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Abstract: The processing of images by a convolutional neural network will lead to the loss of image
information. Downsampling operation within the network is the main reason for the loss. To cut back
the loss and reach an acceptable detection speed, this paper proposes an Intelligent Fast Detection for
Real-time Image Information in Industrial IoT (IFD). IFD adopts the improved YOLO-Tiny framework
and integrates the VaryBlock module. Firstly, we elect a tiny version of YOLO as the backbone and
integrate the VaryBlock module into the network structure. Secondly, WGAN is applied to expand
the training dataset of small objects. Finally, we use the unsupervised learning algorithm k-means++
to obtain the best-preset boundary box to improve the accuracy of the classification results. IFD
optimizes the loss and detection accuracy of image information while meeting the detection speed.
The MS-COCO dataset and RGB images in the TUM dataset are used for training and evaluating
our model. The upgraded network’s average accuracy is around 8% higher than the YOLO-Tiny
series network, according to the experimental data. The increased network’s detection speed in our
hardware settings is at least 65 frames per second.

Keywords: object detection; YOLO-Tiny; VaryBlock; K-means++

1. Introduction

The Internet of Things (IoT) is a large network comprising devices connected to
it [1]. IoT is expected to embed various technologies into human daily life, such as using
Edge computing, Fog computing and Cloud computing for data processing [2,3]. The
IoT trend has created a sub-segment of the IoT market known as the Industrial Internet
of Things (IIoT) [4,5], and computer vision has been applied in the IIoT to coordinate
industrial production [6], such as the application of target recognition in remote sensing
images [7], intelligent remote monitoring of production line [8], etc. IoT uses various
sensors to generate and collect data [9]. Due to the inherent problems of sensors and/or
environmental conditions, sensors may be unreliable [10]. Therefore, the IoT data have the
characteristics of massive, complex, not stuck, and deep learning is suitable for processing
this type of data [11,12]. Object detection is one of the most important and widely discussed
topics in computer and machine vision [13,14]. In addition, object detection is the first
step to extract the most informative pixels from the video sequence captured by the vision
sensor of the Internet of Things [15]. With the development of machine vision, object
detection technology based on deep learning, characterized by a simple and efficient
network structure, has surpassed the traditional algorithm, greatly improves accuracy and
efficiency, and gradually has become the mainstream algorithm at present. The type of
objects that can be detected by the detection method is determined by the picture dataset in
which the CNN was trained. Object detection will serve as a foundation for further picture
and video operations, such as finding the object’s location in the image, determining the
object’s analogy, and so on.
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The CNN-based method has an edge in detecting objects in photos, owing to CNN’s
ability to extract a large amount of semantic information from images. Single-class object
detection, multi-class or universal object detection, static image object detection, video
object detection, and so on are all examples of object detection. Object detection is divided
into three stages: categorization, detection, and segmentation. The range, amount, scale
modification, and external setting environment disturbance, however, make the object
detection task difficult [16–18]. Many researchers have dedicated themselves to this field of
research in order to overcome these challenges, and they have had a number of triumphs.

However, the present deep learning-based object detection algorithm is not friendly to
small objects. The most important reason is that the capacity of extracted image features of
little objects in an image is significantly smaller than that of massive items in the method
of feature extraction, causing the CNN to pay more attention to the large objects in the
image. In CNN, the loss of image information is mainly caused by downsampling. The
explanations for substantial information loss are stated as follows in the approach of picture
knowledge within the convolutional neural network:

• Too large downsampling rate.
Assume that the current small object size is 15 × 15. In general object detection, the
convolution downsampling rate is 16, so in the feature map, a too large downsampling
rate makes small objects unable to occupy even one pixel.

• Too large receptive field.
In the convolution network, the receptive field of the feature points on the feature
map is much larger than the downsampling rate, resulting in fewer features occupied
by small objects in a point on the feature map, which will contain a large number of
features of the surrounding area, thus affecting its detection results.

• Contradiction between semantics and space.
The backbones of current detection algorithms are mostly from top to bottom, and the
deep and shallow feature maps do not achieve a better balance between semantics
and space. For example, the YOLO algorithm can meet the real-time requirements,
but the detection accuracy is low.

• Tradeoff between detection speed and accuracy.
Faster detection speed sometimes implies that the scale of the network model is small,
resulting in light-weight feature extraction. However, the larger model improves the
recognition accuracy, but it wants high computing power and so the detection speed
is slow, which cannot meet the amount of desired time of the instrumentation with
very little computing power in IoT.

To optimize the above four issues, we propose an Intelligent Fast Detection for Real-
time Image Information in Industrial IoT (IFD). The innovation points are as follows:

• An Intelligent Fast Detection for Real-time Image Information in industrial IoT is pro-
posed, which adopts the improved YOLOv3-tiny framework and can meet the detection
speed necessities of a real-time system and effectively improve the detection accuracy.

• We distinguish whether an object belongs to a smaller object according to the number
of pixels occupied by the object in the image, and then, we use WANG to expand the
dataset of smaller objects. We expanded the amount of smaller objects in the dataset
but reduce the larger objects. This is to reduce the preference for larger objects in
network training.

• The k-means++ clustering algorithm is employed to obtain the predetermined bound-
ary box to enhance the accuracy of the classification results.

