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Abstract: A conventional energy product calculated by the product of the B-field and the H-field is
not sufficient for representing the performance of a magnet because it considers the homogeneous
and only the uniaxial magnetic properties of the magnet. The conventional energy product has been
compared with another energy product obtained by integrating the scalar product of the B-field
and the H-field of each cell composed of the three-dimensional components. We investigated a
model system by micromagnetic simulation using finite differential method (FDM) and calculated
the full hysteresis of the magnet. The model system of a Nd2Fe14B magnet composed of grains with a
diameter of about 100 nm was assumed. In the case of the isotropic multi-grain magnet, the energy
product calculated by the integration method was 28% larger than the energy product obtained by
the conventional way, although a discrepancy between the distribution of the magnetizations and the
demagnetizing fields at the reversal process resulted in the decrease of the energy product.

Keywords: permanent magnet; energy product; micromagnetic simulation; multidomain reversal

1. Introduction

With the explosive rise of interest in sustainable energy production and eco-friendly
transportation, including electric vehicles, the importance of energy conversion between
electricity and kinetic energy has increased. Because a high-performance permanent magnet
plays a key role in the efficiency of energy conversion through generators and motors,
a number of permanent magnets have been investigated [1–3]. In order to be used in
generators and motors, it is important to evaluate how much magnetic energy is emitted
by permanent magnets.

Magnetic energy is represented by the energy product BH, which is twice the energy
stored in the stray field outside the magnet. It can be obtained from the volume integral
of the square of the stray field outside the magnet or from the volume integral of the dot
product between the demagnetizing field Hd and the internal magnetic flux density B,
whose relation is shown in Equation (1) below. It is not only hard to measure the magnetic
field distributed in the free space, but also the magnetic field on a closed surface. For this
reason, the energy product can be used for a figure of merit to estimate the performance of
the permanent magnet, whose values are proportional to the energy from the stray field
outside the magnet [4].

Eout =
1
2

Ein =
1
2

∫
a

µ0H2dV = −1
2

∫
i
B · HdV. (1)

The energy product is usually calculated as the measured magnetization in the direc-
tion of the applied magnetic field. The energy product is calculated from the dot product
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between the magnetic flux density B and the magnetic field H, and the maximum energy
product (BHmax) is widely used as a figure of merit for evaluating the performance of hard
magnetic materials. However, there are some missing points for the usage of the BHmax.
Firstly, BHmax is the highest value of the energy products among various magnitudes of
the magnetic field. The energy products obtained from the magnetic hysteresis of a mag-
net loop can supply the expectation value of the energy product of magnets for different
shapes, although it does not perfectly match the energy product of the magnets [5,6]. The
only meaningful value for a system is an energy product at the remanent state, which is
determined from the demagnetizing field by the shape of the magnet. Another missing
point comes from how the energy product is calculated. Although the energy product is
usually given as the area of a rectangle in a B-H hysteresis loop, there is a clear difference
between the energy product and the real value of the energy product calculated from
its original physical meaning. One difference is that the conventional energy product
assumes the magnetization and the demagnetizing field as uniaxial components in spite
of the three-dimensional emission of the magnetic field. Another difference comes from
the discrepancy between the distribution of the magnetizations and the demagnetizing
fields in the magnet. Because the permanent magnets are not used in the saturation state,
the influence by the internal magnetic state during magnetic switching is inevitable for
determining the energy product of the magnet. Most studies on the switching process cover
the dynamic reversal process of soft magnets [7–12], and there are some research works that
investigate the reversal mechanism of permanent magnets [13–15]. The reversal process is
studied in order to estimate the effect of temperature [15], exchange spring [13], and grain
boundary diffusion [14]. However, the effect of the reversal mode on the energy product
has scarcely been studied despite its importance in estimating the practical magnetic energy
of the permanent magnets. One of the reasons why there is a lack of studies devoted to
estimating the energy product based on the theory is the difficulty in measuring the internal
state of the magnet. Finally, an easy way to estimate the energy product, which multiplies
the average values of B and H, is widely used. Recent advances in computing technology
have made it possible to investigate the complex magnetic properties inside magnets.

