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Abstract: In this paper, we present FVR-Net, which is a novel finger vein recognition network using a
convolutional neural network (CNN) with a hybrid pooling mechanism. The scheme is based on the
use of a block-wise feature extraction network to extract discrete features from interclass vein image
samples, regardless of their visual quality. Input images to FVR-Net are subjected to preprocessing
prior to being fed into the network in order to segment the vein patterns from the background. We
designed a feature extraction network in which each block consists of a convolutional layer followed
by hybrid pooling, whose output activation maps are concatenated before passing features to another
block within the network. In the hybrid pooling layer, two subsampling layers of maxpooling and
average pooling are placed in parallel where the former activates the most discrete features of the
input, and the latter considers the complete extent of the input volume so better localization of
features can be accessed. After the features are extracted, they are passed to three fully connected
layers (FCLs) for classification. We conduct several experiments on two publicly available finger vein
datasets based on visual quality of the images. When compared to conventional studies, the proposed
model achieves outstanding recognition performance with accuracies of up to 97.84% and 97.22%
for good and poor-quality images, respectively. By varying multiple network hyperparameters, we
obtain optimal settings such that the model can guarantee the best recognition accuracy for a finger
vein biometric system.

Keywords: finger vein; biometrics; Gabor filters; deep neural networks

1. Introduction

The proliferation in risks of attack on information have given rise to many security ap-
plications for personal identification technologies. In this regard, the ability to intelligently
identify individual attributes through user-friendly and secure recognition systems has
been a global subject of interest lately. Unlike conventional identification methods, such as
secret keys and passwords, biometric techniques [1–3] utilize physiological features such as
fingerprints, faces, iris, voices, digital signatures, etc., and they are less susceptible to theft
or duplication. Because of this, biometrics has recently been indulged in as a substantially
reliable authentication method for recognizing individuals [3].

Techniques based on biometric data can involve automated recognition of a person
based on their extrinsic or intrinsic biological data. Recognition with extrinsic characteristics
usually utilizes exterior features of the human body, which include fingerprints, the face,
the iris, and palm prints. These characteristics bring on security vulnerabilities because
they can easily be imitated and can be a threat to the identification system. Different from
these modalities, intrinsic characteristics consider concealed features of the skin, such as
vein patterns, for recognition purposes. These modalities take several factors into account,
such as universality, distinctiveness, and permanence. Therefore, they are not prone to
forgery, are minimally influenced by skin conditions, and provide colossal privacy for
high-security application scenarios, such as banks, forensics, and legal support [4].
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Generally, vein images are acquired by utilizing near infrared radiation (NIR) or
thermal infrared–based optical imaging systems [5]. Such imaging techniques do not
require close proximity to sensors, which makes them suitable for finger vein imaging
systems. In addition, they can facilitate imaging of deeper tissues at the microvascular level.
However, during real-time acquisition, the captured image might be inherently susceptible
to quality degradation, including image shading due to uneven thickness of muscles inside
the finger, irregular shadowing, positional misalignment, scattering of light when imaging
finger tissue, and physiological changes such as inaccurate placement of the finger. During
real-time recognition, these factors pose nontrivial threats due to irrelevant and ambiguous
separability between the vein patterns and the background. Therefore, many consider
finger vein recognition with high accuracy a challenging task. Despite these challenges, in
recent years, obtaining accurate vein recognition techniques is in demand.

2. Related Works

In general, a complete finger vein–based biometric recognition system can be divided
into four steps: image acquisition, preprocessing, feature extraction, and feature matching.
First, vein images are captured with NIR optical imaging techniques, after which quality
enhancement is carried out via several preprocessing steps, such as image filtering [6], re-
gion of interest (ROI) extraction [7], and image normalization [8]. The enhanced images are
then subjected to feature extraction, in which discriminative features are extracted from the
individual vein images to enable good recognition performance during feature matching.
To this end, several studies have been conducted to develop finger vein recognition systems
based on conventional mathematical models [9–18], machine learning (ML) [19–25], and
deep learning (DL) [26–36].

