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Abstract: Grid renumbering techniques have been shown to be effective in improving the efficiency
of computational fluid dynamics (CFD) numerical simulations based on the finite volume method
(FVM). However, with the increasing complexity of real-world engineering scenarios, there is still a
huge challenge to choose better sequencing techniques to improve parallel simulation performance.
This paper designed an improved metric (MDMP) to evaluate the structure of sparse matrices. The
metric takes the aggregation of non-zero elements inside the sparse matrix as an evaluation crite-
rion. Meanwhile, combined with the features of the cell-centered finite volume method supporting
unstructured grids, we proposed the cell quotient (CQ) renumbering algorithm to further reduce
the maximum bandwidth and contours of large sparse matrices with finite volume discretization.
Finally, with real-world engineering cases, we quantitatively analyzed the evaluation effect of MDMP
and the optimization effect of different renumbering algorithms. The results showed that the classical
greedy algorithm reduces the maximum bandwidth of the sparse matrix by at most 60.34% and the
profile by 95.38%. Correspondingly, the CQ algorithm reduced them by at most 92.94% and 98.70%.
However, in terms of MDMP, the CQ algorithm was 83.43% less optimized than the Greedy algorithm.
In terms of overall computational speed, the Greedy algorithm was optimized by a maximum of
38.19%, and the CQ algorithm was optimized by a maximum of 27.31%. The above is in accordance
with the evaluation results of the MDMP metric. Thus, our new metric can more accurately evaluate
the renumbering method for numerical fluid simulations, which is of great value in selecting a better
mesh renumbering method in engineering applications of CFD.

Keywords: GRID renumbering; MDMP; computational fluid dynamics; YHACT; cell-quotient;
parallel computing

1. Introduction

Computational fluid dynamics (CFD) are widely used in aerospace [1], reactor thermal-
hydraulics, ship and ocean engineering [2], explosions, etc. However, simulating the
delicate structures of the flow field for real-world engineering cases is still forbidden
due to the enormous amount of calculation [3]. Thus, parallel performance optimization
techniques have received extensive attention in academia and industry [4,5]. The grid
numbering directly determines the matrix structure after discretization, then exhibiting
great impact on performance of parallel fluid simulations. Nowadays, accelerating fluid
simulations through grid renumbering has become a well-established approach.

The traditional metrics such as Bandwidth [6] or Profile [7] have been applied to dis-
criminate the matrix structures of a linear system for decades, which could provide a valu-
able guidance for choosing an effective ordering method. These indicators were widely used
due to the simplicity of calculation. However, calculating the bandwidth of the matrix does

Appl. Sci. 2022, 12, 7603. https://doi.org/10.3390/app12157603 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12157603
https://doi.org/10.3390/app12157603
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4712-1320
https://orcid.org/0000-0001-8721-4826
https://doi.org/10.3390/app12157603
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12157603?type=check_update&version=1


Appl. Sci. 2022, 12, 7603 2 of 19

not accurately reflect the performance in complex applications.
The structure of sparse matrices determines the order of memory access for parallel compu-
tation. This has a significant impact on the performance of modern computer architectures
with multiple levels of storage hierarchies. Taking the most widely used Finite Volume
Method (FVM) [8] as an example, after numbering the discrete cells of the simulation do-
main, it is necessary to assemble sparse linear systems in a parallel fashion. The assembly
process is based on the parameters and numbers of connected grid cells. There are many
well-known numbering algorithms, which can be found in many literature works, such
as Gibbs [9], Cuthill and McKee [10], Sloan [11], Akhras and Dhatt [12], and the Reverse
Cuthill-Mckee by George et al. [13] It is worth noting that optimizing the numbering of a
sparse matrix is a formidable combinatorial problem and is therefore not a viable option to
find the true optimal solution. Therefore, these published methods all used some kind of
greedy-based local optimization algorithm. The heuristic algorithm [14–16] is another type
of numbering algorithm proposed in recent years, but it does not perform well in terms of
the overall iterative efficiency of numerical simulations.

These classical methods have proved their stability, rapidity, and efficiency in simple
benchmarks. It has become a consensus that grid renumbering can effectively improve
computing performance. Thus, we believe that refocusing this classical topic and provid-
ing improved methods for grids numbering of complex cases are of great significance.
Nevertheless, in fluid simulation of complex engineering problems, choosing a better
numbering method still faces great challenges. Firstly, these simple indicators such as
Bandwidth and Profile cannot accurately evaluate the computational performance of
sparse matrices corresponding to complex applications. In complex application scenarios,
lower bandwidth does not always lead to better performance. Secondly, the existing grid
numbering algorithms are mainly focused on the optimization of solving linear systems.
However, the equation discretization process also occupies a large proportion in a CFD
simulation. It is necessary to quantitatively analyze the effect of mesh numbering on the
complete calculation process with complex fluid simulation cases.

To address the above problems, we proposed an improved indicator for more ac-
curately evaluating the structure of a sparse matrix, and further designed a novel grid
renumbering algorithm to reduce the key metrics of the matrices in FVM-based fluid simu-
lations. Complex engineering cases have been tested in parallel and analyzed to validate
the proposed algorithm and indicator.

This paper is organized as follows; Section 2 describes the finite volume methods and
aims to demonstrate why the grid numbering is important for FVM-based simulations.
Section 3 presents the improved indicator MDMP for more accurately discriminating the
structure of a sparse matrix. Section 4 proposes the Cell–Quotient (CQ) renumbering algo-
rithms and the implementation framework based on an in-house CFD software. Section 5
presents simulation results and performance for validating the proposed algorithm and
software. Conclusions are contained in Section 6.

2. Numerical Fluid Simulations Based on Finite Volume Method

As the most widely used numerical approach, the finite volume method (FVM) [17–19]
has been implemented in a large number of commercial and open-source CFD software.
For the completeness and clarity of the paper, we provide a brief introduction to the FVM
and illustrate the role of grid numbering in a FVM-based fluid simulation in the following.