In this paper, we investigated a three-dimensionally integrated energy product from
the magnetization and demagnetizing fields of cells to obtain the correct energy product;
this was then compared to the energy product calculated using the conventional method.

2. Materials and Methods

We adopted an Nd2Fe14B multi-grain magnet with dimensions of 2000× 2000× 1000 nm3,
as illustrated in Figure 1. The material is commonly used with high coercive force and the
energy product, and it has been investigated with the use of various models [14–19]. In
order to investigate the magnetic properties during multidomain reversal, we assumed that a
model magnet consists of grains with a diameter of 100 nm, and that the uniaxial magnetic
anisotropy direction of the grains is randomly distributed. For the micromagnetic simulation,
the unidirectional magnetic anisotropy constant of 4.9× 106 J/m3 was used. The saturation
polarization was assumed to be 1.26 MA/m3, and we set the exchange stiffness constant to
3.0× 10−12 J/m [20].

To investigate the model system, a full hysteresis loop was simulated with Mu-
max3 [21,22], which implements simulations in magnetic solids described by a finite
differential micromagnetic solver. In the finite differential calculation of the micromagnetic
properties, a cubic cell of 10 × 10 × 10 nm3 was assumed, which was larger than the
exchange length of the magnetic material. While the larger cell size can make a difference
with the use of correct magnetic quantities of the materials, it is sufficient to investigate
the tendency of the magnetizations and the demagnetizing fields during the switching
process [23,24]. The hysteresis loop was computed through the minimization of the Gibbs
free energy for an external magnetic field ranging from −10 to +10 T, which was ap-
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plied along the cartesian z-axis. The total magnetic Gibbs free energy is described by the
following equation:

E = Eex + EK + Ed + EZeeman, (2)

where Eex, EK, Ed, and EZeeman are the exchange energy, the anisotropy energy, the magne-
tostatic energy, and the Zeeman energy, respectively.
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Figure 1. Schematic image of the Nd2Fe14B magnet consisting of 4871 grains with randomly dis-
tributed anisotropy directions.

3. Simulation Results

The calculated magnetic hysteresis loops are represented in Figure 2a. The black solid
line follows the magnetization (µ0M) with respect to the applied magnetic field (Happ) from
the simulation results. One of the main points is the difference between the methods used
to obtain the values of the energy product (BH), which are expressed in Figure 2b. The
orange line and squares indicate the energy products calculated in the conventional way,
in which the values are from the product between the B-field and the H-field. The B-field
is the sum of the magnetization along the direction of the applied magnetic field (+z in
this simulation), while the H-field consists of both the applied field and the demagnetizing
field along the +z direction. To reflect the experimentally measured values, the average
values for the system were used. The violet line with triangle symbols represents the
energy product calculated by integrating the energy product of each cell, which considers
only a one-dimensional component along the magnetic field direction. On the other hand,
the olive line and circle symbols in Figure 2b are the energy products calculated by the
integration of the energy products of each cell; these energy products were obtained from
the inner product between the B-field and the H-field. The three-dimensional energy
product of each cell was calculated by

B·H = BxHx + ByHy + BzHz, (3)

where the B-field and the H-field follow the indicated direction.
There are definite gaps between the energy product from the conventional method

and the integration method, which can be explained by the simple mathematical relation
expressed below. ∫

i
B · HdV 6= B · H. (4)
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Figure 2. (a) Hysteresis loops of magnetization µ0M with the applied magnetic field Happ, and the
magnetic flux density B versus the magnetic field strength H (=Happ + Hd). (b) Energy product BH
calculated in three different ways.