2.1. Conventional Finger Vein Recognition

Different types of conventional mathematical models have been utilized for finger
vein recognition tasks. The Gabor filter [9] is a popular feature extraction method employed
for finger vein recognition. Due to its ability to detect oriented features by tuning in to a
specific frequency, the Gabor filter has been used widely for various pattern recognition
tasks [10]. Similarly, line tracking [11] methods extract features based on repeated tracking
of black pixels in the vein image. The maximum curvature method [12] extracts features
based on the fact that the vein patterns appear like a valley, with a high curvature within
the cross-sectional area of the vein image. Furthermore, local feature descriptor–based
methods, such as local binary pattern (LBP) and local derivative pattern (LDP), are also
widely used methods of feature extraction [13]. They extract features based on binary
codes obtained by comparing the gray value of the center pixel with the neighboring
pixels. However, due to low robustness, high computational complexity, and poor feature
extraction capabilities, these techniques are at a great disadvantage when implementing
practical finger vein recognition systems. Furthermore, these conventional approaches
utilize distance-based, trivial feature–matching algorithms, such as Hamming distance [14],
Euclidean distance [15], cross correlation matching [16], template matching [17], and his-
togram intersection matching [18] to obtain a matching score for verification purposes.
These types of feature matching techniques are not suitable for providing reliable recog-
nition performance when the capture devices and image acquisition environment vary
according to various applications or the authentication service.

2.2. Deep Learning Based Finger Vein Recognition

With the breakthrough of big data and DL in several image processing tasks, such as
classification [26], object detection [27], and digital image processing [28], the application
of DL has also been considered for fast and automatic feature extraction from finger vein
images [29–36]. Due to the robustness of feature representations, a DL technique can be
a novel candidate for finger vein recognition, irrespective of the shape and orientation of
the vein patterns. Using large amounts of training samples, a DL algorithm such as the
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convolutional neural network (CNN) can provide powerful feature extraction capabilities
with vein images and can quickly adapt to learning those feature representations. In [29],
a densely connected convolutional neural network (DenseNet) was used for finger vein
recognition where the matching score was generated by the score level fusion of shape
and texture images. A similar study was investigated in [30], where a three-channel
composite image was used as input to the DenseNet-based recognition network and
provided good recognition performance. To achieve robust recognition performance from
finger vein biometrics, the common CNN architecture has been extensively used in recent
research [31–33]. Furthermore, to learn more robust features directly from the raw pixels of
the finger vein image, the convolutional autoencoder (CAE) [34], recurrent neural networks
(RNNs) [35], and generative adversarial networks (GANs) [36] have been researched
as well.

Although previous DL-based finger vein recognition techniques have offered promis-
ing recognition performance, they still suffer from relevant shortcomings, especially asso-
ciated with mediocre feature extraction procedures. The finger vein images may include
not only vein patterns but also irregular noise and intensity degradation due to the var-
ious finger shapes and muscles. Due to infirmly designed feature extraction networks
in existing methods, the models cannot properly learn distinctive features of finger vein
patterns, and thus, a unique representation of the vein patterns of each subject cannot
be accessed, and this ultimately results in poor accuracy. Besides, currently available
finger vein image databases acquired via infrared imaging offer significantly poor visual
quality in the vein patterns. Thus, for higher recognition performance, poor image quality
must be complemented by designing an effective preprocessing pipeline and a robust
feature extractor.

To overcome such limitations, in this paper, we propose FVR-Net, which is a novel
CNN-based hybrid pooling network for finger vein recognition system that supports
exquisite feature extraction to enable accurate recognition of finger vein images, regard-
less of the acquisition procedures of existing datasets. FVR-Net was designed to capture
intricate vein features from the input images through several convolutional and subsam-
pling layers. Unlike previous studies, FVR-Net introduces block-wise feature extraction
with hybrid pooling where two subsampling layers (maxpooling and average pooling) in
each block are placed in parallel after the convolutional layer, whose output activation
maps are concatenated before passing features to another block. In hybrid pooling, the
subsampling layers placed in parallel concurrently activate the most discriminative fea-
tures of each input and provide excellent localization of those features. Upon forward
pass, these blocks tend to extract multilevel and discrete interclass features of the input,
which means they are able to uniquely represent the vein samples from different categories
when subjected to classification with three fully connected layers (FCLs). In the whole
process, the finger vein images are first subjected to preprocessing where ROI cropping
and quality enhancement is achieved, along with proper segmentation of vein patterns
from the background. Subsequently, clear vein images are fed into the feature extraction
network, which consists of five blocks for low-level feature extraction followed by three
FCLs for the classification task. Each block comprises a 2D convolutional layer and two
subsampling operations: 2D average pooling and 2D maxpooling. The features learned
from the blocks facilitate robust vein classification through the FCLs, where the probability
score of each input is generated through a SoftMax classifier. To verify the effectiveness of
the proposed model, it was trained and tested on publicly available finger vein databases.
In particular, the image samples from Hong Kong Polytechnic University (HKPU) [3] and
Finger Vein Universiti Sains Malaysia (FVUSM) [37] datasets are characterized according to
their visual quality (good and poor), with poor-quality images being likely to yield lower
recognition performance. During inference, the test images of the corresponding datasets
provide discriminating recognition accuracy, compared to the conventional schemes. Over-
all, FVR-Net enhanced the recognition accuracy with HKPU and FVUSM datasets by up to
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13% and 30%, respectively, for good quality images, and 9% and 31%, respectively, for poor
quality images.

