.

• Model building: A machine learning model is developed during this phase to detect
cardiac illness. A risk assessment model is also developed to aid doctors in develop-
ing an early prediction with excellent predictive power. This is binary classification
(has-disease or no-disease cases). The machine learning algorithms such as logis-
tic regression, K-nearest neighbors, support vectors machine, Nu support vectors
classifier, decision tree classifiers, random forest, adaboost, gradient boosting, naive
bayes, linear discriminant analysis, quadratic discriminant analysis, neural network
(12 classifiers to select the optimal base learners), and k-5 fold cross-validation. For
avoiding the overfitting of the base learners, the random forest classifier is used as
the Meta Learner. The stacking model is implemented for CVD prediction and is
inspired by other ML models. The proposed technique is tested against 12 individual
ML classifiers for accuracy, precision, recall, F1-score, and AUC values by using a
combined heart disease dataset from multiple UCI machine learning resources and
another publicly accessible heart disease dataset.

• The data are divided into training and testing sets in 3:1, optimizing the trained model
75% and the tested model 25%. As a result, the random forest and decision tree models
are chosen as the top classifiers. However, the default settings were used to achieve
this. With tweaked settings, we should be able to enhance our model even further. The
working diagram of proposed model is shown in Figure 3 and application of proposed
model is shown in Figure 4. The distribution of the target variable of heart disease is
shown in Figure 5.

The significant contributions of this paper include heart disease empirical and statisti-
cal analysis utilizing various graphics, charts, and diagrams. The following are the keys
taken away from the heart disease prognosis:

• Data insight: Heart disease detection using a dataset is presented, generating intrigu-
ing inferences to arrive at useful conclusions.

• EDA: Exploratory data analysis is carried out in order to obtain useful results.

The Kernel Density Estimate (KDE) design is used to visualize the Probability Density
(PD) of a continuous variable. At various levels, it depicts the PD of a continuous variable.
Moreover, numerous samples are combined into a single graph, which speeds up the data
visualization. Numerical features are plotted by the Kernel Density Estimation (KDE)
shown in Figure 6, the categorical features count is plotted in Figure 7, pair graphs of
numerical features are plotted in Figure 8, regression plots of selected features are plotted
in Figure 9, the numerical features correlation (Pearson’s) is plotted in Figure 10, and the
categorical features correlation (Cramer’s V) is plotted in Figure 11. The Cleveland heart
disease dataset and the KDE Plot are used to show the dataset’s findings in this paper.

• Feature development: It is needed to change the features when it acquires the insights
from the data so that it can continue forward with the model development process.

The remainder of the paper is arranged as follows: overview of present machine
learning approaches was presented in Section 2. Section 3 outlines the study’s objectives,
whereas Section 4 gives the outlines of the techniques used. Section 5 gives details of data
collecting, Section 6 presents experimental results and findings, and Section 7 wraps up the
conclusions of the study and suggests further research.
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3. Literature Review

The auscultation method was the most common method used by clinicians to distin-
guish between normal and abnormal heart sounds [19]. Doctors listening to the sounds
of the heart with stethoscopes detected every cardiac ailment [20]. Professional doctors
utilize auscultation to identify cardiac illness, although it has several disadvantages. The
ability and practices of doctors, which are developed during extensive tests, are linked
to the explanation and classification of various noises in the heart [21]. Aside from the
manual technique, different machine learning algorithms for CVD detection have been
presented. Amin et al. [22] did research to categorize the most important features of heart
disease prediction. Spencer et al. [23] achieved an accuracy of 85%, the model was built
using chi-square feature selection and the Bayes Net approach. Khan et al. [24] presented
a new IOT framework based on deep convolutional neural networks. The system is cou-
pled to a wearable detecting device that monitors the patient’s vital signs. In terms of
accuracy, our method outperforms existing DL neural networks and LR algorithms by
98.2%. Mehmood et al. [25] used Cardio Help which is a method that combines Neural and
deep learning methods to use CNN for HF prediction and temporal model creation at an
early stage.