2.1. The Basic Idea of a Finite Volume Method

The finite volume method is also called the control volume method. Its basic idea is to
divide the computational area into discretized non-repeating control volumes. A set of dis-
crete equations is obtained by integrating the differential equations (governing equations)
to be solved over each control volume. The coefficients of discrete equations are calculated
by values situated in the cell center and its neighbors, which is why it is important to keep
the neighboring cell numbers as close as possible.
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In a concise summary, the basic idea of FVM can be expressed in Figure 1. The FVM
acts like a transformer in fluid dynamics simulations, taking the control equations with
boundary and mesh configurations as inputs [20]. The resulting outputs contain discretized
sparse linear systems [21].

FVM

Control 
Equations

Boundary
Conditions

Mesh

Sparse 
Linear 

Systems

𝑨𝒙 =  𝒃 

Figure 1. A schematic diagram of FVM. The control equations with boundary and mesh configura-
tions are discretized into sparse linear systems by FVM.

In order to assemble a linear system Ax = b, the continuous governing equation has
to be solved discretely on a grid. Usually, the input mesh file contains the unstructured
grids. It means that the internal meshes in the interesting domain do not have exactly
the same adjacent cells. As shown in Figure 2, (a) represents a structured grid and (b)
represents an unstructured grid. The unstructured grid is used for this paper’s examples
and experimental cases.

(a) (b)

boundary

face
node

element node element

face

Figure 2. (a) Domain discretized using a uniform grid system, and (b) domain discretized using an
unstructured grid system with triangular elements.

After the domain discretization process using unstructured grids, the following four
geometric elements can be obtained:

• Node: The geometrical position of the unknown quantity is to be solved;
• Control volume: The smallest geometric unit to which a governing equation or conser-

vation law applies;
• Face: Interface positions are used to segment control volumes corresponding to

different nodes;
• Grid line: A cluster of curves formed by joining two adjacent nodes.

In order to identify each element, a number or id has to be assigned to every node,
volumes/cell, and face. The number determines the sequence of assembling and the
resulted matrix structure.

2.2. Matrix Assembly for Governing Equations

Considering a simple case with a one-dimensional unstructured grid, the continuity
equation, momentum equation, and energy equation can all be written in the following
general formula:

d(ρuφ)

dx︸ ︷︷ ︸
convection term

=
d

dx
(Γ

dφ

dx
)︸ ︷︷ ︸

diffusion term

+ S︸︷︷︸
source term

(1)
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Equation (1), which represents the diffusion equation for a single time step of FVM.,
contains the convection term, diffusion term, and source term. φ in the equation is a gener-
alized variable, which can be velocity, temperature or concentration, and other physical
quantities to be obtained. Γ is the generalized diffusion coefficient corresponding to φ,
and S is the generalized source term. The boundary condition values of the variable φ at
endpoints A and B are known.

The above is the conserved form of the equation, which is necessary to establish the
discrete equation using the finite volume method. The critical step of the finite volume
method is to apply integration in the interval of control volume of the control equation,
and one gets discrete equations on the control volume nodes. Next, taking the Equation (1)
as an example to perform domain discretization:∫

∆V

d(ρuφ)

dx
dV =

∫
∆V

d
dx

(Γ
dφ

dx
)dV +

∫
∆V

SdV (2)

Equation (2) represents the integration of the fluid domain over a single time step
for the control unit after regional discretization.∆V is the volume value of the control
volume. When the control volume is minimal, ∆V can be expressed as ∆ • AV, where A
is the area of the interface of the control volume. Both convection and diffusion terms
have been transformed into values on the control volume interface. One of the most
significant characteristics of the finite volume method is that the equation has explicit
physical interpolation. Physical quantities at nodes represent physical quantities at the
interface through interpolation.

In order to calculate the physical parameters on the interface, it is necessary to carry
out approximate distribution among nodes. It can be imagined that linear approximation
is the most straightforward method to calculate the characteristic values, called the cen-
tral difference. The conservation equation on a control volume can be expressed as the
following:

aPφP = aHφH + aEφE + b (3)

where aP,aH ,aE,b are the unknown coefficient. For the one-dimensional problem, area A at
the control volume interface e and w are both 1, namely unit area; consequently, ∆V = ∆X.

Equation (3) demonstrates the tight connection between the unit to be solved and
the neighboring units, which also reflects the memory access order of the finite volume
method. The discretized system of equations is stored in a numerical simulation framework
in the form of a sparse matrix [8]. The rows represent the coefficients of the discretized
equations, and the off-diagonal coefficients represent the interaction between adjacent
elements. The number of non-zero elements in each row is the same as the number of
elements associated with that row.

The input of a linear solver is a system of equations generated by the discretization
process, which can be written mathematically as:

Aφ = b (4)

where A is the matrix of the coefficients of the element aij, φ is the vector of unknown
variables φi, and b is the vector of sources bi. Substitute a system of equations consisting of
a series of discrete Equations (3) into matrix (4) and expand:

a11 a12
aP −aH −aE

. . . . . . . . .
. . . . . . an−1n

ann−1 ann





...
φP
φH
φE
...

 =


...
b
...
...

 (5)
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The solution conditions required by the target element are usually only related to its
neighbors. The coefficient matrix is always sparse since an element is only connected with
a few neighbors. The techniques for solving algebraic equations can be roughly divided
into direct and iterative methods. The direct method requires the inverse of a sparse matrix.
However, when the matrix is large, the cost of calculating its inverse will be substantial,
and a lot of memory will be needed. Therefore, the iterative method is usually adopted in
the CFD numerical simulation framework. Iterative rules require multiple applications of
the solution algorithm until the desired level of convergence is achieved without obtaining
a completely convergent solution. Many standard methods have been developed [22];
for example, Gauss Elimination, LU Decomposition, Gauss–Seidel Method, Incomplete LU
(ILU) Decomposition, the Conjugate Gradient Method, and the Multigrid Approach.

