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Abstract: In recent years, adversarial examples have aroused widespread research interest and raised
concerns about the safety of CNNs. We study adversarial machine learning inspired by a support
vector machine (SVM), where the decision boundary with maximum margin is only determined by
examples close to it. From the perspective of margin, the adversarial examples are the clean examples
perturbed in the margin direction and adversarial training (AT) is equivalent to a data augmentation
method that moves the input toward the decision boundary, the purpose also being to increase the
margin. So we propose adversarial training with supported vector machine (AT-SVM) to improve the
standard AT by inserting an SVM auxiliary classifier to learn a larger margin. In addition, we select
examples close to the decision boundary through the SVM auxiliary classifier and train only on these
more important examples. We prove that the SVM auxiliary classifier can constrain the high-layer
feature map of the original network to make its margin larger, thereby improving the inter-class
separability and intra-class compactness of the network. Experiments indicate that our proposed
method can effectively improve the robustness against adversarial examples.

Keywords: adversarial examples; margin; auxiliary layer

1. Introduction

Convolutional neural networks (CNNs) have been widely used in various domains,
especially in computer vision. CNNs have satisfying learning capabilities as they can ex-
tract image features of different scales by multiple convolutional layers. However, various
CNN architectures are vulnerable. The models will predict wrong results with small per-
turbations adding to the inputs that humans cannot recognize. In other words, adversarial
examples [1–3], which are similar to clean examples, will mislead the CNN to output incorrect
results. Moreover, adversarial examples can transfer across different CNN models [4,5]. These
phenomena indicate that the CNN learns some simple patterns to accomplish tasks exactly on
specified data but does not recognize more robust advanced features like the human brain. So
the CNN is not safe for medical care [6], autonomous driving [7], and other fields.

The potential serious harm of adversarial examples has drawn the attention of the
scientific research community, forming a new field called adversarial machine learning.
There are two main types of defense methods against adversarial examples, i.e., certified
methods and empirical methods. Certified methods [8,9] can obtain provable robustness,
but the provable robustness is low and most of them only aim at the attack with disturbance
of l2 norm. Empirical methods account for the majority of defense methods, including
stochastic activation pruning (SAP) [10], distillation defense [11], asymmetrical adversarial
training [12], ME-net [13], etc. However, the robustness of empirical methods is not reliable,
and it may be broken by stronger attacks [14,15].

Adversarial training (AT) [16] is one of the most successful empirical defense methods
at present which is a data augmentation technique for training models on both natural
and adversarial examples. Although AT is an empirical method, it has been proved to
be highly robust even under adaptive attack [14]. AT effectively robustifies CNN but
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has two challenges: lower clean accuracy [17] and the overfitting problem [18,19]. To
address these challenges, many variants of AT have been proposed, such as TRADES [20],
customized adversarial training (CAT) [21], dynamic adversarial training (DAT) [22], and
geometry-aware instance-reweighted adversarial training (GAIRAT) [23]. However, these
two problems are still unsolved very well. So this paper is devoted to them by considering
the maximum margin.

The key insight is that the purpose of adversarial machine learning, i.e., the maximiz-
ing margin is very similar to that of SVM. Theoretically, the margin of the classifier in the
input space is positively correlated with its robustness. However, for multi-layer neural
networks, the margin on the input space is difficult to be calculated and constrained. AT
can indirectly increase the margin of the classifier in the input space because the adversarial
examples are obtained by moving clean examples toward the decision boundary. We find
that ordinary training methods such as using cross-entropy loss cannot effectively increase
the margin. So we propose adversarial training with supported vector machine (AT-SVM)
that increases the margin by SVM. Specifically, we insert an SVM auxiliary classifier be-
fore the last layer in the network, which can maximize the margin on this feature space.
The SVM is a better classifier for high-level feature space, so we use it to identify more
confusing points which will be trained on the original network. With continuous learning,
the boundary of the original network will gradually approach the boundary of the SVM.
At the same time, in order to ensure that the margin on the feature space is consistent
with the margin on the input space, we constrain the distance between the clean example
and the corresponding adversarial example in the margin direction of this feature space.
Experiments indicate that our proposed method can effectively improve the robustness
against adversarial examples.