The rest of this paper is organized as follows. Section 2 presents the proposed model,
describing data preprocessing and the network architecture. In Section 3, the experiments
and results are presented. Finally, concluding remarks are provided in Section 4.

3. The Proposed Model
3.1. Data Preprocessing

Good performance from finger vein recognition systems is usually attributed to the
quality of the vein images [25]. Therefore, raw vein images acquired from infrared image
sensors should be subjected to preprocessing prior to feature extraction. The preprocessing
stage is intended to discard any nonideal entities appearing in the vein images, such as
noise, shadows, and low contrast due to a rotational or translational variant property of the
finger or a faulty acquisition device.

Figure 1a,b, respectively, depict the architectural pipeline of the data preprocessing
strategy in our method and the preprocessed images obtained at each corresponding step.
Because the input images from the publicly available datasets are presented at various sizes
and orientations, the preliminary step is to accomplish ROI selection of the intended part of
the raw image. This guarantees dimensional uniformity in all images entering the CNN for
feature extraction. At this particular stage, all images are subjected to normalization, where
they are subsampled to the desired dimension by cropping them to 100 × 300 pixels. Next,
the cropped images undergo image enhancement with contrast limited adaptive histogram
equalization (CLAHE) [38], where the intensities of the images are adjusted in such a way
that they are better distributed on the histogram. By doing so, the global contrast of the
image is improved as the most frequent intensity values are effectively spread, while the
lower contrast areas gain higher values.
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each step in the order of preprocessing steps.

After that, a Gabor filtering technique [5] is implemented to enhance the concrete
vein features. A Gabor filter is a special form of bandpass filter suited for segmentation
of texture that possesses optimal localization properties in both the spatial and frequency
domain of an image. The filter reduces the impact of noise on the images to enable good
feature extraction and ultimately enhances recognition accuracy. Furthermore, to enhance
the clarity of patterns, vein images are subjected to morphological operations. These
operations tend to discard the irrelevancies while preserving the vital shape characteristics
of the image [39]. Within the morphological operations, a grayscale erosion technique
is employed, followed by grayscale dilation. The erosion and dilation transformation
bear a marked similarity when acquiring perspective imagery of the vein image. When
applied iteratively as a pair, they enable smoothing of contour, and they eliminate small
gaps in the vein patterns without any geometric distortion of the global features. In the
last stage of data preprocessing, to coarsely localize the vein patterns in the images, a
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binarization technique with a threshold of 110 is applied. The pixel values greater than 110
represent the vein pattern in white, while the rest represent background pixels in black.
After completion of the preprocessing stage, images are immediately passed to the feature
extraction procedure, followed by classification of the extracted features.

3.2. Network Architecture

As shown in Figure 2, feature extraction comprises a total of five blocks, where each
block entails one convolutional layer, followed by batch normalization and a rectified linear
unit (ReLU) activation function, which increases the rate of convergence during training.
To reduce the computational cost, subsampling layers that decrease the spatial dimension
of the feature maps are introduced after each convolutional layer. Specifically, we devise a
hybrid pooling layer where two types of pooling layers are utilized: 2D maxpooling and
2D average pooling. Maxpooling outputs the maximum value from the subregion of its
input volume by convolving a kernel across its spatial dimension. This allows extracting a
high activation value within the feature map and generates sharp features. On the other
hand, the average pooling layer considers the average value of the subregion during each
pooling operation. It is more generalized computation, which encourages the network to
identify the complete extent of its input volume [40]. These layers, however, are not placed
sequentially in the network; instead, they are placed in parallel such that the same feature
map is distributed to both pooling layers. The intuition behind employing both pooling
layers is that finger vein features are translational variant, and therefore, preservation of
feature localization is as important as preserving the most discriminative features. The
results of both pooling layers are concatenated to ensure that the global textural information
of the feature maps generated by each convolutional layer is effectively feed-forwarded to
the imminent layers in the network.
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A detailed depiction of the network structure for the feature extraction process is
presented in Table 1. The preprocessed image with a dimension of 100 × 300 × 1 is fed into
the network as input. The first three convolutional layers use a (5, 5) kernel size, while the
remaining two layers use (3, 3). The larger kernel sizes are used to significantly increase the
receptive field sizes, which improves recognition of large instances in the images. This is
an important part of finger vein recognition because the width of the vein pattern is not
necessarily the same throughout the image. By doing so, the network not only captures
the local patterns but also the global ones that span a large area in the image. The number
of channels was chosen with alternate increases and decreases between two consecutive
convolutional layers, maintaining the computational complexity that might occur when
large filters are used across the network. After hybrid pooling, the concatenation layers
(C1–C5) are responsible for concatenating the output features of both subsampling layers
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before passing them to the next block. Furthermore, to prevent overfitting while training
with big data, an L2 regularizer with a regularization penalty of 0.0001 is used at each
convolutional layer. Because each layer processes computationally inexpensive parameters
and the L2 regularizer can provide sufficient regularization [41], dropouts are not utilized.