Further analyzing the distributions of non-zero elements in linear system (5), the posi-
tion of the non-zero elements exactly corresponds to the element itself and its neighbors.
Therefore, in this process, the numbering of neighboring cells significantly affects the struc-
ture of the matrix. Furthermore, simply reordering the input grid data without changing
the program [23] can make the numbering of adjacent cells more concentrated and assemble
more diagonal-dominant matrices.

3. MDMP: An Improved Matrix Structure Indicator Based on the Mean Distance of
Median Points in Sparse Matrix
3.1. Traditional Structure Indicators of Sparse Matrices

It is well known that implicit discretization of the control partial differential equations
by the finite volume method yields a set of large sparse matrices. The system of linear
equations Ax = b is then solved by iterative or direct methods. The sparsity or structure of
a matrix A has a crucial effect on the memory access efficiency. The mostly widely used
indicators for the structure of A include the maximum bandwidth and the profile. In a
matrix A = (aij) of order N(aij 6= 0, i = j), let the first non-zero element of the i-th row be
aij; then,

βi = max{|i− j| aij 6= 0} (6)

is called the bandwidth of the i-th row. By analogy, the maximum bandwidth of matrix
A could be defined as

β(A) = max
1≤i≤n

βi = max
1≤i≤n

(max{|i− j| aij 6= 0}) (7)

The smaller the maximum bandwidth, the better the quality of the sparse matrix rep-
resented, show in Figure 3.

𝛽

Figure 3. Schematic representation of the maximum bandwidth, where B represents the maximum
bandwidth of the matrix shown.
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Another important metric is the matrix profile. In order to calculate profile, we firstly
locate the leftmost non-zero element of each row of the matrix in Equation (8).

fi = min j |aij 6= 0 (8)

Now define the distance from the above non-zero element to the diagonal of the
corresponding row:

δi = i− fi (9)

Then, the final profile is defined as

n

∑
i=1

δi (10)

This value portrays the sum of the bandwidth per row of the matrix, which takes
into account the overall nature of the sparse matrix more than the bandwidth. However,
after extensive testing, these two indicators are actually positively correlated in most cases.

3.2. An Improved Matrix Structure Indicator Based on the Mean Distance of Median Points

The above two traditional sparse matrix quality metrics are very widely used in
most renumbering algorithms because of their simple implementation and intuitive clarity.
In a computer with hierarchical storage structure, the sparsity of the sparse matrix will
greatly affect the cache hit rate during the solution process and thus the overall iteration
efficiency of the case, since the sparse matrix is ultimately involved in the CFD solution
calculation. However, the above metrics only express the concentration of the outermost
nonzero elements of the sparse matrix and do not strictly take into account the dispersion
of the inner nonzero elements. For numerical calculations during CFD solving or MPI
message passing between different processes, the cache line is so small that the cache data
are constantly updated. Therefore, hitting more data in the same cache is the focus of the
study. In other words, the presence of more non-zero elements within a smaller distance
from the diagonal of the sparse matrix is the desired effect of the renumbering algorithm.

A median point represents the number in the middle of a set of data arranged in
order, and equally divides the set of values into two parts. As a statistical variable, the me-
dian point values are not easily affected by individual maxima or minima, so they have
better stability.

Based on the median points of non-zero elements in a sparse matrix, we define the set
of all points whose distance to the diagonal is D . The elements in D are sorted in ascending
order and defined as dk

dk = |i− j|, (aij 6= 0 | i ≤ j | k = 0, . . . , n | d0 < · · · < dk < · · · < dn | dk ∈ D) (11)

When k = n
2 , dk is the distance of the median point and the mean distance of median

point, named MDMP, could be expressed as

d̄ =

n
2

∑
k=1

dk
k

(12)

d̄ can well characterize the degree of dispersion of this sparse matrix. It was is verified
that the degree of dispersion of non-zero elements within the median is an important
indicator of the quality of the sparse matrix. The advantages of MDMP over traditional
indicators will be analyzed in detail in the Results presented in Section 5.

4. CQ: The Cell-Quotient Grid Renumbering Algorithm for Large-Scale Parallel
Fluid Simulations

In this section, we firstly introduce an extensible grid renumbering framework based
on an in-house CFD software, then a variant of the widely used greedy method [23]
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have been reviewed. Finally, we present the Cell–Quotient (CQ) renumbering algorithm.
The details of the framework and the renumbering algorithms for parallel fluid simulations
will be presented in the following.

4.1. An Extensible Grid Renumbering Framework for CFD Simulations

The YHACT was designed initially for thermo-hydraulics analysis and implemented
as a general-purpose CFD software based on an extensible architecture. As shown in
Figure 4, the software adopts a classic hierarchical architecture. Benefitting from object-
oriented technology and the modern features of the C++ language, YHACT is more modular
and scalable. More details about the design philosophy of YHACT could be found in
Ref. [24].

incompressibleACT
compressibleACT
multiphaseACT

《interface》
SegaregatedAlgo

《interface》
Model

Incompressible
MultiphaseModel
CompressibleModel

《interface》
discreteMethod

《interface》
LinSolver

FiniteVolume
FiniteElement
FiniteDifference

LinearSystem
《interface》

Matrix

PETSCLinSolver LocLinSolver SimpleMatrix PetscMatrix

solver

algorithm Model

discretize

Simple
Piso

linsystem

Application 
Layer

Algorithm-model 
Layer

Spatio-temporal 
Discretization 

Layer

Linear System 
Layer

renumbering 
module

《interface》
renumbering

Greedy
RCM
……

algorithm

Figure 4. The extensible framework for integrating parallel grid renumbering techniques in YHACT.
Different types of renumbering algorithms could be extended by implementing the interfaces of the
renumbering module. The Application Layer, Algorithm-model Layer, Spatio-temporal Discretization
Layer, and Linear System Layer are the original frameworks in YHACT. The renumbering module is
a renumbered framework added in this paper.