2. Related Work

In this section, we briefly review the adversarial training and defense methods based
on it.

2.1. Adversarial Attacks

With the proposal of adversarial examples, the earliest method used to generate adver-
sarial examples is the fast gradient sign method (FGSM) [1]. FGSM generates adversarial
examples with a single normalized gradient step. Since then, a number of gradient-based
and multi-step iterative attacks have been proposed such as projected gradient descent
(PGD) [16], C&W attack [24], and DeepFool [25]. We review the PGD attack which is the
most popular and widely used attack.

PGD aims to find an adversarial example x̂ for an input x that satisfies a given
boundary ||x̂− x||p < ε. Let B denotes the lp-ball of radius ε centered at x. The attack
initializes the adversarial example with a random point x0 ∈ B, and iteratively updates it
with the gradient, as shown in Equation (1).

xi+1 = ProjB(xi + α · g)
s.t. g = arg max

‖v‖p≤1
v>∇xi L( f (xi), y) (1)

where L(., .) is a suitable loss-function (e.g., cross-entropy), f is the objective model, α is a
step size, ProjB projects an input onto the lp-ball B, and g is the direction of gradient that
loss ascents fastest for a given lp-norm. For the l∞-norm, ProjB is a clipping operator and
g = sign(∇xi L(xi, y)).
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2.2. AT-Based Defense Methods

For a CNN model with parameters θ, the goal of adversarial defense is to solve the
following min-max optimization problem, as shown in Equation (2)

min
θ

E(x,y)∼D max
x̂∈S0(x)

L(hθ(x̂), y) (2)

where the inner maximization is intractable, so adversarial training replaces it with a
lower bound which is obtained by an adversarial attack. The standard adversarial training
(SAT) [16] maximized the inner loss using PGD attack and found it performs well against
other adversarial attacks.

Several improvements for standard adversarial training have been proposed. Cur-
riculum adversarial training [26] trains a model from weak attack to strong attack. Dy-
namic adversarial training (DAT) [22] proposes a dynamic training strategy to increase
the convergence quality of the generated adversarial examples gradually. TRADES [20]
traded adversarial robustness for accuracy. Misclassification aware adversarial training
(MART) [27] explicitly differentiates the misclassified and correctly classified examples
during the training. Friendly adversarial training (FAT) [28] searches for the least ad-
versarial data (i.e., friendly adversarial data) by minimizing the loss that makes results
confidently misclassified rather than employing the most adversarial data to maximize the
loss. Customized adversarial training [21] proposes auto-tuning perturbation and adaptive
label smoothing for adversarial training. Gowal et al. [29] improved the state-of-the-art
robustness by largening the model’s Swish/SiLU activations and model weight averaging.
Geometry-aware instance-reweighted adversarial training (GAIRAT) [23] regards iterations
needed for an attack to misclassify an example as its importance and then uses it to reweight
all training examples.

2.3. AT-Used Defense Methods

In addition to the improvements of AT, there are many defense methods requiring the
assistance of AT to implement specific functions or achieve higher robustness.

Mustafa et al. [30] learned centers in hidden feature space to separate higher-order
representations of different classes. Taghanaki et al. [31] proposed a defense strategy based
on kernel function, which increases robustness through learnable Mahalanobis distance.
Channel-wise activation suppressing (CAS) [32] suppressed redundant activation from
being activated by adversarial perturbations. Ref. [33] used spatial attention to realize
adversarial robustness. Channel-wise importance-based feature selection (CIFS) [34] built
a probe network to get the importance mask for each channel. Feature denoising [35] uses
non-local mean filtering, mean filtering, median filtering, and bilateral filtering to perform
feature denoising for improving the robustness of countermeasures.

These methods have changed the network structure and used it as the main con-
tribution, and need to be combined with adversarial training. Although they provide a
theoretical basis for changing the network structure, it is difficult to get effective improve-
ment if the adversarial training is not added at the same time in the experiment (even if
there is, it is probably due to gradient masking).