Our technology outperforms all existing state-of-the-art techniques with a 97% ac-
curacy rate. Budholiya et al. [26] used a strategy for recognizing essential cardiovascular
disease risk factors that was developed by using a mean Fischer-based and an accuracy-
based feature selection algorithm. The descriptive analysis was utilized to improve the
selected feature subset, which was then used to classify the data using an RBF-based SVM.
Martins et al. [27] used a Bayesian optimization XGBC, and a one-hot encoding technique is
utilized by the researchers to predict heart disease. The Cleveland cardiovascular diseases
dataset is used to assess the model’s performance, and the results are comparable to other
models. Miranda et al. [28] foresee this health hazard; they used the Naive Bayes algorithm
and observed the risk levels for everyone. The test results of blood and urine of clinical
laboratory tests served as the study of training datasets.

The problem with this study was that the authors deserted to see ECG and echocardio-
graphy studies, both of which are critical in diagnosing heart disease; hence the accuracy
of 80% is regarded as poor. Because all of Naive Bayes’ qualities must be mutually indepen-
dent, it is difficult to use it to predict heart disease in practice due to the difficulty of gener-
ating a group of predictors that are totally independent of one another. Pandey et al. [29]
developed a model for predicting cardiac disease to help doctors determine the severity
of the condition. The J38 decision tree, which is based on a collection of clinical criteria, is
used to categorize heart disease using the Cleveland Heart Disease dataset. Fasting blood
glucose levels are the most important factor in heart disease, according to the model’s
findings. Mienye et al. [30] discovered a two-stage approach for forecasting cardiac disease
that is successful. To begin, the researchers developed an enhanced sparse autoencoder
(SAE), an unsupervised neural network that searches for the best description of the training
data. Based on the learning records, they used an artificial neural network (ANN) to predict
patient health.

The experimental findings produced utilizing the proposed approach improved the
ANN classifier’s performance. Siontis et al. [31] examined the current and future status
of AI-assisted electrocardiography (ECG) in the diagnosis of heart disease in high-risk
regions, as well as the implications for treatment decisions in patients with coronary heart
disease. Anitha et al. [32] studied if learning vector quantization methods may be used
to predict heart disease. The accuracy of her method was 85.55%. The datasets for her
analysis are from the University of California, Irvine (UCI) machine learning collection,
which had 303 entries and 76 attributes. The data was pre-processed due to missing
values, providing a sample of 302 records with just 14 heart disease features. The data are
separated into two categories: 70% of the expenditure goes to model training, whereas
30% goes to model testing. Kumar et al. [33] used a variety of machine learning methods
for predicting if cardiovascular disease has been developed. According to the proposed
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model, RFC gives the highest accuracy of 85.71% when compared to other ML techniques.
Chowdhury et al. [34] proposed that patients’ heart sounds may be monitored in real time
and any anomalies can be found using a digital stethoscope prototype. Negi et al. [35]
used a mixture of uncorrelated discriminant analysis and PCA. The optimum features for
regulating upper limb movements were determined, and the results were outstanding.
Linda et al. [36] suggested that patients with heart disease who are advised to exercise
benefit from a one-of-a-kind health information system. On the basis of previous data,
clinicians are challenged to design the prescription of exercise using Mobile Information
Systems for patients with a variety of CVD risk factors. The system offered to the patients
is an evidence-based, easy-to-use, and time-saving guide. G. N. Ahmad et al. [37] applied
machine learning techniques with and without a sequential feature selection and gave a
comparative study of the optimal medical diagnosis of human heart disease.

4. Proposed Methodology

The major purpose of this study is to create a more accurate and better model for
predicting heart illness. The specific goals are identifying new patients quickly, reducing
diagnostic time, reducing heart attacks, and saving lives. In this Section, the techniques are
suggested and describe how the future stages define them. As seen in Figures 3 and 4, the
suggested technique is depicted as a block diagram.