Table 1. Detailed Network Hyperparameters of the Feature Extraction Procedure. The abbrevi-
ational terminologies in the table are: Conv: Convolution, MaxP: Maxpool, AvgP: Averagepool,
C: Concatenation.

Layer Input Activation Regularization Filter Kernel Size Output

Conv-1 Preprocessed image
(100 × 300 × 1) ReLU L2 (0.0001) 128 (5, 5) (100, 300, 128)

MaxP-1 Conv-1 - - - (2, 2) (50, 150, 128)

AvgP-1 Conv-1 - - - (2, 2) (50, 150, 128)

C1 Concatenate (MaxP-1,
AvgP-1) - - - - (50, 150, 256)

Conv-2 C-1 ReLU L2 (0.0001) 64 (5, 5) (50, 150, 64)

MaxP-2 Conv-2 - - - (2, 2) (25, 75, 64)

AvgP-2 Conv-2 - - - (2, 2) (25, 75, 64)

C2 Concatenate (MaxP-2,
AvgP-2) - - - - (25, 75, 128)

Conv-3 C-2 ReLU L2 (0.0001) 128 (5, 5) (25, 75, 128)

MaxP-3 Conv-3 - - - (2, 2) (12, 37, 128)

AvgP-3 Conv-3 - - - (2, 2) (12, 37, 128)

C3 Concatenate (MaxP-3,
AvgP-3) - - - - (12, 37, 256)

Conv-4 C-3 ReLU L2 (0.0001) 64 (3, 3) (12, 37, 64)

MaxP-4 Conv-4 - - - (2, 2) (6, 18, 64)

AvgP-4 Conv-4 - - - (2, 2) (6, 18, 64)

C4 Concatenate (MaxP-4,
AvgP-4) - - - - (6, 18, 128)

Conv-5 C-4 ReLU L2 (0.0001) 128 (3, 3) (6, 18, 128)

MaxP-5 Conv-5 - - - (2, 2) (3, 9, 128)

AvgP-5 Conv-5 - - - (2, 2) (3, 9, 128)

C5 Concatenate (MaxP-5,
AvgP-5) - - - - (3, 9, 256)

3.3. Classification

To learn a nonlinear combination of the features obtained by the feature extraction
process, a set of three FCLs are used in the classification block. The output of final con-
catenation layer C5 of the feature extraction network is flattened to a one-dimension (1D)
vector before passing it as input to this block. A detailed architecture of this network is
presented in Table 2. Because all input units of an FCL have separate weights associated
with each output unit, the total number of learnable parameters is relatively high compared
to CNNs. Therefore, to prevent overfitting due to the large number of parameters and
to improve generalization of the network, dropouts are exploited after each layer except
the final one. The first two layers of the classification network use ReLU, while the last
layer uses SoftMax as an activation function. The final layer produces a 1D vector output,
which consists of the probabilities that the input data belong to one of the S classes (S being
the total number of subjects providing sample vein images in the dataset). Among the



Appl. Sci. 2022, 12, 7538 7 of 16

obtained probabilities, the highest value of the S classes are selected for the final finger
vein identification.

Table 2. Detailed Network Hyperparameters of the Classification Procedure. The abbreviation
terminologies in the table are: FCL: Fully connected layers, Drop: Dropout.