In summary, the application layer includes the main program for solving application-
specific problems such as incompressible flow, compressible flow, and multiphase flow.
Algorithm-model layer, Spatio-temporal discretization layer, and linear system layer mainly
accomplish the discretization of physical models, the assembly, and solution of sparse
matrices. The renumbering module is crucial for integrating renumbering algorithms into
numerical simulations. In a solving algorithm such as Simple, the renumbering interface
should be called before the discretize. Due to the highly scalable software architecture,
the higher-layer modules depend only on the interfaces that lower-layer modules could
implement. Thus, new algorithms and models can be added continuously.

We integrated the renumbering module and designed the corresponding interfaces
from the software architecture perspective. Different numbering algorithms can be seam-
lessly integrated and tested. In addition, grid renumbering is one of the optimizing proce-
dures before FVM-based simulations from the perspective of parallel computing. As pre-
sented in Figure 5, the renumbering algorithms will be executed in parallel after domain
decomposing. Then, the FVM-based simulations are the same as the original algorithm.
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Renumbeing

decompose

…

Renumbeing Renumbeing

FVM-based 
simulation

FVM-based 
simulation

FVM-based 
simulation

1
0Mesh 2

0Mesh

0Mesh

1
nMesh

2
nMesh x

nMesh

decomposedecompose

0
xMesh

Domain 
decomposing 

Parallel 
Renumbering

Parallel 
Simulation

Figure 5. A diagram of parallel grid renumbering and FVM-based simulations. Domain decomposing
embodies the meshing step in preprocessing. Parallel Renumbering embodies the idea of parallel
grid renumbering. Parallel Simulation indicates a CFD grid for numerical simulation calculations.
During the final parallel calculation, boundary information is passed between the processes.

Due to the discrete nature of FVM, the solution of one target cell is only related to its
neighbors. In other words, only the data of neighboring cells of different decomposed grids
need to be communicated between processors. In the YHACT framework, the boundary
cells of all decomposed grids are wrapped with a layer of dummy cells containing the
necessary conditions and data for the solution of the boundary cells. As shown in Figure 5,
after the decomposing phase, each process calls the renumbering interface for renumbering.
In the parallel computation phase, the data of adjacent boundary surfaces between different
processes are exchanged by calling MPI functions. Finally, the solution will be obtained by
collaborative computing on multiple CPU nodes.

4.2. Greedy Numbering Algorithm

The Greedy algorithm was originally proposed by Farhat [25] and is derived from the
idea of mesh partitioning. Numbering unstructured grids based only on index positions
leads to a loss of the read data’s spatial locality and temporal locality. This index-based
numbering may create a loop that traverses the grid in the direction of the index. Computers
use hierarchical storage. A high number of grids may result in frequent memory reads.
Some grid data that are adjacent but not end numbers may not be stored in the same or
adjacent cache blocks. Therefore, in order to improve the performance of the code, loop-
blocking [26] is frequently used. Loop-blocking allows the code to process artificially set
implicit grid blocks at once during data reading. In contrast, the numbered block members
are brought to the cache for the next operation by setting the corresponding storage list.
The general program structure of the algorithm is given in Algorithm 1. “mesho” represents
the initial grid, which is numbered according to the read CGNS mesh file in random
order. “meshn” is the renumbered grid. “blocksize” is the size of the implicit block, which
indicates that the current loop numbers the “blocksize” number of cells first. According to
the experience, the size of blocksize does not have much influence on the numbering effect
and the overall calculation speed of CFD numerical simulation, so it was set to 2000 in this
paper. The variables “nElement” represent the total number of cells in the current grid .
It is critical to select the appropriate initial numbering units as far as possible on the grid
boundaries. Steps 1 through 6 are the initialization before the program starts the loop. Step
7 through Step 14 are the program’s main loop, with elements numbered in implicit blocks.
Step 15 represents the end of renumbering all elements in the case. When the number of
grids is large, Step 18 ensures that each implicit block is derived from the interface of the
previous block to preserve data locality as much as possible. Step 21 ensures that when the
grid is continuous. Suppose the current list of neighbors is exhausted, and the overall grid
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is not finished numbering. In that case, we can jump to the relevant position of the previous
block and continue numbering the unnumbered neighbors. The numerical simulation of
CFD is complex, and disconnected blocks are often generated at different grid components.
Therefore, Step 24 ensures that the algorithm can jump to a grid component that does not
participate in renumbering in time when the grid is disconnected.

Algorithm 1 Greedy Numbering Algorithm

input: mesho, blocksize
output: meshn

1: initialise: select nodes to the initially mesho.element(k), set all the original cell numbers
to −1, counter = 0, I = ∅

2: mesho.element(k).id() = counter
3: counter = counter + 1
4: for all the neighbors of mesho.element(k) do
5: initialise L: Push the unnumbered neighbors of mesho.element(k) into list L
6: end for
7: while L 6= ∅ and mod(counter, blocksize) 6= 0 and counter < mesho.nElement() do
8: Renumber the first element (as mesho.element(i)) of the L list with the value

“counter"
9: update meshn with the renumbered element ids

10: counter = counter + 1
11: if mesho.element(i) exists in containers I and L, remove mesho.element(i) from both

containers
12: for All the neighbors of mesho.element(i) do
13: Push the unnumbered neighbors of mesho.element(i) into list L
14: end for
15: end while
16: if counter = mesho.nElement() then
17: BREAK
18: end if
19: if mod(counter, blocksize) = 0 then
20: Assign the first element of container L to mesh0.element(k)
21: end if
22: if L = ∅ and I 6= ∅ then
23: Assign the first element of container I to mesho.element(k)
24: end if
25: if L = ∅ and I = ∅ then
26: Find a new unnumbered element for mesho.element(k)
27: end if
28: if L 6= ∅ then
29: Insert list L at the end of list I, and goto 2
30: end if