(a) Choosing a dataset from the online machine learning repository is the initial step. The
Cleveland, Switzerland, Hungarian, and Long Beach VA datasets are only a handful
of the online repositories that provide 14 variables related to patients’ vital signs and
cardiac disease. With 13 out of the 14 variables working as predictor variables, the
last trait acts as the target. Sex, age, kind of chest pain, serum cholesterol, resting
blood pressure, fasting blood sugar, resting maximum heart rate, electrocardiography,
and ST-segment elevation are all factors to consider. Segment elevation is one of the
study’s 13 predictor variables. Exercise-induced angina, depression, slope, and the
outcome of a thallium test are all predicted, as are the number of vessels harmed by
fluoroscopy and the diagnosis. The dataset has 1025 instances. Because there were no
biases in the data, this strategy had no influence on the remaining data utilized in the
experiment. Table 1 lists the datasets and their descriptions.

(b) Establishing links between various heart disease risk factors. The reciprocal link between
the heart disease features in this study is assessed using Pearson’s correlation. The
results of the applied Pearson’s correlation coefficients amongst the heart disease risk
a variable which is shown in Figures 8 and 9 as a heatmap. The heatmap grid depicts
the relationship among heart disease variables and their related coefficients. After
completing the heatmap analysis, we noticed that independent characteristics are loosely
associated with one another, which is a good indicator that the model’s performance
may be improved. However, if the attributes in a dataset are tightly correlated, a change
in one variable can cause a change in another, lowering the algorithm’s performance.
The substantial association among qualities should be studied significantly because
correlation does not imply causality. Because of some neglected elements, a link between
qualities may appear causative through significant correlation.

(c) The gathered data sets were improved and standardized in the second stage. These
datasets were not collected in a controlled setting and contained incorrect information.
As a result, data pre-processing is a necessary step in data analysis and machine
learning. The various values of the dataset of risk factors are referred to as data
normalization; for instance, Celsius and Fahrenheit are two different temperature
measuring units. Data standardization requires scaling risk factors and producing
values that indicate the difference between standard deviations (SD) from the mean
value. The performance of machine learning classifiers can be improved by rescaling
the risk factor value with SD as 1 and mean as 0. The standardizing formula is
as follows:

Standardization of X =
X − Mean of X

Standard deviation X
(1)
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(d) Applying machine algorithms to the dataset produced in step 2 (logistic regression,
k-nearest neighbors, support sectors machine, nu support vectors classifier, decision
tree, random forest, adaboost, gradient boosting, naive bayes, linear discriminant
analysis, quadratic discriminant analysis, neural net, k-fold cross validation and
ensemble technique).

(e) The prediction model’s accuracy, precision, recall, and F-measure are all assessed at
this step. It is decided on the model with the greatest accuracy, precision, recall, and
F-measures. The accuracy metric is used to assess the precision or exactness of the
MLC or model’s predictions. In mathematics, it is supplied by an equation.

Accuracy =
true possitive(tp) + true negative(tn)

true possitive(tp) + true negative(tn) + false possitive(fp) + false negative(fn)
(2)

Precision =
true possitive(tp)

true possitive(tp) + false possitive(fp)
(3)

Recall =
true possitive(tp)

true possitive(tp) + false negative(fn)
(4)

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

Table 1. Details of the features.

S. No. Attribute Details

1 Age Age in years

2 Sex Male and female

3 Cp Type of chest discomfort

4 Trestbps Blood pressure at rest (in mm Hg on admission to the hospital)

5 Chol Cholesterol levels in the blood in milligrams per decilitre

6 Fbs After a fast, check your blood sugar levels.

7 Restecg
At rest, electrocardiography produces the following values.
0 indicates that the ST-T wave is normal; 1 indicates that the

ST-T wave is aberrant;

8 Thalach The highest heart rate was attained.

9 Exang Angina due to exercise

10 Oldpeak ST depression is a kind of depression that occurs when the J point is
displaced below baseline

11 Slope The slope of the ST half of the peak workout

12 Ca A number of major vessels (0–3) have been colored using fluoroscopy.

13 Thal The result of a thallium stress test

14 Target 1 denotes heart illness, while 0 denotes the absence of heart disease.
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5. Data Collection

Two databases dedicated to heart illnesses include the Cleveland database and the
National Cardiovascular Disease Surveillance (NCDS) System’s heart disease database.
The Kaggle [38] heart disease dataset utilized in this work is made up of four combined
databases: Cleveland, Hungary, Switzerland, and the VA Long Beach. The dataset has
14 properties, each of which has a value given to it. It has 1025 patient records spanning a
wide range of ages, with 713 male and 312 female records among them [39] in a subset of
this dataset.