Among the many algorithm frameworks based on CNN, the YOLO framework is
famous for its fast detection speed [19]. In the evolution of the Yolo algorithm series, the
most important change between versions is the change of backbone. You can choose the
version of YOLO suitable for the actual environment by replacing the backbone of YOLO,
so its flexibility is suitable for industrial production. In this paper, the main reasons why
our IFD model adopts the YOLOv3 family are as follows: (1) YOLOv3 does not pursue
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speed so much but rather pursues its performance on the basis of maintaining real-time
performance. (2) Compared with the fact that there is no residual structure in the backbone
(Dark-net19) of YOLOv2, YOLOv3’s Dark-net53 can achieve the same effect as resnet-152.
(3) YOLOv2 performs tensor size transformation (image size transformation) in the forward
propagation process through pooling operation, which will lead to a serious loss of image
information in the forward propagation process. However, YOLOv3 uses convolution,
which can extract more abundant image information than pooling operation.

The rest of this text is organized as follows: Section 2 introduces the work conducted by
previous researchers. Section 3 details an outline of our own work. Firstly, the mechanism
of VaryBlock and also the methodology of group action VaryBlock and YOLO-tiny square
measure are introduced. Then, we introduce a way to extend the dataset to complement
the linguistics information of smaller objects. Afterwards, we introduce the utilization of
k-means++ to come up with a planned bounding box. Section 4 provides the experimental
results to verify the period of time accuracy of our planned methodology in object detection.
Finally, a short conclusion and future analysis square measure are given in Section 5.

2. Related Work

There are ways to assist non-deep learning and ways to support deep learning in the
area of image feature extraction, and many analysts have spent a lot of time researching
these two approaches. A major drawback of the approach of training a convolutional neural
network is the difficulty of extracting a large amount of visual feature data by increasing
the network’s structure, and a secondary drawback is the difficulty of making the network
detection faster to meet time constraints. Speed and precision appear to have always been
two competing concepts. We compare the current popular object detection algorithms and
summarize their main ideas, as shown in Table 1.

Table 1. Classification of the discussed works along their main distinctive characteristics.

Model
Yes or No One or

Loss Description Backbone Main StrategyCNN-Based Two Stage

SIFT NO - - -
Keeping invariance to rotation, scaling,
brightness change, etc.

HOG NO - - -
Using the distribution of light intensity or edge
direction on the surface of the object to describe
the whole object.

BoVW NO - - -
Applying Bag-of-Words algorithm
to image representation.

DPM NO - - -
Adopting the improved HOG feature,
SVM classifier and sliding windows detection idea.

R-CNN Yes Two - Pre-trained AlexNet
Using the selective search algorithm [20] to
improve the filtering speed of candidate boxes.

Fast R-CNN Yes Two Classification, regression VGG-16
Absorbing the characteristics of SPP-net [21] to
improve the speed based on R-CNN.

Mask R-CNN Yes Two Classification, regression, mask Pre-trained ResNet or FPN
Adding a branch of prediction segmentation
mask based on Fast R-CNN.

YOLOv1 Yes One
Bounding box, confidence,

VGG-16 Regression of object bounding box.probability, etc.

YOLOv2 Yes One Same as YOLOv1 Darknet-19
Multiscale training, full convolution network,
anchor mechanism of fast R-CNN,
more training skills, etc.

YOLOv3 Yes One
Binary cross entropy

Darknet-53 Integrating FPN, using Softmax in classifier.in classification

YOLOv4 Yes One CIOU in anchor CSPDarkNet53
Changes in input images, neck and head
based on V3.

YOLOv5 Yes One CIOU in anchor BottleneckCSP Not much better than V4.

YOLOv3-Tiny Yes One Same as YOLOv3 Simplified Darknet-53
Removing some feature layers,
retaining two independent prediction
branches based on YOLOv3.
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Table 1. Cont.

Model
Yes or No One or

Loss Description Backbone Main StrategyCNN-Based Two Stage

YOLOv6 Yes One SIOU in anchor EfficientRep, Rep-PAN
Introducing Repvgg [22]. The backbone and
neck are redesigned based on the idea of
hardware perception.

YOLOv7 Yes One CIOU in anchor ELAN-Net [23]
Putting forward Extended-ELAN based on
ELAN [23], model scaling based on
concatenate model.

YOLOr Yes One Explicit loss, implicit loss YOLOV4-CSP [24] Applying implicit knowledge hidden in CNN.

YOLOx Yes One IOU in anchor Darknet53
Adding Decoupled Head, adopting Mosaic and
Mixup data enhancement based on YOLOv3.

PP-YOLO Yes One IOU Aware branch ResNet50-vd-dcn Detection Neck adopting FPN.

2.1. Non-CNN Feature Extraction

SIFT (Distinctive Image Features from Scale-Invariant Keypoints) [18] and HOG
(Histograms of Oriented Gradients for Human Detection) [25] are feature extraction
algorithms, but they do not use the method of training convolution neural network
to optimize image feature extraction. BoVW (Bags-of-Visual-Words) [26] and DPM (De-
formable Part Model) [27] based on HOG make full use of artificial geometric features to
obtain more of a feature map. However, SIFT, HOG, BoVW and DPM have the disadvan-
tages of low real-time detection and insufficient image feature extraction.

2.2. CNN-Based Feature Extraction

We primarily provide the R-CNN [28] algorithm series and the YOLO [29] algorithm
family in the related work to demonstrate the efforts and inadequacies of relevant re-
searchers in order to increase target detection accuracy while taking real-time performance
into account. At the same time, it demonstrates that one of the primary causes of detection
accuracy loss is downsampling. When it comes to extracting image information, the convo-
lution neural network provides a lot of advantages. Many scientists are working to improve
the topology of the convolutional network used to extract picture characteristics. The R-
CNN uses a selective search strategy to find anchor boxes before utilizing the pre-trained
model to extract characteristics from each one. Fast R-CNN [30] extracts R-CNN image
features using a CNN network; then, it uses the ROI pooling layer to produce fixed-length
features for each anchor frame. The selective search of the Fast R-CNN network is con-
verted into an RPN (Region Proposal Network) network by Faster R-CNN [31], although
RPN is a rough network that does not like small objects. The mask branch is added to
the Faster R-CNN network layer structure by Mask R-CNN [32]. In the mask branch, a
convolutional network is used. It creates masks using the ROI classifier’s positive region as
an input, resulting in high precision but poor speed.