4.3. Cell-Quotient (CQ) Numbering Algorithm

The idea of CQ renumbering algorithm proposed in this paper is derived from the AD
algorithm [12]. This method belongs to the mathematical induction method. The sparse
matrix with good convergence is generated by numbering the CFD grid. Based on the
idea of mathematical induction, the final CQ algorithm is formed by summarizing the
characteristics of each element such as the sum of neighboring element numbers. Figure 6
shows a comparison of maximum bandwidth and profile of matrix with disordered cell
numbers and better cell numbers.
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out-of-order grid numbering

optimized the grid numbering

Bandwith=2

Profile= 6

Bandwith=5

Profile= 14

out-of-order matrix

optimized matrix

Figure 6. Comparison of maximum bandwidth and profile of matrix with disordered cell numbers
and better cell numbers. The upper part shows from left to right the better cell numbered cases,
the matrix of the cases and the bandwidth and contours of the matrix, respectively. The lower part
shows the disordered counterpart.

Tables 1 and 2 correspond to the better grid numbering, disordered grid numbering of
Figure 6, respectively. The CFD grid number has a close relationship with its cell quotient,
with a significant positive correlation. Only the cell quotient of the better grid numbering
is arranged from smallest to largest. In other words, numbering the mesh according to the
ascending sequence of cell quotients will result in better numbered cells, which further
results in better sparse matrices. The algorithm proves that it greatly reduces the bandwidth
and contour of sparse matrices and may play a great role in matrix multiplication operations
such as SpMV in the future. This paper only studies its role in CFD numerical simulations
based on the finite volume method.

Table 1. The cell quotient calculation method for the better grid. The first column indicates the cell
number of the current grid. The second row indicates the neighboring cells corresponding to the
cell. The third column indicates the sum of neighboring cells. The fourth column indicates the cell
quotient of the cell, which is obtained from the quotient o f the sum o f number and the number o f
neighboring cells.

Cell ID Optimized
Neighboring Cell Sum of Number CQ

1 2,3 5 2.5
2 1,4 5 2.5
3 1,4,5 10 3.3
4 2,3,6 11 3.7
5 3,6,7 16 5.3
6 4,5,8 17 5.7
7 5,8 13 6.5
8 6,7 13 6.5
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Table 2. The cell quotient calculation method for the disorder grid. The meaning of each column is
the same as in Table 1.

Cell ID Disorder
Neighboring Cell Sum of Number CQ

1 3,5 8 4.0
2 4,6 10 5
3 1,7,8 16 5.3
4 2,7,8 17 5.7
5 1,8 9 4.5
6 2,7 9 4.5
7 3,4,6 13 4.3
8 3,4,5 12 4.0

Different from the traditional AD algorithm, this paper uses the change relationship
between the target grid cell and the sum of neighbor numbers as the judgment criterion for
the optimization iteration. The specific steps are as follows:

1. Set the convergence index ε of the optimization iteration;
2. Calculate the maximum bandwidth βo under the current number;
3. Calculate the sum of adjacent mesh numbers, the number of related grids, and the

number of cell quotient for each grid;
4. Renumber all nodes according to the cell quotient;
5. Calculate the maximum bandwidth β1 under the current number;
6. If 0 ≤ (βo − β1)/βo ≤ ε, abort the optimization iteration process; otherwise, repeat

the calculation until convergence.

The general program structure of the algorithm is given in Algorithm 2.

Algorithm 2 CQ Numbering Algorithm

input: mesho
output: meshn

1: initialise: convergence index e ∈ [0.01, 0.05],value = DOUBLE_MAX
2: while value ≥ e do
3: initialise βo: sparse matrix maximum bandwidth
4: for all mesho.element(i) in mesho.nElement(),and i = 0, 1, . . . , n do
5: initialise I:Press the sum of all neighbor numbers of mesho.element(i) into I
6: initialise L: Press the total number of neighboring cells of mesho.elemen(i) into L
7: end for
8: initialise K
9: for all I(i), L(i) in I,L, and i = 0, 1, . . . , n do

10: cell_quotient(i) = I(i)/L(i)
11: Establish the key − value relationship between mesho.element(i) and

cell_quotient[i] in K
12: end for
13: for all menbers in K do
14: renumbering all the mesho.element(i).id() according to the ascending order of

cell_quotient
15: update meshn with the renumbered element ids.
16: end for
17: initialise βn: sparse matrix maximum bandwidth after renumbering
18: value = (βo − βn)/βo
19: clear I, L, K
20: if value < 0 goto step 3,and continue calculation
21: end while
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Step 1 is the initialization of the program before starting the loop. It mainly sets the
convergence coefficient ε, which is usually set from 0.01 to 0.05. Step 2 starts the main loop
of the program. Step 2 and step 18 calculate the maximum bandwidth of the sparse matrix
before and after renumbering, respectively. Step 19 updates the current value. Steps 4 to 9
calculate the neighbor numbers of all grids and the number of neighbor grids. Steps 11 to 14
establish the key− value relationship between the cell quotient and the corresponding mesh
in container K. Step 15 is the renumbered gird. Step 15 is the key step for renumbering.
Step 21 prevents renumbering from becoming ineffective.

However, the algorithm has certain implementation difficulties. (1) Since all the cases
in this paper use unstructured grids, the neighbors cannot be traversed directly with
indexes. (2) The algorithm is extremely dependent on the initial numbering. If the initial
numbering is too chaotic, as the case size gradually increases, the iteration time of the
numbering method with this quotient will be very long and the algorithm is unstable,
which defeats the original purpose of the efficient renumbering algorithm. Therefore, this
paper is the implementation of the CQ algorithm under the premise of Greedy algorithm.
The classical Greedy algorithm is used as the initial numbering method, and the CQ
algorithm is used for the second renumbering at the end. At the same time, due to the
object-oriented development feature of ACT framework adopted in this paper, each unit
has a “neighbor” pointer. Therefore, the above two difficulties can be well solved. It was
proved that the numbering time of both the Greedy algorithm and the CQ algorithm based
on the Greedy algorithm is several seconds in parallel computing, which is negligible in
CFD numerical simulation.