Layer Input Activation Regularization Filter Filter Size Output

Flatten C-5 - - - - (1, 6912)

FCL-1 Flatten ReLU - 256 - (1, 256)

Drop-1 FCL-1 - Dropout (0.4) - - -

FCL-2 Drop-1 ReLU - 512 - (1, 512)

Drop-2 FCL-2 - Dropout (0.4) - - -

FCL-3 Drop-2 SoftMax - S - (1, S)

4. Experiments and Results
4.1. Datasets

Our model was evaluated on two publicly available finger vein databases (HKPU [3],
and FVUSM [37]); examples are shown in Figure 3. Within all available subjects in the
database, every sample is labeled based on visual perception. Specifically, the vein images
are consigned into one of two groups: good quality and poor quality. Although manual
inspection is time-consuming and tiring for large-scale datasets, the assessed image quality
can be genuinely represented. Figure 4 presents example finger vein data used in this
research corresponding to visual quality (good and poor). Table 3 presents the database
details adopted in our research. All images were resized to a network-specific input size of
100 × 300 × 1 during the preprocessing stage.
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Table 3. Details about the Publicly Available Finger Vein Image Databases used in this Research.

Database
Sessions/
Session(s)

Used

Subjects Per
Session

Total
Fingers

Number of
Images Per

Subject

Training/
Validation

Split

Subjects According to
Image Quality Original

Image Size
Normalized
Image Size

Good Poor

HKPU [3] 2/2 156 2 6 7:3 66 245 513 × 256 100 × 300

FVUSM [37] 2/1 494 1 6 7:3 146 348 640 × 480 100 × 300

4.1.1. HKPU Dataset

The HKPU vein database [3] was acquired by using a contactless imaging device on
Hong Kong Polytechnic University campus from April 2009 to March 2010. The database
consists of 3132 images at 513 × 256 pixels from 156 subjects, where the first 105 subjects
were captured in two different sessions. The minimum, maximum, and average intervals
between sessions were one month, more than six months, and 66.8 days, respectively.
Each of the 105 subjects provided six samples from each of their index and middle fingers.
Images from the remaining 51 subjects were captured in a single session.

In our research, all 156 subjects were used: a single session from the first 105 subjects
and all sessions from the remaining 51 subjects, which gave us a total of 1872 images
(156 subjects × 2 fingers × 6 images per finger). Each finger was treated as a different
subject, and therefore, we obtained a total of 312 subjects, out of which 66 subjects were
designated as good quality.

4.1.2. FVUSM Dataset

The Finger Vein Universiti Sains Malaysia [41] database was collected from 123 sub-
jects (83 males and 40 females) with ages ranging from 20 to 52 years old. The images
were acquired in two sessions with an interval of more than two weeks. In a single ses-
sion, each subject provided four samples (left index, left middle, right index, and right
middle fingers) which were captured six times each. Therefore, a total of 5904 images
(2 sessions × 123 subjects × 4 fingers × 6 images per finger) at 640 × 480 pixels were
collected. In our research, we utilized only one session containing 2952 images in total. In
the FVUSM database samples, 146 of 492 subjects were categorized as good quality; the
rest, poor.

4.2. Data Augmentation

The total number of samples per subject available in each database is not sufficient to
train a model, and therefore, an intraclass data augmentation technique was applied to the
training data such that the model became robust to image diversity. The purpose of using
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this technique is to extend and enrich the dataset such that deformations in different vein
patterns in a real-world scenario can be reflected. In our research, width and height shifts
were performed with 0.01 pixels shifting in a left-to-right and up-down manner. To make
the model perceive the training image from a different angle, a shear value of 0.01 was
also utilized. Since the finger vein pattern and unique characteristics of vein images were
already determined by preprocessing, techniques such as flipping (horizontal and vertical),
cropping, and zooming were not utilized in the experiment. Table 4 presents details of the
data augmentation performed on the different databases. Only training images from each
database were subjected to augmentation, where 24 images were generated per class along
with the original image. Note that the augmentation was applied to all subjects, regardless
of image quality.

Table 4. Augmentation Details about the Publicly Available Finger Vein Image Databases used in
this Research.

Databases Augmentation Technique Total Images
Generated Per Class

Total Images after
Augmentation

HKPU [3] Width shift = 0.01 pixels,
Height shift = 0.01 pixels,

Shear range = 0.01

24 7488

FVUSM [37] 24 11,856

4.3. Training, Validation, and Test Set Generation

In both datasets, each class has a total of six samples per class. To make the model more
generalized by training with large variations of data samples, four samples out of six were
allocated for training while the remaining two samples were separated for testing purpose.
In other words, the total number of image samples per class was subdivided into training
and testing sets at a ratio of 4:2 images per class. After that, data augmentation was carried
out to construct training samples as mentioned in Section III-B. Furthermore, to provide an
unbiased evaluation of model fit on the training data while tuning hyperparameters, all the
augmented samples were subjected to training and validation at a 7:3 ratio.