3. Proposed Method

In this section, we firstly introduce the motivation and basic theories of our proposed
method. Then we consult its learning objective as well as its algorithmic implementation.
Lastly, we compare our method with other existing defense methods.

3.1. Motivation

On the one hand, according to a common empirical result from researchers of adversar-
ial defense [16,23], a larger model capacity is needed for adversarial examples. Therefore,
in the case of insufficient model capacity, it is unwise to treat all examples equally. Training
more important examples is helpful to make better use of the model capacity. On the other
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hand, intuitively, the examples close to the classification boundary are more vulnerable to
adversarial attacks and are more important for the classification boundary. This widely
accepted assumption can be proved empirically. Figure 1 shows the distribution of the fea-
ture map before the last layer of the two randomly selected classes in the CIFAR-10 dataset.
It can be seen that the features of the misclassified examples are concentrated near the
boundary no matter whether it is adversarial examples using targeted or untargeted attack.
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(d) classification of un-target attack after AT-SVM

Figure 1. Two-dimensional visualizations of the model’s output distribution of natural examples and
adversarial examples from two separated classes from the CIFAR-10 dataset. For each subfigure, the
left channel indicates the result from the original model and the right channel indicates the result
from the SVM auxiliary classifier. First, we train the original model using SAT. Then we insert our
SVM auxiliary classifier and train it but with the original model fixed. The classifying results are
shown in (a,b). The loss of them is shown in (c). Last, we use our AT-SVM to train a model, the result
is shown in (d).

According to the idea of SVM [36], to obtain a linear binary classifier that maximizes
the margin between two classes, only the examples closest to the decision boundary, i.e.,
the support vectors, are needed. For a CNN network, although it is not a linear classifier,
the last layer is always a fully connected (FC) layer that is linear. So the examples can
be transformed into linearly separable high-order feature space after passing the front
layers. According to these high-order features, we can find out which examples are support
vectors that are close to the boundary. Training models on these examples can improve the
efficiency of adversarial training.

For linear classification tasks, SVM can learn the classifier with the largest margin. We
extend the SVM and add an SVM auxiliary layer into the CNNs when training so that the
features extracted by the CNNs have a larger margin, hence improving the adversarial
robustness of the CNN.

3.2. Theories
3.2.1. Linear Binary-Classification Task

For a binary linearly separable classification problem, there exist many hyperplanes
that might classify the data. SVM is designed to compute the classification hyperplane
which represents the largest separation, or margin, between two classes. The max-margin
hyperplane is also known as the optimal classification hyperplane.

The main idea of finding the optimal classification hyperplane is to maximize the
distance between different classes. Because of the possible inseparable points in data, slack
variable ζ and penalty coefficient C are generally added. So the essence is to solve the
following optimization problems, as shown in Equation (3)
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min
1
2
‖ω‖2

2 + C
m

∑
i=1

ζi

s.t. y(i)
(

ωTx(i) + b
)
≥ 1− ζi

ζi ≥ 0, i = 1, 2, . . . , m.

(3)

where y(i) = ±1 indicate that x(i) is a positive or negative example.
These constraints of the optimization problem in Equation (3) can be solved by math-

ematical methods such as the sequential minimal optimization (SMO) [37] algorithm.
However, in order to replace the original linear FC layer in the training of CNN, this
formula cannot be directly used as a new loss function, as there are inequality constraints.
So the following content will deform this optimization problem.

The constraints are equivalent to Equation (4).

ζi ≥ max
(

0, 1− y(i)
(

ωTx(i) + b
))

(4)

The inequality constraint in Equation (4) shows the lower bound of ζi. When solving
the minimization problem outside, we approximately replace ζi with the lower bound of it.
Let C′ = 1/2C. Equation (3) can be written as Equation (5).

min
m

∑
i=1

max
(

0, 1− y(i)
(

ωTx(i) + b
))

+ C′‖ω‖2
2 (5)

Since there is no inequality constraint, the new formula can be directly used as the
loss function. Notice that ∑m

i=1 max
(

0, 1− y(i)
(

ωTx(i) + b
))

is the hinge loss function.

The other item C′‖ω‖2 can be regarded as a regularization term added to improve the
generalization performance of the model.