The process of putting data into a visual framework, such as a map or graph, to make
it easier for the human brain to analyze and extract insights from it is known as data
visualization. Data visualization’s major purpose is to make it simpler to spot cardiac
disease, patterns, and outliers in massive data sets.
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5.1. Checking the Distribution of the Data

The allotment of the data is decisive for predicting or classifying an issue. Recently,
it was observed that 50.80% of the dataset featured the occurrence of heart disease, and
49.20% of the dataset featured no heart disease. For avoiding overfitting, the dataset must
be balanced. As seen in Figure 5, this will aid the model in identifying a data trend that
indicates the presence of heart disease versus one that does not.
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5.2. Checking the Categorical and Numerical Features Pair Plots, Count Plots of the Data

To evaluate the data, many distribution plots are constructed to confirm attribute
values and look at the data’s skewness (the asymmetry of a distribution). To offer an
overview of the data, a number of graphs are presented. Figures 5 and 6 depict the results
of analyzing the distributions of age and sex, chest pain, and trestbps, cholesterol and
fasting blood, ECG resting electrode and thalach, exang and old peak, slope and ca, and
thal and goal. The numerical feature pair graphs are shown in Figures 7 and 8. A five-
point biserial correlation and a point-biserial correlation are used to assess the strength
and direction of a relationship between two continuous variables and one dichotomous
variable. Pearson’s correlation of numerical variables, the correlation between two points,
is a point-biserial correlation that is used to determine the strength and direction of a
relationship between two continuous variables and one dichotomous variable. It is a
variant of Pearson’s product-moment correlation, which is used to compare two continuous
variables. The Cramer’s V statistic is a statistical measure of the connection between two
nominal variables that range from 0 to 1. Pearson’s chi-squared statistic provides the
foundation for it.

It is clear from the distribution plots that the data are overfitted or underfitted. It is
shown in Figure 5 that the target variable distribution is 50.8% for abnormal heart disease
and 49.2% for normal heart disease. The majority of abnormal heart patients are aged 55–65.
This also seems to be a balance in disease patients who have experienced cholesterol and
max-heart rate achieved.

Chest Pain (cp) is described in Figures 6 and 7. Heart disease is more common in
those with a cp of 1, 2, or 3 compared to those with a cp of 0.

Resting electrocardiographic: People with value 1 are more likely to have abnormal
cardiac disease, which can manifest as anything from minor symptoms to serious complications.

Exercise-induced angina: People with a value of 0 (no exercise-induced angina) have
heart disease more than people with a value of 1 (exercise-induced angina positive)

Slope {the slope of the peak exercise ST-segment}: People with a slope value equal
to 2 (down sloping: signs of an unhealthy heart) are more likely to have heart disease
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than people with a slope value equal to 0 (upsloping: better heart rate with exercise) or
1 (Flatsloping: minimal change (typical healthy heart)).

Thalassemia {thalium stress result}: People with a thal value equal to 2 (fixed defect:
used to be defective but OK now) are more likely to have heart disease.

Trestbps: Resting blood pressure (in mm Hg on admission to the hospital). Anything
above 130–140 is typically a cause for heart disease.

Chol {serum cholesterol in mg/dl}: The value of Chol above 200 is a cause for
heart disease.

Thalach {maximum heart rate achieved}: People who achieved a thalach value higher
than 150-160 are more likely to have heart disease. Oldpeak ST depression induced by
exercise relative to rest looks at the stress of the heart during exercise. An unhealthy heart
will stress more.

CA {number of major vessels (0–3) colour by fluoroscopy}: The high movement of
the blood in the blood vessels is the reason for good health, and people with the lowest
value of CA, which is equal to 0, are more likely to have heart disease.
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It is shown in the given Figures 8–10 that as the goal varies, chest pain or angina
(cp), fluctuates. Angina is a serious chest pain condition caused by the heart muscles not
receiving enough oxygen-rich blood. Pain in the shoulders, arms, and neck is also caused
by angina. While negative patients have lower levels, positive patients have an elevated
median for ST depression. The objectives of the outcomes for men and women are also
similar, with the exception that men tend to have slightly wider ranges of ST depression.