5. Results

To validate and analyze the algorithms and framework proposed in previous sec-
tions, we build complex testing cases and run typical configurations on a modern high-
performance computer.

All results in this section are obtained from parallel simulations on a High-performance
computer which consists of around 480 computing nodes. The details of the CPU node are
shown in Table 3. The CPU with hardware configuration adopts Intel(R) Xeon(R) E5-2620
v2, which carries 12 cores and 64 G memory in one node. A summary of this HPC system
is presented in Table 3.

Table 3. The configuration information of the HPC platform used in this paper.

Parameter Configuration

Processor model Intel(R) Xeon(R) E5-2620 v2 @2.10 GHz
Number of cores 12 cores

Memory 64 G
OS CentOS Linux release 7.6.1810 (Core)

Compiler GNU Compiler Collection (GCC_v8.3.0)

5.1. Optimizing the Coefficient Matrix by Grid Renumbering

In order to demonstrate the effectiveness of CQ method proposed in this paper, we
implemented the above two numbering algorithms in parallel. Therefore, the quality of
the sparse matrices produced by the original algorithm exported from ICEM CFD using a
default setting, renumbered by the greedy algorithm, and the CQ algorithm are analyzed
and compared respectively.

The coefficient matrix based on the original and the renumbered grid assembly using
YHACT is shown in Table 4. The first column indicates the different meshes sizes in
thousands. The second to fourth columns indicate the sparse matrices of the grids without
renumbering, processed by the Greedy algorithm, and processed by the CQ algorithm,
respectively. The results showed that two renumbering algorithms improve the quality of
the grid to a large extent. The non-zero elements are more concentrated near the diagonal
after renumbering.
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Table 4. The sparse matrices are processed by different numbering algorithms. Discrete points mark
the distribution of non-zero elements in a matrix.

Quantity (k) Original Grid Greedy CQ

270

800

1600

2240

4000

8648

To further quantitatively compare the renumbering results, we present evaluation
data for the measures of maximum bandwidth, matrix profile, and MDMP. Moreover, in
the solution environment of the CFD finite volume method, discriminate which metric can
effectively filter the numbering quality of both algorithms. Table 5 demonstrates the maxi-
mum bandwidth, profile and MDMP of the test as mentioned above grids. The second row
is the original grid test data. The third and fourth rows are the grid test data renumbered by
Greedy and CQ algorithms. The sub rows then represent the measurement of the different
metrics. The degree of improvement of the current data compared to the original grid data
is indicated in parentheses. Traditional metrics lead to the conclusion that the CQ algorithm
optimizes the maximum bandwidth and profile of the matrix considerably better than the
greedy algorithm. It can be seen that the Greedy algorithm has a large improvement in the
quality of the sparse matrix. However, the CQ algorithm minimized the bandwidth and
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profile of the sparse matrix with a maximum reduction of 92.94% in bandwidth and 98.7%
in profile. Therefore, in the context of the CFD finite volume method, the CQ algorithm is
better to enhance the speed of solving CFD numerical simulations. However, as far as the
MDMP metric is concerned, the quality of the matrix generated after Greedy numbering
is better than that of the CQ algorithm. The two numbering algorithms are very highly
optimized on MDMP. Because real world cases are generated directly by ICEM library
after being discretized by a finite volume method. It does not have any modifications
and therefore the results are very poor. However, it could be clearly seen that the MDMP
metrics of Greedy and CQ algorithms were not of the same order of magnitude, and the CQ
algorithm was of better quality. That is, when the effects of both renumbering algorithms
are obvious, the MDMP metric also has the effect of amplifying the quality of the different
algorithms. Therefore, this paper considers that Greedy is better to improve the speed of
solving CFD numerical simulations. Next, we verify the correctness of the latter.

Table 5. Mesh quality comparison. Each algorithm measures the nature of the sparse matrix using
three metrics, bandwidth, profile and MDMP, respectively. The round brackets indicate the degree of
optimization of the current data relative to the original grid data.

Quantity (k)

Method Index 270 800 1600 2240 4000 8648

Original
bandwidth 272,883 802,837 1,601,796 2,236,304 4,003,663 8,645,851

profile 31,475,740,701 294,927,759,978 1,130,160,745,627 2,279,170,105,336 6,842,108,134,704 30,723,125,177,693
MDMP 9131.96 45,719.74 90,351.71 133,808.299 238,231.64 409,337.80

Greedy

bandwidth 228,185 514,128 1,176,540 1,219,768 2,184,311 3,428,878
(growth) (16.38%) (35.96%) (26.55%) (45.46%) (45.44%) (60.34%)
profile 2,706,632,365 15,905,731,993 87,668,806,598 110,044,892,719 437,301,559,155 1,420,551,357,616

(growth) (91.4%) (94.6%) (92.24%) (95.17%) (93.6%) (95.38%)
MDMP 37.23 41.37 43.95 42.71 46.23 43.73

(growth) (99.59226%) (99.90951%) (99.95136%) (99.96808%) (99.98060%) (99.98932%)

CQ

bandwidth 47,840 110,648 254,891 560,816 685,326 610,811
(growth) (82.47%) (86.21%) (84.09%) (74.92%) (82.88%) (92.94%)
profile 1,023,887,234 8,054,992,527 35,761,499,444 56,943,570,117 206,200,122,641 400,613,572,413

(growth) (96.75%) (97.27%) (96.84%) (97.50%) (96.99%) (98.70%)
MDMP 128.10 298.63 767.87 96.31 1070.11 2052.20

(growth) (98.59720%) (99.34683%) (99.15013%) (99.92803%) (99.55081%) (99.49865%)

5.2. Reducing Parallel Simulation Time of a Real-World CFD Case

There is a consensus that reducing the profile and bandwidth of the matrix can improve
the solving speed of the linear system. However, fluid simulations also involve matrix
assembly and parallel communication on complex unstructured grids. As described in
the previous section, the calculations in FVM-based simulations are directly related to the
cell numbers.