3.2.2. Linear Multi-Classification Task

For a multi-class classifier, the predicted label is chosen by the maximal logit attained
over all classes:

ŷ = arg max
k

fk(x)

where fk(x) is the output of f (x) corresponds to the kth class. In linear case, fk(x) = ωT
k x+ bk.

For any two classes (p, q), the decision boundary between them is called lp,q.

lp,q =
{

x | ωT
p x + bp = ωT

q x + bq

}
=
{

x |
(

ωT
p −ωT

q

)
x + bp − bq = 0

} (6)

The geometric distance of a point x from lp,q is:

dp,q(x) =

(
ωT

p −ωT
q

)
x + bp − bq∥∥∥(ωT

p −ωT
q

)∥∥∥
2

(7)

Some margin-based methods only consider the margin between the ground truth class
and the most easily misclassified class, i.e., setting p = y, q = arg maxi 6=y fi(x). Instead, our
method considers all margins between each class and the other classes. In other words, we
regard a multi-classification task as a multiply binary classification task. Equation (5) can
be generalized to the following optimization problem in Equation (8).

min
m

∑
i=1

n

∑
j=1

max
(

0, 1− y(i)j

(
ωT

j x(i) + bT
j

))
+ C′‖ωj‖2

2 (8)
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where n is the class number, y(i)j = ±1 indicate x(i) is/not belong to class j.

3.2.3. General Classification Task

For a nonlinear classifier, the approximation scheme from Elsayed et al. [38] can be
adopted to capture the distance of a point to the decision boundary which is a first-order
Taylor approximation to the true distance. Equation (8) can be extended to:

dp,q(x) =
fp(x)− fq(x)∥∥∇x fp(x)−∇x fq(x)

∥∥
2

(9)

Using this approximation, we can calculate margins on all layers, just replace the
input x in the above formula with intermediate features xl on different layers. The training
data x induces a distribution of distances at each layer l which, following earlier naming
convention [39,40], we refer to as margin distribution (at layer l).

Intuitively, constraining the margin distribution of the total network to be large enough
can lead to a robust model. However, this approximation will lose accuracy fast as inputs
move away from the decision boundary. Moreover, it is difficult to learn a model with large
margin distribution. So that our proposed method only constrains the margin distribution
on the last FC layer, just solve the optimization problem in Equation (8). At the same time,
use lmargin introduced later to limit the deviation between the margin distribution on the
last FC layer and the margin distribution of the total network.

3.3. AT-SVM

In this section, we introduce our supported vector machine adversarial training (AT-
SVM) method, which dynamically learns an SVM auxiliary classifier and restricts the
decision boundary of the original network to achieve a large margin.

3.3.1. Overview

As Figure 2 shows, our method is mainly inserting an auxiliary SVM classifier in
the penultimate layer of the network, which is parallel to the last layer. The SVM layer
contains as many neurons as the number of classes and is purposed to obtain the maximum
margin decision boundary in this feature space. The SVM auxiliary classifier treats the
front layer of the original network as a feature extractor and uses a separate optimizer for
training. In each epoch of training, the SVM auxiliary classifier and the original network
are trained successively, and a mask on which examples will be trained is produced by the
SVM auxiliary classifier. The SVM auxiliary classifier is discarded during inference. The
specific implementation will be introduced in the algorithm.

input 

… … 
F
C 

original CNN 

SVM  auxiliary  classifier 

…
 

…
 

Train the SVM auxiliary 
classifier 

output 
CE Loss Loss 

mask 

hinge loss 

regularization 

SVM loss 

Figure 2. Framework of our proposed AT-SVM.
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In CNNs, the last FC layer is linear, so we regard the front layers as a feature extractor.
Using φ to denote the extracted feature, we can train an SVM auxiliary classifier using
Equation (10).

min
m

∑
i=1

n

∑
j=1

max
(

0, 1− y(i)j

(
ωT

j φ(i) + bT
j

))
+ C′‖ωj‖2

2 (10)

where the first item is the hinge loss represented by Lhinge below. However, there is a
problem in training the network with Equation (10) that the feature space φ is constantly
changing. Accordingly, maximizing the margins in Equation (10) can be trivially attained
by scaling up the space φ. This problem can be solved by using the SVM auxiliary layers,
because C′‖ωj‖2