The heatmaps are shown in Figures 10 and 11. These may be defined as the illustrations
of correlation matrices, which illustrate the connections between various variables. The
correlation coefficients might have any value between −1 and 1. A correlation is a statistical
word describing a connection when two variables are linearly related. It is also known as a
measure of correlation between two variables. In this case, the objective is to organize the
findings after determining a correlation between several factors. Information was stored in
this case using a matrix data structure. Figures 10 and 11 illustrate this feature-by-feature.
Many facts are provided by the figures. First, with correlations of 0.2, 0.28, −0.39, −0.27,
and 0.37, respectively, the five variables with the greatest class-feature dependency are
cholesterol, resting blood pressure, maximum heart rate, ST depression, and the number
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of main arteries. The second fact refers to the feature correlations between the variables
cholesterol age, resting blood pressure and cholesterol, ST depression and maximum heart
rate achieved, and the number of major blood vessels and maximum heart rate achieved,
with correlations of 0.2, 0.13, −0.35, and −0.27, respectively.
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6. Experimental Results and Discussion

In this section, the findings of our experiments are given. The online machine learning
repository is used to gather the data, which is then polished and standardized. Following
standardization, hyperparameter and machine classifiers are used. All of the classifiers are
made up of 75% training data and 25% testing data. Before and after standardized datasets,
the accuracy of classifiers is also examined. The accuracy of the selected classifiers is shown
for assessment purposes. Figure 11 depicts the accuracy of classifiers before and after the
standardization of the data. Actually, the majorities of listed algorithms are not based on
neural networks (LR, KNN, SVM, Nu SVC, DT, RFC, AdaBoost, GBC, NB, LDA, Q DA, NN,
k-fold cross validation and ensemble technique) and increased their accuracy, as shown in
Figure 8. On the standardized dataset, the accuracy of Naive Bayes and Support Vector
Machine classifiers fell. On the standardized dataset, certain classifiers, including RF, DT,
GB, and NN, exhibited considerable accuracy gains. The RF and DTC reach the maximum
prediction accuracy of 100% and 98.80%, respectively, as shown in Figure 10. The Support
Vector Machine has the lowest overall presentation and the lowermost accuracy of 68.80%.
We also look at the dataset’s correctness before and after normalization. The Random
Forest and Decision Tree classifiers reach an accuracy of 100% and 98.80%, respectively,
demonstrating the influence of the dataset normalized.

Figures 12 and 13 and Table 2 are for positive classes. The random forest classifier
achieves 100% recall, precision, F-measure, and accuracy, whereas, for negative classes, the
decision tree classifier achieves 100% recall, precision, F-measure, and accuracy. However,



Appl. Sci. 2022, 12, 7449 19 of 33

random forest has the best memory, precision, F-measure, and accuracy of 100%. All
classifiers have a precision of 100%, whereas all classifiers have a recall better than any
other which is of 100%. Random forest and decision tree both have a maximum F1-score
of 100%. SVM has a low recall, precision, and F1-score of 69% and it has the lowest
recall, F-measure, and accuracy of 69%, and random forest and the gradient boosting
classifier achieve a maximum ROC-AUC of 100%. As a result, the negative class had a
ROC-AUC of 73%, which was much lower than the positive class. Random forest has a
fairly good performance, with 100% recall, precision, F-measure, and ROC-AUC, as well as
100% accuracy.
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Table 2. Results of different machine learning models.

S. No. Classifier Accuracy (%) Recall (%) Precision (%) F1-Score (%) ROC-AUC (%)

1 RF 100 100 100 100 100

2 DT 98.80 99 98 100 99

3 GB 97.60 98 98 98 100

4 KNN 90.80 84 97 90 97

5 AB 88.00 91 86 89 94

6 LR 84.80 89 82 86 91

7 NN 84.80 92 81 86 91

8 QDA 83.60 85 83 84 91

9 Nu SVC 83.20 91 79 85 90

10 LDA 82.80 87 80 84 91

11 NB 82.40 86 81 83 88

12 SVM 68.80 69 69 69 73

As shown in Figures 14 and 15 and Table 3, the decision tree classifier achieved the
highest accuracy of 99.60 and precision of 100%, the random forest classifier achieved
100% recall, and the gradient boosting classifier achieved 100% ROC-AUC. NB has a low
accuracy of 82.15%, precision of 86.60%, F1-score of 83.12%, and ROC-AUC of 90.67%.
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Table 3. Performance of ML classifier using 5-fold cross-validation.