Redmon et al. [29] propose the YOLO (You Only Look Once) framework. Although the
detection accuracy could not reach the detection effect of Faster R-CNN, the detection speed
reaches 50 frames per second (FPS). A more efficient Darknet-19 is used as the backbone
network of YOLOv2 [33]. These measures have effectively improved the detection accuracy
of YOLOv2. YOLOv3 [34] absorbs the idea of FPN (Feature Pyramid Network) [35] and
performs detection tasks on three feature maps with different scales at three different
locations in the network. YOLOv4 [36] is better than YOLOv3 in many indicators. To
reduce the loss of image feature information, YOLOv4 introduces PAN-Net (Efficient and
Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network) [37] to make
full use of feature fusion. Based on the YOLOv4 backbone, Chai et al. [38] studied the
factors affecting the receptive field, used ConvDV to replace ordinary convolution, and
increased the number of short circuits and stacks, which increases the receptive field.

In addition, in order to make the YOLO algorithm have a smaller volume and higher
real-time performance, some small versions of the YOLO algorithm are proposed such as
YOLOv3-tiny [39], YOLOv4-Tiny [40], YOLOv5 [41,42], PP-YOLO [43] based on YOLOv3,
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PP-YOLOv2 [44], YOLOX [45], YOLOr [46], YOLOv6 (there is no paper), and YOLOv7 [47].
The above small YOLO algorithm series means that the smaller the volume, the faster the
detection speed, and it also means that the detection accuracy is lower, while the highest
detection accuracy among them is 50.3%.

By enhancing the network structure, all of the aforementioned object identification
algorithms for convolutional neural networks aim to increase detection speed and accuracy.
Therefore, we come to a conclusion that faster image detection speed often means a smaller
framework, but CNN with a small model does not extract enough image features, resulting
in a decline in detection accuracy. In addition, high detection accuracy requires a large
volume model, but it cannot meet the real-time performance. Therefore, we try to improve
the accuracy by improving YOLOv3-tiny while ensuring real-time detection. We propose
an Intelligent Fast Detection for Real-time Image Information in Industrial IoT (IFD) that
can be used in the industrial Internet of Things to optimize the following two problems:

• Small object detection.
Downsampling and convolution operations in today’s object detection algorithms
result in a significant loss of image information, which has a significant influence on
the recognition of objects of varied scales, particularly small objects.

• The weakness of the real-time detecting system’s accuracy.
To fulfill the real-time requirements for detection speed, the initial network must be
simplified, which results in a large reduction in picture information extracted by the
network, and whether the network can extract adequate image information directly
influences detection accuracy.

IFD adopts the improved YOLO-Tiny algorithm and integrates the VaryBlock module.
The designed VaryBlock module is skillfully added to the YOLO-Tiny series network to
reduce the loss of image information in downsampling operations. The upgraded network’s
detection accuracy outperforms the YOLO-Tiny original network by roughly 8% without
significantly slowing down the speed of detection. The experimental results also show that
the enhanced network is capable of a more accurate detection and classification of some
small objects.

3. Our Proposed Object Detection Algorithm Combined with Varyblock
3.1. Overall Architecture

YOLO-Tiny treats object detection tasks as regression problems and uses the con-
volutional neural network to predict the object. YOLO-Tiny can simultaneously have a
comprehensive understanding of the input image and all of the objects in the image as
an object detector with sampling and stitching on the feature map as well as be able to
complete end-to-end training. It has become one of the standard object detection schemes
in the industry. However, it still has some shortcomings. It is still unable to prevent the
loss of information due to a downsampling operation. Although an attempt is made to
use the up-sample layer to obtain the information of the previous feature map as much as
possible, there is no multilayer feature fusion in YOLO-Tiny. On the other hand, YOLO
only analyzes the final feature map, resulting in poor detection quality of small objects, and
it is difficult to distinguish when multiple objects are in the same grid cell.

The YOLO-Tiny series network is used as the backbone network in this paper’s
proposed object identification approach, which integrates the VaryBlock module into the
network structure to make up for the lack of downsampling information. As a result, the
aforementioned drawbacks are addressed.

Figure 1 shows the overall flow chart of the improved YOLOv3-Tiny object detection
algorithm in this paper. First, input the object image. The input image is then divided into
grids of equal size, each grid containing two different scales, each with two different size
boundary boxes. By recognizing the object in the bounding box, the location information
and category information of the object can be acquired. Finally, the object’s category and
coordinates from the original image are determined.
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Figure 1. Improved YOLOv3-Tiny object detection algorithm framework.

3.2. YOLO-Tiny Integrated VaryBlock

YOLO has a detection speed of 45 images per second. The speed advantage makes it
the leader of end-to-end object detection networks. YOLO’s ideas different from other object
detection frameworks are as follows: first, it uses the convolution neural network to extract
a huge number of features of images which are not overlapping, and therefore, the fixed-
size feature map is obtained. If the coordinates of the center point of an object’s ground
truth fall on a grid, it divides the input image into S× S grids that are in charge of detecting
and anticipating the object. It is the advantage of acceptable and real-time detection
speed, and the detection accuracy and boundary recall rate can meet the requirements.
Although it loses a certain accuracy, it greatly improves the detection speed. YOLO-Tiny
series methods are designed based on a complete YOLO series network. They are realized
by suppressing the network of the complete YOLO series network. YOLOv3-Tiny is an
outstanding network of the YOLO-Tiny series, which is very fast and can even perform
object detection tasks on mobile phones. The YOLOv3-Tiny network has only 24 layers,
which is 86 layers less than that of YOLOv3. The convolution layer with a step size of
2 in YOLOv3 is replaced by the pooling layer in YOLOv3-Tiny. In addition, YOLOv3-
Tiny has only two detection scales, which are 13 × 13 and 26 × 26, each of which should
have three boundary boxes with different scales. It uses a separate CNN framework to
attain end-to-end object detection. Based on the original version (the gray and black part
in Figure 2), the network structure is compressed based on time consideration; only the
backbone network is retained. Therefore, the detection speed of YOLOv3-Tiny is incredibly
quick, and so it is very appropriate for situations with high real-time requirements.