2 only helps training the SVM auxiliary and indirectly affects Lhinge. The
training of the main network is only using Lhinge, which constrains the feature extractor to
separate input examples of different classes in the feature space. The auxiliary classifier
is affected by both Lhinge and C′‖ωj‖2

2, and continuously obtains a better classification
boundary. The change of the boundary will also affect the value of Lhinge. The boundary
and Lhinge will be converged under the continuous alternating training of the original
network and the auxiliary classifier.

The distance from φ(i) to the binary decision boundary of class j is:

dj(φ
(i)) =

ωT
j φ(i) + bj∥∥∥ωT

j

∥∥∥ (11)

For a clean example x(i), we denote its adversarial example as x̂(i). Only a large margin
in SVM auxiliary cannot guarantee robustness because the extracted feature φ̂(i) of x̂(i)

may have large distance with φ(i). So we will constrain the movement of the adversarial
examples relative to the clean examples in the margin direction, as shown in Equation (12).

dj(φ
(i))− dj(φ̂

(i)) =
ωT

j

(
φ(i) − φ̂(i)

)
∥∥∥ωT

j

∥∥∥
2

(12)

After normalization, the following objective function can be obtained, as shown in
Equation (13).

Lmargin = ∑
i

∑
j

max

(
dj(φ

(i))− dj(φ̂
(i))

dj(φ(i))
, 0

)
(13)

In each epoch, we will first train the SVM auxiliary classifier using Equation (10). Then
compute Lmargin, Lhinge and add them to the loss of the original network to train.

3.3.2. Algorithm Implementation

In order to pick out the important examples close to the decision boundary, AT-SVM
adds an SVM auxiliary classifier before the last layer. For each mini-batch, adversarial
examples will be generated using the gradient of the original network, and a mask of all
examples is obtained according to the results of the SVM auxiliary classifier to pick out
the more important examples. Finally, the original network trains only on these selected
examples. In the final inference, the SVM auxiliary is removed.

In each mini-batch, first, we train the SVM auxiliary classifier with all parameters
of the original model fixed. When training the SVM layer, the loss is as Equation (10)
including both hinge loss and the weights’ l2 norm as a regularization term. Then we set
the SVM layer fixed and recalculate the hinge loss Lhinge and compute loss Lmargin from
SVM auxiliary classifier using Equation (13), send them to backpropagation. At the same
time, use whether this loss is 0 to generate a binary mask, and multiply the output from the
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original model with the mask before calculating the cross-entropy loss. The procedure is
summarized in Algorithm 1.

Algorithm 1 AT-SVM

Require: network fθ , SVM auxiliary classifier, training dataset S =
{(

x(i), y(i)
)}n

i=1
, loss

function L(., .), learning rate η, number of epochs T, batch size m, number of batches
M, weight of loss from SVM auxiliary classifier λ

Ensure: robust network fθ

1: Initialize fθ , hθ

2: for epoch = 1, 2, . . . , T do
3: for minibatch = 1, 2, . . . , M do
4: Sample a mini-batch

{(
x(i), y(i)

)}m

i=1
from

training dataset S
5: for i = 1, 2, . . . , m do
6: Use Equation (1) to generate PGD attack examples

x̂(i)

7: Get the feature φ(i) before the last FC layer
8: end for
9: Use Algorithm 2 to train an SVM auxiliary

classifier
10: Use the SVM auxiliary classifier to obtain a

mask for all x as well as compute loss Lmargin
using Equation (13)

11: L′ = ∑m
i=1 L

(
f
(

x̂(i)
)

, y(i)
)
·mask

12: θ← θ− η∇θ
1
m
(

L′ + λLmargin
)

13: end for
14: end for

Algorithm 2 is an SVM auxiliary classifier, which is trained using both the adversarial
data and the natural data and returns a mask for them at the same time. AT-SVM leverages
Algorithm 2 for obtaining the mask for all examples. For each mini-batch, AT-SVM selects
examples that will be misclassified by the SVM auxiliary classifier and then updates the
model parameters by minimizing the sum of the selected examples’ loss.