Simple metrics about the linear systems can not provide accurate measurement for a
complete numerical simulation. Therefore, we build a real-world CFD case on YHACT for
quantitatively analyzing the algorithm and the framework. As shown in Figure 7, the flow
through a fuel rod bundle (named FuelRodBundleFlow) with positioning lattice is simu-
lated. This case comes from real-world scenarios in a nuclear reactor core. The numerical
results contain the essential thermal-hydraulics characteristics in the fluid flow. It is crucial
for nuclear core design and optimization.

The stirred wings on the positioning lattice can effectively mix the coolant in the core
and reduce the fuel rod surface temperature. It is widely used in engineering practice,
and its fluid computational domain and cross-sectional grid model are shown in Figure 7a,b.
Figure 7c,d reflect the consistency of velocity and pressure in the z-direction for the case
with multiple cores in parallel and single cores in serial. The data consistency of the case
FuelRodBundleFlow with different computation modes and numbering methods were
analyzed using Tecplot. Figure 7c represents the velocity distribution in the z-axis direction
for the case in both serial and parallel computation modes. Different numbering methods
are used for each computation mode. The velocity distribution of each slice is consistent
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with an error of no more than 10−5. Figure 7d shows the pressure distribution in the z-axis
direction for different calculation modes and numbering methods. The pressure distribution
is kept consistent for each slice with an error of no more than 10−3. Therefore, the accuracy
of the experimental results is guaranteed whether serial or parallel computation is used,
or different renumbering methods are used for computation. This section mainly focuses
on several cases with different grid sizes. This section focuses on testing cases with
different sizes of fuel rod bundles. The questions left in the previous section are verified
by the numerical simulation time consumption of the cases processed by two different
numbering algorithms.

(a) (b)

(c) (d)

Figure 7. A real-world CFD case (named FuelRodBundleFlow): the fluid flow through a fuel rod
bundle with a positioning lattice. (a) fluid computing domain; (b) sectional mesh model; (c) z-
direction velocity contour diagram; (d) z-directional pressure contour diagram.

To analyze the correctness of the proposed sparse matrix discrimination metric and
the scalability of the renumbering algorithm, we run the cases on different numbers of
processors and grid sizes. As shown in Table 6, the first column indicates the different
grid sizes. The second column indicates the number of parallel processes used for the
different grid size cases. Columns 3 through 5 indicate the total time for 100 iterative
steps for different grid sizes. It was clear that the CQ algorithm, which is superior in
terms of warp bandwidth and profile discrimination, is slower than the Greedy algorithm
in numerical simulations. This is clearly inconsistent with the traditional sparse matrix
quality discrimination approach. However, it is well established by the average distance
of the median points that the Greedy algorithm will outperform the CQ algorithm in the
numerical simulations of the finite volume method of CFD. When a 2.24 million scale
grid case is used, the numerical simulation will improve up to 38.19% with a degree of
parallelism of 40 processes. In addition, it can be seen that the renumbering algorithm can
still reduce the time consumption of the numerical simulation after reaching a specific grid
size. However, this is not an infinite improvement, and the improvement is always within
a certain threshold.
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Table 6. Scalability of the grids renumbering algorithms on different processors and grid sizes of
FuelRodBundleFlow case. Column 1 indicates the grid size. Column 2 indicates the number of
parallel processes. Columns 3 to 5 indicate the total time to complete 100 iterative steps with different
numbering methods. The time optimization rate after grid renumbering is shown in parentheses.

Grid Size Core
Time

Original Greedy CQ

270,000

12 367.24 s 302.724 s
(17.57%)

322.315 s
(12.23%)

5 436.46 s 397.684 s
(8.88%)

401.355 s
(8.04%)

800,000

40 389.29 s 306.8 s
(21.19%)

320.583 s
(17.65%)

16 974.57 s 668.019 s
(31.46%)

708.43 s
(27.31%)

2,240,000

100 1229.56 s 1020.05 s
(17.04%)

1146.17 s
(6.78%)

40 1943.6 s 1201.31 s
(38.19%)

1597.39 s
(17.81%)

4,000,000

192 1147.78 s 1020.49 s
(11.1%)

1092.3 s
(4.83%)

72 1159.9 s 875.68 s
(24.5%)

932.46 s
(19.61%)

8,648,000

384 1997.66 s 1662.41 s
(16.78%)

1757.01 s
(12.05%)

160 5012.54 s 4264.56 s
(14.92%)

4611.35 s
(8.0%)

5.3. Impact of the Renumbering Algorithm

This section focuses on the specific impact that the renumbering algorithm described
above has on the numerical simulation calculations. In this section, the Valgrind third-
party tool is used to simulate and test the access process in CFD calculations. Valgrind
will simulate a large access space during the test; it will greatly increase the numerical
simulation time by a factor of ten or more. Here, we select 270,000 grid, 800,000 grid
and 2,240,000 grid (with parallelism of 12 cores, 16 cores and 40 cores, respectively) from
FuelRodBundleFlow case for testing. The above three cases were iterated by Valgrind in
10 steps. The six standard test cases in YHACT are also used as test subjects, with grid sizes
ranging from 2000 to 70,000. All examples can be found in the ANSYS FLUID DYNAMICS
VERIFICATION MANUAL. The above six classic test cases were iterated by Valgrind in
the same number of iteration steps. The feasibility of MDMP is further validated.