S. No. Classifier Accuracy (%) Recall (%) Precision (%) F1-Score (%) ROC-AUC (%)

1 RF 99.41 100 98.89 99.40 99.97

2 DT 99.60 99.23 100 99.61 99.62

3 GB 99.41 99.50 99.45 99.53 100

4 KNN 86.06 86.19 86.25 86.04 94.86

5 AB 90.93 89.99 92.24 91.05 97.57

6 LR 84.59 89.98 82.31 85.59 91.88

7 NN 95.03 95.64 94.76 95.19 98.54

8 QDA 94.16 94.49 94.27 94.33 98.74

9 Nu SVC 94.83 95.45 94.60 94.97 98.54

10 LDA 93.56 93.54 93.93 93.71 98.60

11 NB 82.15 85.94 80.63 83.12 90.76

12 SVM 92.19 93.36 91.68 92.49 97.24

The confusion matrix of an experiment’s expected outcomes is depicted in Figure 16.
We also have analyses of the model’s performance using ROC-AUC. The receiver operating
characteristic curve (ROC) is a curve with a true positive rate on the ordinate and a false
positive rate on the abscissa [40]. It is created from a series of varied boundary values.
The AUC, or area under the ROC curve, indicates the likelihood that the positive sample’s
calculated score will be greater than the negative sample’s computed value. When the
samples are chosen at random, the advantages and disadvantages of the prediction model
may be investigated. As illustrated in Figure 17, which also illustrates an experiment’s
ROC curve, our model’s average AUC value is 100%.
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As shown in Figures 18–29, the gradient boosting classifier achieved 100% ROC-AUC.
NB has a low ROC-AUC of 90.67%.
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As shown in Figure 15 and Table 4 the random forest classifier and decision tree
classifier with the staking CV Classifier achieved the highest accuracy of 100%, precision
of 100%, recall of 100%, and F1-score of 100%, and of top three combined, the staking CV
classifier achieved 100% ROC-AUC. LR has the lowest accuracy of 86%, precision of 87%,
and F1-score of 86%. Performance ROC-AUC is shown in Figure 30. It can be seen from the
graphics that the ensemble model outperformed all of the other models.
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Table 4. The performance of ML classifier using Staking CV classifier.

S. No. Classifier Accuracy (%) Recall (%) Precision (%) F1-Score (%)

1 RF 100 100 100 100

2 DT 100 100 100 100

3 GB 89.26 89 89 89

4 KNN 86.34 86.19 86.25 86.04

5 AB 90.00 90.00 90.00 90.00

6 LR 86 87 86 86

7 NN 97 97 97 97

8 QDA 88 88 88 88

9 Nu SVC 93.17 93 93 93

10 LDA 86 87 86 86

11 NB 87 87 87 87

12 SVM 99 98 99 99

13 RFC+NN+SVM 100 100 100 100

14 RFC+NN+QDA 100 100 100 100

15 RFC+NN 100 100 100 100

16 LDA+QDA 89 89 89 89
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We also compared our strategy to a number of other researchers’ previously published
methodologies. Ram Prakash et al. [41], for example, used a combination of the PCA feature
extraction technique and DNN to achieve a high accuracy classification, but the recall was
only 97%. The findings of the specific comparison are shown in Table 5.

Table 5. Comparative study of the proposed method with existing method.