To reduce the loss of image information, there have been some studies on the problem
of partial information loss caused by a convolution operation. The paper [48] adds context
information to the convolutional network through the deconvolution layer and uses the con-
text information to make the network learn features of different depths. GC-YOLOv3 [49]
realizes trainable semantic fusion between the feature extraction network and FPN [35]. In
order to reduce the loss of image data and obtain more semantic information in the image,
Joseph Redmon et al. introduced the upsample layer into YOLOv3 [34] to obtain higher
positioning and recognition accuracy of targets in an image than YOLOv2 [33]. Inspired by
the methods of deconvolution and upsampling in the image processing, we tend to propose
an economical and stronger VaryBlock module for this drawback, which might effectively
make amends for some image data loss caused by downsampling. The improved YOLOv3-
Tiny object detection algorithm described in this paper adds the VaryBlock module to the
network structure.

The problem of tiny object detection is actually because of the dearth of original image
information, and also the same drawback exists in object detection of different scales. With
the deepening of the network, several potential feature information or details usually
disappear, which include a huge impact on the results of object detection. Additionally,
downsampling and convolution operations can cause the loss of some image information,
which is able to eventually have an effect on the detection results of targets of assorted sizes.
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Figure 2. Network structure of the improved YOLO-Tiny(v3) object detection. The color part is the
added module, the gray part is the replaced structure, and the rest is the reserved structure.

Fusing the features of the collected image is a common methodology to cut back
semantic loss in downsampling. Resnet [50], FPN [35], etc. use element-wise add fusion
features. DenseNet (Densely Connected Convolutional Networks) [51] uses concatenate to
fuse features. The add and concatenate techniques have their advantages and disadvantages
in feature fusion. In Figure 3, the add technique initially ensures that the number of
feature maps does not change, but rather that each feature map represents the outcome
of combining the previous feature maps. The concatenate technique will increase feature
maps; however, the data in every feature map do not have any amendment.
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Figure 3. Operation of Add layer and Route layer; (a) A = [a,b]; (b) B = [c,d,e]; (c) C = [a,b,c,d,e];
(d) D = [a+c,b+d,e]; a, b, c, d are all feature maps; C is Route layer and D is Add layer.

We combine the residual mechanism of Resnet and use deconvolution as the down-
sampling method to organically combine the add and concatenate feature fusion methods
to form the VaryBlock module.

The main structure of VaryBlock is composed of a convolution layer and feature fusion
layer. In order to obtain the valuable information in the image and remove the interference
of worthless information to the fitting network, convolution is performed on the image
when training the neural network. However, the elimination of useless information in-
evitably results in the loss of useful information (mainly the loss of small object information
in the picture), which is a main reason for the decline of network detection accuracy. There-
fore, feature fusion operation and convolution operation (downsampling) are a pair of
contradictory topics. Therefore, in order to better solve this contradiction, as shown in the
Figure 4, the add layer, route layer, upsample layer and residual connection [50] in the
VaryBlock are used to reduce the loss of useful information in the image, and the other
convolution layers are to refine the useful information in the image.

Input Layer

Conv 3X3
Padding=1,stride=2

Upsample

Route layer

Conv 1X1
Padding=1,stride=1

Conv 3X3
Padding=1,stride=2

Add layer

 

Figure 4. The VaryBlock module is designed according to the residual mechanism and feature fusion
method of add and concatenate.
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One of the primary causes of the low detection accuracy of the YOLOv3 skeleton is the
pooling process that follows the convolution operation in images. As a result, we employ
VaryBlock to replace the downsampling technique in the YOLOv3 skeleton.

3.3. Data Expansion
3.3.1. Distinction of Object Size

To strengthen the semantic information and limit the loss of the useful data in
images during the downsampling process of the network, we increase the number of
smaller objects.

In a 256 × 256 pixel picture, an object occupying less than 80 pixels is a small object,
that is, less than 256 × 0.12% of 256 is a small target, which is the definition of relative size.
The other is the COCO dataset’s definition of absolute size, which states that objects having
a size of less than 32 × 32 pixels are considered small targets. We take the definition of
object size in the COCO dataset. The small object COCO dataset is defined as an object less
than 32 × 32 pixels, while the large object refers to an object with 96 × 96 pixels. We can
judge the size of the object according to the mask tag data of the image because the mask
tag of the image labels each pixel belonging to the object [32].

As can be seen from Table 2, although the number of small objects is 41.43%, the
average area occupied by small objects in the picture is only about 1% (calculated by the
number of pixels occupied by objects). As a result, when the neural network is being
trained, it will gravitate toward larger targets in one image rather than little ones. Therefore,
we extend small objects by 1/3 and medium objects by 1/2. That is, the smaller the object
is, the more the expansion ratio is. The larger the object is, the smaller the expansion ratio
is. Large objects are not expanded.

Table 2. The MS COCO dataset object statistics with respect to matched anchors in Mask R-CNN
based on RPN.