The magnetizations and the demagnetizing fields during the reversal process were
also investigated. Figure 3a represents the magnetization of each cell in color, while
Figure 3b shows that of the demagnetizing field. It must be noted that the color indicates
the magnitude along the +z direction. With the magnetic field of 10 T, all the cells were
saturated along the +z direction, which is represented by the image filled in with the color
red. With the reduction of the applied magnetic field, the magnitude of the magnetization
was reduced and changed into the color blue. At the remanent state without the application
of the magnetic field, the magnetizations were distributed to certain values on a grain-
by-grain basis, which still have a positive value averaging to remanent magnetization
(Mr). What we are focusing on is the difference of tendency between the magnetization
and the demagnetizing field, and it can be easily understood from the close-up image
of a cube envelopted in dashed lines. While the magnetizations in the same grain have
similar values due to exchange interaction, the magnitudes of the demagnetizing fields are
differently distributed in a grain. The edge of the grain has stronger magnitudes of the
demagnetizing fields.

To clearly compare this difference, the histograms for cells with certain values of
magnetizations and demagnetizing fields were investigated and represented in Figure 4.
At the saturation state, the values of the magnetizations are distributed across a narrow
range with high intensity, whereas the values of the demagnetizing fields follow a different
distribution from that of the magnetization. The magnetizations were determined by
the combination of the easy axis direction of the grain and the strength of the applied
magnetic field, while the demagnetizing fields are associated with the magnetizations and
the geometry of the whole system. Due to the exchange coupling, the magnetizations
(Figure 4a) have almost the same value within the same grain, but they have different
values depending on the grain because the anisotropy direction of each grain is different.
On the other hand, the demagnetizing fields (Figure 4b) follow a distribution similar to
the Gaussian distribution regardless of the magnitude of the applied magnetic field [25].
This discrepancy between the magnetizations and the demagnetizing fields results in the
gap between the energy products calculated from the average values of the B-field and the
H-field and from the integral of each cell. The distribution of the demagnetizing fields is
speculated by cumulative distribution function (CDF) in Figure 4c. Empirical CDF from
the simulation is plotted as a purple line, and for comparison, the standard normal CDF
is plotted as black scatter. The empirical CDF almost coincides with the standard normal
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CDF. Therefore, it is justified to approximate the demagnetizing field distribution with
a Gaussian.
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Figure 4. Histograms for cells with certain values for (a) magnetizations and (b) demagnetizing fields
at 10 T (saturation), 0 T (remanent state), and −3 T (during reversal). (c) Cumulative distribution
function (CDF) for the computed demagnetizing field at the remanent state, and the standard normal
CDF by the mean and the standard deviation of the demagnetizing field in each cell.

The demagnetizing factor (N = −Hd/Mz) is a geometry-dependent value represent-
ing the magnet, which refers to the proportionality of the demagnetizing field with the
magnetization [26]. To clearly show the mismatch between the magnetization and the
demagnetizing field, the demagnetizing factor of each cell was investigated; a histogram
for the distribution of the demagnetizing factor is given in Figure 5. In the saturation
state, the demagnetizing factor is affected by the distribution of the demagnetizing field
and follows a narrow Gaussian distribution because the magnetizations in the magnet are
aligned along the applied field direction. On the other hand, in the case of the remanent
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state, the demagnetizing factor spreads over a wide range due to the mismatch between
the magnetizations and the demagnetizing fields.
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For these differences in distribution between the magnetization and the demagnetizing
field during the magnetic reversal, the energy product calculated from the integration of
each element is inevitably different from the energy product given by the product of the
mean B and the mean H.

4. Conclusions

In summary, we have explored magnetization and the demagnetizing field via micro-
magnetic simulations to clarify the energy product in a multidomain reversal mode. More
specifically, the energy product calculated by the product of the mean value of the B-field
and the H-field was compared with the energy product calculated faithfully to their essence
while considering the three-dimensional components of magnetization and the demagne-
tizing field. The simulation results show the obvious degradation of the energy product
by comparing the one-dimensional energy product calculated by integration because the
distributions of the magnetizations and the demagnetizing fields are different in the mul-
tidomain reversal mode. However, the energy product considering three-dimensional
components is 28% larger than the energy product calculated in the conventional way.
Therefore, to obtain the correct energy product, the magnetic alignment, the demagnetizing
factor determined by the shape of the magnet, and the reversal mode should be considered.
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