4.4. Training Stage

The finger vein images generated after preprocessing were passed through the network
to extract their corresponding features from each block of the network. The whole model
was implemented with the Python programming language in a TensorFlow framework on a
PC equipped with the Nvidia GeForce RTX 2080 Ti GPU. A cross entropy loss function was
used for convergence of the model during training with the objective being to minimize
global loss. To achieve faster convergence, the loss function was minimized using the RMS
prop optimizer with a learning rate of 0.0001. A batch size of 32 was used, and a total
of 100 epochs was used during training. It is necessary to stop training the model at the
point where network hyperparameters are optimized and where saturation in training
and validation losses is achieved. For this, we employed an early stopping technique
where the training was halted when no further improvements to the loss of validation data
were observed with respect to the training epochs. Figure 5 demonstrates the generalized
learning curves of the proposed model on both training and validation datasets. We can
clearly see that although the training epoch was set to 100, saturation in the validation
loss was seen at epoch 25. At this point, training stopped, and the model became immune
to overfitting from extensive training. Furthermore, we can also observe that the model
provided very good convergence in the loss function for classification of the vein images.
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4.5. Identification Performance

After successfully training the network, a performance evaluation of the proposed
finger vein recognition network was carried out on the test set. As mentioned in Section
III-C, two images from each class were allocated for testing purposes to demonstrate the
recognition performance of the proposed model. During the evaluation, preprocessed
images of test samples from each dataset were used as input to FVR-Net to obtain the
corresponding probability scores. To evaluate the performance of the proposed model,
we compared the recognition accuracy of FVR-Net with simple P-SVM [42], a neural
network (NN) [43], and a state-of-the-art CNN technique [32]. P-SVM is a simple ML-based
classifier that is stacked on top of hand-crafted features to generate the probability scores
of the corresponding class. Similarly, the NN scheme [42] consists of a single hidden
layer and was trained with stochastic gradient descent (SGD). In contrast, the deep neural
network (DNN)-based scheme [43] is a multilayer CNN with nine layers (six convolutional
layers and three FCLs), which also utilizes the P-SVM classifier at the end to generate the
probability of each input belonging to the respective class. The implementation of these
studies was not released online, and therefore, the results obtained by these conventional
schemes were kept the same as when presented in [32].

Table 5 presents the recognition accuracy obtained by FVR-Net compared with various
conventional schemes. We can see that, for good-quality images from the HKPU dataset, the
proposed method obtained 12.61%, 11.74%, and 8.59% higher accuracy than the P-SVM, NN,
and DNN schemes, respectively. With the FVUSM dataset, recognition accuracy with the
proposed method was about 31.36%, 35.49%, and 28.51% higher than the aforementioned
schemes. The exquisite recognition performance exhibited by the proposed model can be
explained by its robust feature extraction network. The vein patterns of the good-quality
images were concisely distributed over the entire spatial location of the image, and thus,
subjecting them to the robustly designed feature extraction network activates the most
abstract representation of the input at each layer. With distinctive features extracted for
each subject, the classification layer is able to accurately classify the image to recognize
an individual.
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Table 5. Comparison of Recognition Accuracy from FVR-Net with Several Baseline Finger Vein
Recognition Algorithms.

Methods Database
Recognition Accuracy (%)