Item Object Count Images Total Object Area

Small 41.43% 51.82% 1.23%
Large 24.24% 82.28% 88.59%

3.3.2. Extended Object Area

GAN (Generative Adversarial Networks) [52] has been widely employed in numerous
research domains due to its exceptional performance. With the introduction of GAN in
recent years, it has become widely employed in computer vision data expansion. For
instance, this work (GAN-Supervised Dense Visual Alignment) describes a way for ex-
panding datasets using GAN.

GAN is one of the most advanced data expansion methods, which can learn the
distribution of real data in the real world. There are two neural networks that can be
trained in the GAN network, one termed a generator and the other called a discriminator.
These two neural networks can be coupled to the neural network in a simple way. The
generator is used to fit a mapping function of a two-dimensional picture from a randomly
distributed multi-dimensional vector during the training process, while the discriminator
is used to evaluate the similarity between the false image generated by the generator
and the real image and make binary classification judgments. As a result, the two neural
networks in GAN have a conflict training relationship. One network is in charge of
counterfeiting, while the other is in charge of combating counterfeiting. The training will
continue until the generator’s bogus graph can truly trick the discriminator. This is a
dynamic process in which G and D play each other. However, GAN has some problems
such as unstable training, the disappearance of gradient descent, and model collapse. In
this paper, Wasserstein distance [53], a new distributed distance measurement index, is
introduced to form a new generative countermeasure network (WGAN) [54] combined
with GAN. This network will essentially solve the problems of a simple GAN network,
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such as unstable training, model collapse, and an inability to control the training progress
of the model.

Before starting to train the object detection algorithm model, this paper uses WGAN to
realize the data expansion of the object detection dataset. Taking the chair (medium-sized
object) as an example, the visualization results of using WGAN to generate the chair can be
seen in Figure 5.

(a) (b)

Figure 5. Result of WGAN; (a) poor performance; (b) good performance.

3.4. Preset Bounding Box

The author of YOLOv3 employs the K-means approach to obtain the predefined
bounding box on the COCO dataset during the training stage. The YOLOv3 k-means
approach uses K pairs of width and height values at random as initial cluster centers,
making the K-means method susceptible to the initial cluster [55]. The initial clustering
center must be artificially determined, and different beginning clustering centers can result
in drastically different clustering results. Because the beginning point selection affects
the classification results of the K-means method, the K-means++ clustering algorithm can
greatly reduce the final error of the classification results. As a result, the scale of the preset
bounding box is calculated using the K-means++ clustering technique in this study. It
should be noted that the YOLOv3-Tiny network utilized in this paper only requires six
anchors; hence, the k-means++ algorithm only uses six cluster centers instead of nine.

The k-means++ clustering technique enhances the initial point selection, although the
rest of the processes are identical to the k-means algorithm. The key notion is that during
the initial cluster center selection, the distance between cluster centers should be as large as
possible. The preset bounding box is generated using the k-means ++ clustering algorithm
in this paper. Algorithm 1 depicts the algorithm procedure. We may considerably minimize
the time it takes to locate an object in a picture by creating a preset bounding box.

Algorithm 1: The process by which the K-means++ clustering algorithm gener-
ates the preset bounding box.

Input: The bounding box set X of the object in the dataset.
Output:

1 Randomly select a sample from the set X as the initial cluster center C1;
2 For each sample x in set X, calculate the distance between it and the initial cluster

center C1, denoted by D(x);
3 Calculate the probability that each sample is selected as the center of the next

cluster;
4 According to the roulette method, select the next cluster center;
5 Repeat Step 2 to Step 4 until a total of six cluster centers are selected;
6 Use the standard k-means algorithm for set X;
7 Output the bounding box set Y.

Before the training, the k-means++ is first applied to the dataset, which will generate
six preset bounding boxes. They are utilized in the prediction of objects at various scales,
and the location information of the object in the image can be acquired by using constant
correction and regression. Taking a set of preset bounding boxes generated during the
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experiment as an example, Table 3 shows the preset bounding boxes, which are essentially
a set of datasets with known height and width.

Table 3. The size of the generated set of preset bounding boxes.

Width 21 25 41 61 89 56

Height 30 53 37 75 63 105

Depending on the size of the object we wish to identify in the image, the size of the
predefined bounding box can be changed. It can also be customized for a single category of
objects if necessary.

3.5. Training and Prediction of Network Model

The network model can be used to forecast the object detection results of the input
image once it has been trained. The loss function in the training process is presented in
Equation (1):

loss =
1
n

n

∑
i=1

losswh +
1
n

n

∑
i=1

lossclass

+
1
n

n

∑
i=1

losscon f idence

(1)

losswh = λcoord

S2

∑
i=0

B

∑
j=0

1obj
i,j (2− wi × hi)

×
[
(xi − x̂i)

2 + (yi − ŷi)
2 + (wi − ŵi)

2 +
(

hi − ĥi

)2
] (2)

lossclass = λclass

S2

∑
i=0

B

∑
j=0

1noobj
i,j ∑

c∈classes
Pi(c) log

(
P̂i(c)

)
(3)

losscon f idence =λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
i,j

(
Ci − Ĉi

)2

+ λobj

S2

∑
i=0

B

∑
j=0

1obj
i,j

(
Ci − Ĉi

)2

(4)

The loss is divided into three parts, losswh (Equation (2)) is the loss caused by the
location of the predicted bounding box, lossclass (Equation (3)) is the loss caused by the
prediction object category, and losscon f idence (Equation (4)) is the loss of confidence. (x, y) is
the center coordinate and (w, h) is the width and height of the predicted bounding box. S
is grid size; S2 is defined as the number of grids; B is defined as the number of prediction
boxes in each cell; C is defined as the confidence of the prediction box; P is defined as the
confidence of the pedestrian [56]; 1obj

i,j equals 1 if the box at (i, j) has an object; 1noobj
i,j equals

1 if the box at (i, j) does not have an object;
(

x̂, ŷ, ŵ, ĥ, Ĉ, P̂
)

are the values to be predicted
by the network.