Algorithm 2 SVM auxiliary classifier

Require: input feature and labels
{(

φ(i), y(i)
)}n

i=1
, number of classes k, weights ω and

bias b for SVM auxiliary classifier, weight of regularization term C in Equation (10)
Ensure: a mask for all input data, new weights ω and bias b for SVM auxiliary classifier

1: Initialize L(i, j) = 0
2: for i = 1, 2, . . . , n do
3: for j = 1, 2, . . . , k and j 6= y(i) do
4: L(i, j) = max

(
0, 1−

(
ωT

y(i),j
φ(i) + bT

y(i),j

))
5: if L(i, j) > 0 then mask[i] = 1
6: end if
7: end for
8: end for
9: w← w− η∇w ∑i ∑j

(
L(i, j) + C · ‖ωy(i),j‖

2
2

)
10: b← b− η∇b ∑i ∑j

(
L(i, j) + C · ‖ωy(i),j‖

2
2

)
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3.3.3. Feasibility Verification

We train a standard model using AT first. This model is fixed as a feature extractor
and adds the SVM auxiliary classifier before the last FC layer. Then we train the SVM layer.
As Figure 1a,b show, the SVM auxiliary classifier can learn the correct decision boundary,
which ensures that it will pass the correct mask and loss to the original network. It can be
seen that, in general, the points which are misclassified are distributed near the boundary.
Adversarial training can be regarded as a data augmentation making trained examples
close to decision boundary and then getting larger loss.

In Figure 1c, we compare the original cross-entropy loss with the loss from the SVM
auxiliary classifier. Points with darker colors have a greater loss. It can be found that the
latter is more significant which is the reason why using the SVM auxiliary classifier: loss
in the original CNN network will decrease to nearly zero after training so that training
becomes difficult, but the loss of the SVM auxiliary layer is still significant, so training on
this loss will make model efficiently learn a large margin on this layer.

With the help of SVM, the high-order features of the example can be separated more
effectively. As shown in Figure 1a, using the SAT-trained classifier, the high-order features
of the examples and their adversarial examples are not well separated, and a large number
of them are distributed near the boundary to cause confusion. Using the classifier trained by
the proposed method, the high-order features of the examples are more concentrated and
the distance between classes is larger shown in Figure 1d. The misclassified examples are
also separated from the correctly classified examples, and several small clusters are formed
nearby. This shows that the SVM auxiliary classifier achieves the effect of increasing the
inter-class distance and reducing the intra-class distance on high-order features. Empirically,
this helps adversarial robustness. For the above reasons, the SVM auxiliary classifier can
provide a more significant loss compared with the standard setting and therefore improve
the adversarial robustness.

3.4. Comparisons to Other Adversarial-Based Defense Methods

First, the main idea of many variants of adversarial training is to weaken the adversar-
ial examples when training [21,28] or use attacks from the weak to the strong drawing on
the ideas of curriculum training [22,26]. Unlike these methods, AT-SVM does not change
the attack. Moreover, stronger adversarial examples are more likely to be misclassified by
the SVM auxiliary classifier and have the opportunity to be trained by the original network
rather than being discarded.

Second, some methods treat adversarial data differently by explicitly assigning differ-
ent weights to their losses, such as MART [27] and GAIRAT [23]. This kind of method is
similar to ours because our method is equivalent to assigning a weight of 0 or 1 to all exam-
ples. However, our method is more concerned with finding more important examples near
the decision boundary than assigning reasonable weights to all examples. We believe that
as long as the training is carried out under the appropriate data, the original surrogate loss
will be sufficient. Furthermore, MART regards natural examples which are misclassified
as outliers and suppresses the influence of adversarial examples corresponding to these
examples. On the contrary, AT-SVM will train more on these misclassified natural examples
to avoid the decline in the accuracy of natural examples caused by adversarial training.