Good Quality Poor Quality

P-SVM [42]
HKPU 80.57 79.04

FVUSM 66.48 65.71

NN [43]
HKPU 81.44 81.82

FVUSM 62.35 55.00

DNN [32]
HKPU 84.59 83.64

FVUSM 69.33 68.57

FVR-Net
HKPU 93.18 88.97

FVUSM 97.84 97.22

Our proposed model exhibited significantly higher accuracy for low-quality images as
well. With the HKPU dataset, we witnessed 9.93%, 7.15%, and 5.33% higher recognition
accuracy, whereas with FVUSM, we saw 31.15%, 42.22%, and 28.95% higher accuracy than
the baseline P-SVM, NN, and DNN models, respectively. Note that the image acquisition
period for HKPU is longer than that of FVUSM, and more intraclass variation exists, leading
to more mismatching errors [32]. In addition, because of the thick and accumulated vein
patterns in FVUSM, the model can produce more robust activation maps than HKPU, where
the vein structures are thinner and more scattered. Since the proposed method makes
the best effort to extract the finger vein feature information as much as possible, it shows
higher accuracy for the FVUSM dataset, where the within-class variation is slightly lower
than that of HKPU. In addition to that, since the vein patterns associated with poor-quality
images are extremely vague in nature, the infirmly designed feature extraction network of
the existing models cannot extract distinctive features from them, making it exceedingly
difficult to obtain higher recognition accuracy. In contrast, the feature extraction network
of the proposed model can capture large and ambiguous instances of the input by using
substantially larger kernels present in the primary layers. Due to this, a noteworthy
accumulation of features at the final layer can be realized, which is sufficient to accurately
classify every sample, regardless of its visual quality. Besides, as mentioned, the inclusion of
hybrid pooling allows the network to capture the essential textural vein patterns, regardless
of size, which significantly contributes to improving the recognition accuracy.

4.6. Impact of Regularization Techniques

As aforementioned in Section 3.2, the original architecture of the proposed model
employs mainly two types of regularization techniques, L2 regularization and dropout in
feature extraction and classification. The former removes small percentage of the weights at
each iteration of training while the latter randomly drops neural units and their connection
during training. Both techniques have equal importance while training deep neural network
and serve a mutual purpose of reducing the risk of overfitting. In this section, we conduct
experiments to examine how the proposed model performs in the presence of one or more
regularization techniques.

Impact of L2 Regularization and Dropouts

First, we considered removing the L2 regularization from the feature extraction net-
work during training and observed the effects on recognition performance during inference.
For this, the number of convolutional layers, subsampling layers, filters, and their sizes
in fully convolutional feature extraction were not changed. The dropout penalty used in
classification was also kept intact throughout the training; however, the L2 regularization
was set with a 0 penalty. In other words, no regularization was utilized in feature extrac-
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tion. Table 6 shows the comparison of recognition accuracy exhibited by the model when
trained with and without L2 regularization and dropout. In most cases, we can see the
obvious degradation in the recognition accuracy when L2 regularization is not adopted.
With no regularization, the model becomes extremely overfit to the training data, so its
recognition performance with the test data became horrendous. Moreover, the absence
of a regularization penalty constrains the model’s ability to optimize the weight value.
Due to this, the network becomes more sensitive to noise in the training data and incurs
degraded recognition performance. A good finger vein recognition model must perform
well, regardless of the physiological variations in the acquisition environment, i.e., the
trained model must generalize well on varying orientations in the test data. Therefore, the
introduction of regularization during the finger vein feature extraction is compulsory.

Table 6. Impact of L2 Regularization and dropout on the Recognition Performance of the FVR-Net.

Datasets

Recognition Accuracy (%)

with L2 and Dropout with Dropout and
without L2

with L2 and without
Dropout

Good
Quality

Poor
Quality

Good
Quality

Poor
Quality

Good
Quality

Poor
Quality

HKPU 93.18 88.97 87.87 76.32 87.12 46.73

FVUSM 97.84 97.22 96.61 97.27 95.13 93.67

Second, we considered removing dropout from the classification network of the pro-
posed model. During the experiment, we analyzed the impact of dropout on recognition
performance from FVR-Net. As mentioned, dropout is utilized only in the network’s classi-
fication process (after FCL-1, and FCL-2). Therefore, by removing dropout, the units present
in the corresponding layers remain intact, with active incoming and outgoing connections
from and to the neighboring layers. The L2 regularization penalty was kept unchanged
in feature extraction. The same table shows the recognition performance from FVR-Net
with and without dropout layers during classification. We can see significantly higher
recognition accuracy when dropout layers are utilized. While training with dropout, the
corresponding neuron of the imminent layer remains deactivated during feedforwarding.
Therefore, an arbitrary neuron from the same layer is responsible for making predictions
for the missing neuron. With input such as finger vein images with translational variant
features, this technique allows the network to learn various intrinsic representations.

4.7. Impact of Changes in Network Architecture

Designing a good CNN architecture is itself a tedious task, because several factors
(one of them being choosing optimal hyperparameters) need to be considered to traverse
every single possibility in finding the best model. The features generated by each layer
of the network completely rely upon its architecture and the hyperparameters used. For
this reason, we performed multiple experiments by tweaking the hyperparameters to
some extent, such that an optimal model is found that generalizes well on the test data in
achieving a robust finger vein recognition model.