For losswh and losscon f idence, the sum-squared error is used as the loss function of
location prediction and confidence prediction, and lossclass uses mean squared error as the
loss function probability of category. The IOU error loss function and the classification
error loss function are calculated in the YOLO algorithm utilizing binary classification
cross-entropy [57].

Figure 6 depicts the overall flow chart of the enhanced YOLO-Tiny object detection
algorithm described in this paper. Using the VaryBlock module, feature extraction and
object detection are both completed using a convolutional neural network using the YOLO-
Tiny series network as the backbone network. The input image is segmented into grids in
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the prediction stage, and item prediction and categorization location are achieved using
continuous regression of the predefined border box.

The model’s output is a collection of anticipated bounding boxes, each of which
contains information on the object’s placement inside the image and the model’s level of
confidence in it. As a result, we choose the box with the highest confidence among these
anticipated bounding boxes. Anchors are continuously generated during the detection
stage in our proposed model to discover possible object regions on the input image. The
bounding box is then subjected to regression and classification. Finally, the model outputs
the bounding box position as well as the object’s class probability. The flow of the program
is shown in Algorithm 2.  

 

 
Figure 6. The prediction process of the improved YOLOv3 object detection; The input image is
divided into an equal-sized s × s grids (a); each grid includes three different scales and each scale
owns three bounding boxes with different sizes (b,c) to predict the object (d).

Algorithm 2: The prediction process of the improved YOLOv3 object detection
algorithm

Input: Image X and model weight M.
Output: The prediction category and probability P of all objects in image X as well

as the corresponding bounding box position.
1 Load image X and weight M;
2 Create numerous matrix vectors with various anchors and use the matrix vector as

the algorithm’s input;
3 Calculate the grid cells in the bounding box by scanning the grid through anchors;
4 Logistic regression and algorithm model were used to obtain the p value of each

object in image X;
5 P and the matching boundary box center coordinates are output as the forecast

accuracy probability P.

After the grid is separated, each grid comprises three anchors of variable sizes through-
out the prediction, and the number and size can be changed depending on the actual
accuracy and speed requirements. The network structure of the object detection proposed
in this paper is depicted in Figure 2. A VaryBlock module based on the YOLOv3-Tiny
network replaces each Maxpool layer.

4. Performance Analysis
4.1. Evaluation Indicator

Two assessment indicators for the object detection algorithm employed in this paper
are utilized to compare the accuracy of different sorts of objects: The average precision
(AP), which comprises mean average precision (mAP), AP50 (AP at IOU = 0.5), AP75 (AP at
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IOU = 0.75), AP for small objects (APS), AP for medium objects (APM), and AP for large
objects (APL) is one (APL). The other is the FPS (frames per second) rate. APS, APM, and
APL are detection indexes for objects of various sizes, and the mAP is the average of AP
across many categories, which gauges the model’s performance across all categories. FPS
stands for frames per second.

4.2. Experimental Verification and Result Analysis

To solve the small object problem of the object detection algorithm, this paper uses an
improved YOLO-Tiny object detection algorithm fused with the VaryBlock module. Since
the objects in the COCO dataset and the TUM dataset are similar in size, the Stochastic
Gradient Descent (SGD) method is used to pre-train RGB images (labeled) from the COCO
dataset and TUM dataset. Then, we load the obtained weight file into the model as
the weight before training and finally verify it in the RGB image of TUM RGB-D. The
annotation tool uses Labelimg. Labelimg is a graphical image annotation tool that labels
object bounding boxes in images. Our experiment is conducted on an Ubuntu PC using an
Intel I7-9700K CPU, 16 GB DDR4 3000, and NVIDIA GTX 750 with 4 GB of memory. During
the experiment, the VaryBlock module is added to the network. In addition, before the start
of the training phase, this paper first uses WGAN and traditional methods to expand the
training set and uses the K-means++ clustering algorithm to cluster the bounding boxes of
the training set to obtain the preset bounding box.

Each training image is randomly sampled to 70% for training and 30% for validation
to make the detector more resilient to input objects of various sizes and shapes. In the
training step, the experiment trains a total of 10 categories across 45,000 iterations, with
basic learning, momentum, and weight attenuation coefficients of 0.001, 0.9, and 0.0005,
respectively. With a batch size of 64 and a subdivision size of 32, we apply the Stochastic
Gradient Descent method. To lessen the burden of occupying memory, each iteration
randomly selects 64 samples from all training sets to engage in training; subsequently, all
batch samples are separated into 32 parts and delivered to the network to participate in
training. This research also use the WGAN approach to broaden the scope of the training
set. The front end of the model will be changed to 416 × 416 pixels and three channels for
any input image size, and the final output will be the same size as the original image.

The MS COCO dataset and RGB images from the TUM dataset were used as the train-
ing and validation sets in this work. As shown in Table 4, we apply the same enhancement
to YOLOv3-Tiny and YOLOv4-Tiny, respectively, and compare the results. Our method
shows a significant improvement over the original YOLO-Tiny, and it is comparable to
other similar methods, such as SSD(300), RCNN, Faster RCNN, and YOLOv3. To train our
approach, we utilized the COCO2017 Trainval + TUM train dataset, and to test multiple
methods, we used the COCO2017 test-dev + TUM test dataset. Compared with the original
YOLOv3-Tiny, the mAP of our method based on YOLOv3-Tiny is improved from 55.3% to
60.4%, especially the APS is increased by 8%, but the APM and APL are not improved very
much, so our method is more targeted for small objects detection. The detection results are
comparable with YOLOv4-Tiny, and some indexes even exceed YOLOv4-Tiny. However,
the FPS decreases from 74 to 65, but it still meets the requirements of the real-time system.
Furthermore, the improved network based on YOLOv4-Tiny has the same improvement
effect in our experiment. Figure 7 shows some detection results of the MS COCO2017
dataset with our method.
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Table 4. AP values and speed of different networks on COCO+TUM dataset.