Authors Methods Accuracy
(%)

Recall
(%)

Precision
(%)

F1-Measure
(%)

ROC-AUC
(%)

Ramprakash et al. [41] χ2-DNN 94 93 - - -

Gao et al. [42] Decision tree Plus PCA 99.00 97.00 98.00 - -

Ali et al. [43] MLP 97.95 98.00 98.00 - -

D. Zhang et al. [44] Linear SVC + DNN 98.56 99.35 97.84 - -

Proposed
Base model results

RF 100 100 100 100 100

DT 98.80 99 98 100 99

GB 97.60 98 98 98 100

KNN 90.80 84 97 90 97

AB 88.00 91 86 89 94

LR 84.80 89 82 86 91

NN 84.80 92 81 86 91

QDA 83.60 85 83 84 91

Nu SVC 83.20 91 79 85 90

LDA 82.80 87 80 84 91

NB 82.40 86 81 83 88

SVM 68.80 69 69 69 73

Proposed
Stratified (K = 5)-Fold

Cross-validation Results

RF 99.41 100 98.89 99.40 99.97

DT 99.60 99.23 100 99.61 99.62

GB 99.41 99.50 99.45 99.53 100

KNN 86.06 86.19 86.25 86.04 94.86

AB 90.93 89.99 92.24 91.05 97.57

LR 84.59 89.98 82.31 85.59 91.88

NN 95.03 95.64 94.76 95.19 98.54

QDA 94.16 94.49 94.27 94.33 98.74

Nu SVC 94.83 95.45 94.60 94.97 98.54

LDA 93.56 93.54 93.93 93.71 98.60

NB 82.15 85.94 80.63 83.12 90.76

SVM 92.19 93.36 91.68 92.49 97.24



Appl. Sci. 2022, 12, 7449 31 of 33

Table 5. Cont.

Authors Methods Accuracy
(%)

Recall
(%)

Precision
(%)

F1-Measure
(%)

ROC-AUC
(%)

Proposed
stacking CV Classifier

RF 100 100 100 100 -

DT 100 100 100 100 -

GB 89.26 89 89 89 -

KNN 86.34 86.19 86.25 86.04 -

AB 90.00 90.00 90.00 90.00 -

LR 86 87 86 86 -

NN 97 97 97 97 -

QDA 88 88 88 88 -

Nu SVC 93.17 93 93 93 -

LDA 86 87 86 86 -

NB 87 87 87 87 -

SVM 99 98 99 99 -

RFC+NN+SVM 100 100 100 100 -

RFC+NN+QDA 100 100 100 100 -

RFC+NN 100 100 100 100 -

LDA+QDA 89 89 89 89 -

7. Conclusions

Machine learning algorithms (MLAs) are important in healthcare because they ana-
lyze medical data to detect human cardiac disease. CVDs are a serious medical condition
that healthcare providers and researchers must address. In this paper, twelve strategies
are considered for doing comparative analysis and obtaining positive findings. In this
investigation, it is concluded that machine learning algorithms beat human learning algo-
rithms. Some of the comparison approaches used are the confusion matrix, precision, recall,
F1-score, and ROC-AUC. For the 14 characteristics dataset, the random forest classifier
performed better in the ML approach when data pre-processing was utilized. To address
this issue, MLAs are employed to assess a dataset of CVD clinical data to identify the
critical risk factors that influence CVD progression. To improve the training and testing
of the algorithms, the random forest and decision tree are used. Then, using the train-test
split approach, the prediction models’ classification performance on combined datasets
is examined. Finally, comparisons of the findings are given. Accuracy, precision, recall,
F1-score, and ROC-AUC are used as performance indicators, for the Cleveland heart dis-
ease dataset, whereas Switzerland, Hungarian, and Long Beach VA datasets were used
to predict CVD. The following are the results from the combined heart disease dataset:
F1-score is 100%, accuracy is 100%, precision is 100%, and recall is 100%. The following
are the analytical results of the decision tree classifier for the pooled heart disease dataset:
F1-score of 100%, accuracy of 98.80%, precision of 98%, recall of 99%, ROC-AUC of 99%,
and the performance of ROC-AUC of 100% for top models’ random forest and gradient
boosting classifier, respectively. The performances of the machine learning algorithms are
improved by using five-fold cross validation. Again, the Stacking CV Classifier is also used
to improve the performances of the individual machine learning algorithms by combining
two and three techniques together. Several reduction methods may also be used to improve
the random forest classification algorithm’s accuracy.
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