4.7.1. Varying the Kernel Size

One of the various factors that impact the performance of the network is the kernel
size of the network. Kernel, in other words, filters, are the matrix of real valued numbers
that are slid across the spatial location of the input image, which represents a convolution
operation. Kernel sizes in CNNs have a direct relationship with the number of features
detected from the input. In general, smaller kernel sizes tend to detect smaller local features
while the large kernels detect the generic and larger ones spread across the input. In
this experiment, we analyze the impact of kernel size on recognition accuracy from FVR-
Net by varying the kernel sizes of the first three convolutional layers. Table 7 shows the
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recognition accuracy obtained by FVR-Net with both databases when kernel sizes varied
from as small as 3 × 3 pixels to as large as 7 × 7. We can see that out of all kernel sizes,
the optimum recognition accuracy was obtained with 5 × 5. Due to diversity in the size of
extracted features in the finger vein images (ranging from very small to large), the amount
of information extracted by extreme kernel sizes was not enough for representation learning
by FVR-Net.

Table 7. Impact of Varying Kernel Size on the Recognition Performance of the FVR-Net.

Kernel Size
HKPU FVUSM

Good Quality Poor Quality Good Quality Poor Quality

3 × 3 78.03 76.53 90.97 95.97

5 × 5 93.18 88.97 97.84 97.22

7 × 7 45.45 72.65 90.27 83.90

4.7.2. Increasing the Network Depth

In our study, we defined the network depth as the total number of layers present in the
network. In this experiment, we have used variable number of layers ranging from three
to five in order to observe the recognition performance. The network with three layers
represents the compact network with comparatively less trainable parameters than that
with five layers. Table 8 shows the recognition accuracy obtained by FVR-Net with variable
network depths. We can see that, for similar image quality, recognition accuracy provided
by a network with a larger M is significantly higher. We also notice gradual enhancement
in the recognition accuracy upon increasing the depth of the network. Deeper networks
impose threats during training, such as higher computational requirements due to the large
number of trainable parameters; however, the model’s performance improved significantly.
With more layers, the deep networks can create hierarchical representations at each layer,
from which the model can learn new and more abstract representations of its input.

Table 8. Impact of Increasing Depth of the Network on the Recognition Performance of the FVR-Net.

M
HKPU FVUSM

Good Quality Poor Quality Good Quality Poor Quality

3 82.57 68.775 90.97 90.94

4 87.12 76.73 89.23 95.4

5 93.18 88.97 97.84 97.22

We witnessed the best model hyperparameters for FVR-Net when the depth of the
network was highest (i.e., at M = 5) and at a kernel size of 5 × 5 in the first three convo-
lutional layers, followed by 3 × 3 in the later ones. Taking into account the translational
variant nature of vein image samples, the selected hyperparameters fit into FVR-Net in
such a way that the multiscale deep features of the input can be exploited without losing
any distinctive properties of individual subjects. Therefore, they can be regarded as an
optimal hyperparameter choice to determine a robust finger vein recognition system based
on our proposed network structure.

5. Conclusions

This paper investigated a DL framework called FVR-Net for enhancing the recognition
accuracy of the finger vein biometric system. The proposed network consists of a block-wise
feature extraction network and a classification network. The images input to FVR-Net
were first subjected to preprocessing where ROI cropping and image enhancement were
performed to segment the vein patterns from the background. Then, the processed image
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was fed into the feature extraction network where each block entailed a convolutional layer
followed by hybrid pooling of parallelly placed two subsampling layers (maxpooling and
average pooling). Their activation maps were concatenated and fed into the classification
network with three FCLs for providing the vein recognition output. The whole model was
designed to discreetly identify an individual by extracting distinct interclass features of the
vein image sample, regardless of ambiguity. This was possible through the introduction of
hybrid pooling, which not only activated the most discriminative features of the input but
also took into account feature localization, which is a very important thing to consider when
dealing with vein images that have translational variant features. Extensive experiments
on two publicly available datasets demonstrated the effectiveness of our model, because
maximum recognition accuracies of up to 97.84% and 97.22% were achieved for good- and
poor-quality images, respectively, and the performance improved significantly, compared to
previous methods. Further experiments were conducted by varying network hyperparame-
ters such as regularization technique, the size of convolutional kernels, and the network
depth, from which we obtained the optimal hyperparameter settings to achieve maximum
recognition accuracy. The proposed method provides great potential and insights into the
development of finger vein recognition models for future biometric systems.
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