Model Train Data Test Data mAP (%) AP50
(%)

AP75
(%)

APS
(%)

FPS Parameters (M)

SSD(300) COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

43.2 49.1 44.5 41.3 40 -

RCNN COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

59.3 60.2 55.1 43.2 37 -

Faster RCNN COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

64.4 68.2 64.1 46.7 49 31.5

YOLOv3-Tiny COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

55.3 63.7 58.1 52.2 74 8.7

Ours (v3) COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

60.4 67.2 64.9 60.3 65 12

YOLOv4-Tiny COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

59.4 65.3 60.1 58.6 85 27.6

Ours (v4) COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

64.5 68.8 65.7 65.6 81 31

YOLOv5s COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

37.0 56.8 37.4 35.0 416 7.2

YOLOv5m COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

44.3 64.1 45.4 40.0 294 21.2

YOLOv5l COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

47.7 67.3 49.0 47.2 227 46.2

YOLOv5x COCO2017_trainval
+TUM_train

COCO2017_test-dev
+TUM_test

50.8 68.9 50.7 47.3 144 86.7

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. (a–h) shows some detection results of the MS COCO2017 dataset with our method.

We have performed some experiments to verify the improvement effect of the Vary-
Block module on the original YOLOv3-Tiny network. First, we add VaryBlock 1 to Vary-
Block 3 into the initial network of YOLOv3-Tiny and compare it with the initial network.
Then, we add VaryBlock 4 to VaryBlock 6 for comparison again. The mAP, APS, and FPS in
the experiment are shown in Table 5.



Appl. Sci. 2022, 12, 7847 15 of 20

Table 5. The test results with different layers add VaryBlock.

Network Structure FPS mAP (%) APS (%)

YOLOv3-Tiny 74 55.3 52.2
YOLOv3-Tiny+ VaryBlock 1-3 70 57.6 55.2
YOLOv3-Tiny+ VaryBlock 1-6 68 61.5 57.2

As illustrated in Table 5, adding VaryBlock 1-3 to the basic network improves detection
accuracy from 55.3 to 57.6. The number of convolution cores in the convolution layer will
increase as the number of layers increases, since the first seven layers of YOLOv3-Tiny are
the most significant convolution layers. As the number of convolution kernels grows, the
amount of computations during detection grows, resulting in a fall in FPS from 74 to 70
frames. When utilizing convolution kernels of the same size, the more convolution kernels
used, the more features are extracted. As a result, more features may be recovered after
adding VaryBlocks 4–6 to the convolution layer. From 57.6% to 61.5%, the accuracy has
improved. The FPS is only nine frames lower than the original model, yet it still passes the
real-time requirements.

Table 6 is the test results for WGAN. From the comparison results, it can be seen
that APS and APM increased by 2.1% and 1.9%, respectively, in the detection results of
YOLOv3-Tiny combined with WGAN, and the detection indexes for large objects basically
remained unchanged. Generally speaking, the network using WGAN will obtain a higher
value in the small object detection index, which means that the expansion of data by WGAN
can make the network model more accurate in small object detection.

Table 6. The test results with and without WGAN.

Network Structure FPS mAP(%) APS (%) APM (%) APL (%)

YOLOv3-Tiny 74 55.3 52.2 57.2 60.3
YOLOv3-Tiny+WGAN 74 57.3 55.7 59.1 60.4

Our method 65 60.4 57.1 60.8 60.3

Table 7 displays the experimental outcomes. The results show that whether utilizing
YOLOv3-Tiny or the upgraded YOLOv3-Tiny, the network detection time with k-means++
is faster than with the normal k-means network, and the AP also has a higher value.

Table 7. The test results with k-means++ and standard k-means.

Network Structure FPS mAP (%)

YOLOv3-Tiny + standard k-means 74 55.3
YOLOv3-Tiny + k-means++ 78 56.6

YOLOv3-Tiny + VaryBlock + standard k-means 60 59.2
YOLOv3-Tiny + VaryBlock + k-means++ 65 60.6

Figure 8 shows the results of YOLOv3-Tiny and the improved YOLO-Tiny (based on
YOLOv3-Tiny) object detection algorithm on the TUM dataset, respectively. As can be seen
from the comparison between Figure 8a and Figure 8b, there is a difference in the detection
results of the person in a book.

Figure 8b detects a person in a book while Figure 8a detects nothing in the book. It
means that our model has good performance for small object detection. Figure 8c and
Figure 8d both detect laptop, keyboard, and mouse, but books are not detected in the
YOLOv3-Tiny model. The experimental comparison proves that the model we trained is
more suitable for the TUM dataset and has higher accuracy. Figure 8e and Figure 8f have
different detection results for cans. Figure 8f has detected two cans, while Figure 8e has
detected only one cans. The tape on the far right of the table is mistakenly detected as
a bowl, which is corrected in our model as shown in Figure 8f. The deeper the network,
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the smaller the feature maps that are retrieved by the convolution and pooling processes
of convolutional neural networks, making it difficult to completely describe the features
of small objects [58]. Small items, such as a cup in the distance and a dog in a maga-
zine, are better detected in our model, as seen in the comparison between Figure 8g and
Figure 8h. It demonstrates that the model developed in this research has a good small-object
detection effect.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Detection results of TUM dataset using YOLOv3-Tiny and our method (v3). (a,c,e,g) show
results of YOLOv3-Tiny; (b,d,f,h) shows results of our method (v3).