In YHACT, the original grid numbering of the six test cases is optimal. The three
FuelRodBundleFlow cases are large real-world engineering cases whose original grid ar-
rangement is chaotic. Therefore, by renumbering these two types of cases, this section
further verifies whether the MDMP metrics can correctly reflect the relationship between dif-
ferent numbering algorithms and the overall numerical simulation efficiency. Table 7 shows
that the MDMP increases for six test cases and decreases for three FuelRodBundleFlow
cases after processing by Greedy and CQ algorithms. The corresponding CFD numerical
simulation time and cache miss rate also change. Figure 8 visualizes the correspondence
between the elapsed time and the cache miss rate for each case iteration of 100 steps. The it-
eration time and cache miss rate of the original mesh for the six YHACT test cases are
the smallest. The iteration times and cache miss rates of the meshes of the three A cases
processed by Greedy’s algorithm are the smallest. The cache hit rate of CFD computation
for all cases after CQ renumbering is lower than the grid after Greedy renumbering, and the
computation time is longer. The above is consistent with the judgment of MDMP, that is,
the smaller the MDMP of the cases, then the better the renumbering algorithm used. It can
be concluded that, in the CFD numerical simulation by finite volume method, the MDMP
of the sparse matrix can correctly reflect the cache hit rate during the computation, and thus
judge the impact of different renumbering algorithms on the overall CFD numerical simu-
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lation. It can be used as one of the pre-processing steps before the CFD mesh is involved in
the solution. Therefore, MDMP of sparse matrices is a more appropriate indicator of the
quality of sparse matrices than the traditional bandwidth and pro f ile.

Figure 8. Correspondence between time consumed and cache miss rate for six test cases and three
FuelRodBundleFlow cases. The line graph of each subplot indicates the cache miss rate, and the bar
graph indicates the time consumed by the numerical simulation calculation.

Table 7. Case test. The third column indicates the numbering algorithm used for each case. The fifth
and sixth columns indicate the time to compute the same number of steps and the corresponding
cache miss rate. The first six rows are data from the ANSYS FLUID DYNAMICS VERIFICATION
MANUAL, and the last three rows are data from the real-world FuelRodBundleFlow cases.

Case Grid Size Method MDMP Time Cache Miss

ConcentricCylinders 7400

original 2.68 27.4765 2.40%

Greedy 13.39 31.632 2.80%

CQ 100.42 33.788 3.40%

TLaminar 70,000

original 6.83 322.006 4.00%

Greedy 16.92 446.444 5.10%

CQ 495.91 475.408 7.70%

TriangularCavity 32,000

original 2.08 149.84 3.70%

Greedy 14.51 189.372 3.90%

CQ 155.58 214.457 4.90%

TransientFlowWallMotion 13,000

original 1.00 30.6739 2.70%

Greedy 12.46 35.765 2.90%

CQ 52.28 37.449 3.30%

CircularCylinderLaminar 22,600

original 3.11 64.6272 3.80%

Greedy 9.39 75.0784 3.90%

CQ 55.18 81.8179 4.50%

PoisuilleLaminar 2000

original 1.00 8.8055 2.60%

Greedy 6.05 9.0883 2.70%

CQ 7.04 9.14398 2.80%
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Table 7. Cont.

Case Grid Size Method MDMP Time Cache Miss

FuelRodBundleFlow(12core) 270,000

original 9131.96 1093.99 7.40%

Greedy 37.23 559.788 4.70%

CQ 128.10 595.618 5.00%

FuelRodBundleFlow(16core) 800,000

original 45719.74 1582.53 9.70%

Greedy 41.37 1387.23 5.50%

CQ 298.63 1424.94 6.20%

FuelRodBundleFlow(40core) 2,240,000

original 133808.29 3545.39 7.10%

Greedy 42.71 2962.77 4.20%

CQ 96.31 3262.48 4.60%

6. Conclusions

Numerical simulation of fluid dynamics is one of the essential applications on su-
percomputers. Due to the enormous amount of computation, improving the parallel
performance is critical for solving real-world CFD cases. In this paper, we refocus on
the classic topic of grid numbering for FVM-based fluid simulations. In order to choose
a better renumbering method to improve the efficiency of FVM-based CFD numerical
simulations, this paper proposed an improved evaluation metric MDMP with sparse matrix
properties. We also proposed a CQ renumbering algorithm that greatly optimizes the
traditional evaluation metrics (bandwidth and profile). In order to compare and validate
the proposed metrics and algorithms, we integrated the CQ and Greedy renumbering
algorithms into a generic CFD software YHACT. We also conducted a quantitative study
of different numbering algorithms using a real-world case derived from nuclear reactor
engineering. Compared to the widely used Greedy algorithm, the CQ algorithm yielded a
lower maximum bandwidth (up to 82.19% optimized compared to Greedy) but leads to a
lower numerical simulation efficiency (up to 24.8% lower compared to Greedy). In addition,
the MDMP of the Greedy algorithm is reduced by 83.43% compared to the CQ algorithm.
The Results section verifies that the size of the MDMP is positively correlated with the size
of the cache hit rate of the different renumbering algorithms during CFD computation.
The results showed that using MDMP can more accurately discriminate the quality of a
sparse matrix. In addition, after renumbering the cells exported from commercial grid-
generating software, the parallel performance have been greatly improved for simulating
hydraulics for a bundle of fuel rods in the nuclear reactor core. More importantly, the algo-
rithms are implemented in a general CFD framework, which has good parallel scalability
and could be extended seamlessly by new grid numbering algorithms.

This work can provide useful guidance for the design and optimization of an efficient
general-purpose CFD software. In the future, we aim to build an accurate performance
discrimination model and propose novel numbering algorithms with optimal performance
based on this extensible framework for grids renumbering. We also hope that the ap-
proaches of this paper and the corresponding CFD software can be open-sourced, and more
applications will be carried out in academia and industry shortly.
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