The experimental results of Table 8 show that compared with other object detection
methods, the proposed method has obtained relatively considerable mAP. The mAP in-
creased dramatically with smaller things in particular. It shows that our approach has
excellent performance. Compared with baseline YOLOv3-Tiny, the proposed algorithm-
based YOLOv3-Tiny improves AP values in eight categories, including keyboard (45.5
to 57.2), cans (52.1 to 55.3), plant (56.5 to 59.6), mouse (56.1 to 58.8), TV monitor (42.1 to
54.5), cup (51.7 to 68.6), person (62.1 to 64.1) and laptop (49 to 56.5). Each class has its own
set of improvements, which can be used to test the model’s resilience. At the same time,
YOLOv4-Tiny benefits from the same improving impact. In addition, the approach we
proposed is slightly less performing in both categories than in the baseline. This could
be due to a number of things. The most plausible reason is that GAN generates random
images, and different noises can result in somewhat different experimental findings. The
detection approach suggested in this research, on the other hand, is slower than the origi-
nal YOLO-Tiny because of the increased number of network layers, but it still meets the
real-time requirements. We will continue to investigate this matter in the future. Figure 9
shows the YOLOv3-Tiny loss curve as well as the improved technique. Our method’s loss
value declines slower than YOLOv3-Tiny, as shown in the graph. Due to the addition of the
VaryBlock module, the increase in the number of network layers reduces the information
loss caused by the pooling layer, and the convergence time will be relatively extended. All
the data show that our method is stable and convergent, the final loss value is close to
YOLOv3-Tiny, and the detection accuracy is greatly improved, although some detection
speed is sacrificed.
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Table 8. Comparison of the AP value and speed of different networks only on the TUM dataset.

SSD(300) RCNN Faster RCNN YOLOv3-Tiny Ours(v3) YOLOv4-Tiny Ours(v4)

keyboard 45.4 44.9 48.7 45.5 57.2 52.3 61.2
book 33.7 38.2 40.7 52.2 49.5 60.5 66.8
plant 56 60.2 65.8 56.5 59.6 56.1 66.4
cans 28.8 29.4 36.8 55.1 58.9 57.4 64.2
mouse 20.7 15.2 45.9 56.1 56.8 56.7 63.9
chair 36.8 37.6 54.8 60.1 56.4 61.4 55.3
tvmonitor 56.7 41.6 60.6 42.1 54.5 57.5 57.3
cup 35.8 22.8 50.7 51.7 68.6 53.4 70.3
person 35.3 39.9 56.4 62.1 64.1 62.4 61.2
laptop 40.7 34.4 50.2 49.0 56.5 53.6 58.7
mAP(%) 39.2 39.4 51.1 51.7 59.4 58.9 62.5
FPS 40 37 49 74 65 85 81

Figure 9. The training loss curves of our proposed method and YOLOv3-Tiny.

5. Conclusions

An Intelligent Fast Detection for Real-time Image Information in Industrial IoT is
designed in this paper. We use WGAN to expand the training set, and we use k-means++
clustering to obtain a better-preset anchor box.

The downsampling processes that cause information loss have been minimized by
the VaryBlock module, which significantly boosts network performance. We trained and
tested our method on the COCO and TUM datasets, and the detection accuracy is very
impressive. Compared with the original YOLOv3-Tiny, the mAP of our method based
on YOLOv3-Tiny is improved from 55.3% to 60.4%, especially the APS is increased by
8%. However, compared with YOLOv3-Tiny+WGAN, APS (increased by 2.6%), APM
(increased by 1.7%), and APL (decreased by 0.1%), our method does not improve too much.

In addition, for some objects that are difficult to be recognized by object detection,
such as non-rigid objects, the method in this paper has certain limitations, and it is still
difficult to accurately recognize. In addition, the addition of new modules leads to an
increase in the number of network layers, and the increase in parameters leads to a slower
convergence speed. In future work, we plan to improve on five aspects: (1) optimizing the
detection of non-rigid objects; (2) applying the method in this article to semantic SLAM to
optimize the visual odometer of traditional SLAM; (3) using XAI [59] tools to better explain,
evaluate and improve our model; (4) applying this method to Edgex Foundry (an kind of
edge computing framework); (5) according to the idea of GAN, we plan to explore a better
expansion method of the image dataset.
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Abbreviations
The following abbreviations are used in this manuscript:

IFD An Intelligent Fast Detection for Real-time Image Information in Industrial IoT
CNN Convolutional Neural Networks
YOLO You Only Look Once
GAN Generative Adversarial Networks
WGAN Wasserstein Generative Adversarial Networks
R-CNN Region Convolutional Neural Networks
RPN Region Proposal Network
FPN Feature Pyramid Networks for Object Detection
k-means k-means clustering algorithm
MS-COCO Microsoft Common Objects in Context
IoT Internet of Things
IIoT Industrial Internet of Things
SIFT Distinctive Image Features from Scale-Invariant Keypoints
HOG Histograms of Oriented Gradients for Human Detection
DPM Deformable Part Model
BoVW Bags-of-Visual-Words

PAN-Net Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation
Network

GC-YOLOv3 You Only Look Once with Global Context Block
Resnet Deep Residual Learning for Image Recognition
DenseNet Densely Connected Convolutional Networks
SGD Stochastic Gradient Descent Algorithm
IOU Intersection Over Union
SSD Single Shot MultiBox Detector
ELAN Efficient Long-range Attention Network
SVM Support Vector Machine
SSP-net Spatial pyramid pooling in deep convolutional networks for visual recognition
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