Last, max-margin adversarial (MMA) training [41] (Ding et al., 2019) is also declared
to improve adversarial robustness by the maximum “margin” like SVM. We emphasize
that our AT-SVM is different from MMA in the following aspects: (1) the “margin” in MMA
means the “shortest successful perturbation” which is obtained from a PGD attack while
the “margin” in AT-SVM is just the loss in SVM auxiliary classifier. So AT-SVM can increase
the margin more simply, without using other objective function indirectly like MMA;
(2) MMA will first test whether the classification of clean examples are correct or not. For
correctly classified examples, MMA adopts cross-entropy loss on adversarial examples; for
misclassified examples, MMA directly applies cross-entropy loss on natural examples. Our
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AT-SVM treats all examples the same because we believe that the importance of examples
can be adequately reflected by the SVM auxiliary classifier.

4. Experiments

In this section, a set of experiments is firstly introduced. Then we use experiments
to verify the proposed method and evaluate the impact of parameter settings on the
experimental results. Finally, we verify that the proposed method is also effective under
different models or data sets.

4.1. Experimental Setup

We use ResNet-18 [42] as the basic model on CIFAR-10 dataset [43]. The basic models
are trained using SGD with momentum 0.9, weight decay 5× 10−4, and an initial learning
rate of 0.1, which is divided by 10 at the 75th and 90th epochs. All clean images are
normalized into [0, 1], and simple data augmentations are included in training such as
4-pixel padding with 32× 32 random crop and random horizontal flip. As for adversarial
training, the training attack is PGD-10 (10 step PGD) with random start and step size 2/255
and l∞ maximum perturbation ε = 8/255.

4.2. Robustness of AT-SVM Model

In Table 1, we compare the performance of the standard AT, GAIRAT, and AT-SVM.
We compare these methods to the best checkpoint model (suggested by Rice et al. [19]).
Besides the accuracy of clean data, we evaluate models’ adversarial robustness by FGSM
attack, momentum iterative method (MIM) attack [44], and PGD attack. All these attacks
are generated with 20 iterations and ε = 8/255. In addition, we follow the suggestion of
evaluating transfer attacks by Athalye et al. [14] to inspect whether the models trained
by AT-SVM will cause the issue of obfuscated gradient and give a false sense of model
robustness. We test the black-box PGD attack (PGD-b), in which we generate adversarial
examples of CIFAR-10 from SAT models and evaluate their attack performance on the target
mode. Moreover, we also use the ray searching attack (RayS) [45] to test the robustness of the
models under hard-label or gradient-independent attack. For RayS, we set the maximum
number of queries to 10,000. All experimental data are obtained in our implementation.

Compared with SAT, our AT-SVM improve adversarial robustness without degra-
dation of clean accuracy, which alleviates the trade-off problem between accuracy and
robustness. GAIRAT also achieves this effect, but we found that its robustness under black-
box attacks is lower than under white-box attacks, which means there is an obfuscated
gradient. Instead, our approach avoids this. In Table 1, the “Robustness” is the lowest
accuracy under all attacks in the experiment to approximate the adversarial robustness.

Table 1. Test accuracy of ResNet-18 on CIFAR-10 dataset.

Methods Clean FGSM MIM PGD PGD-b RayS Robustness

Natural 90.09 0 0 0 0 13.01 0
SAT 82.64 57.15 55.15 52.23 52.23 62.05 52.23
GAIRAT 78.84 62.62 62.30 60.47 54.19 54.17 54.17
AT-SVM 83.51 59.35 58.54 56.38 59.76 62.40 56.38

In Figure 3, we show some sample images from the CIFAR-10 dataset, with their
corresponding adversarial examples. We find that the robust models trained by AT-SVM
have strong interpretability. It can be found that a normal model can be attacked by
adversarial perturbation not perceptible to humans, while the adversarial image of the
AT-SVM model has obvious features of the misclassified class. This shows that images
around the decision boundary of the robust model have features of both classes.
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Figure 3. Sample images from the CIFAR-10 dataset, with corresponding adversarial examples. The
first row represents the adversarial examples and predicted values obtained by the normal model,
the second row represents the SAT model, and the third row represents the AT-SVM model. We show
the original image and adversarial examples for epsilons of 0.03 and 0.3.

4.3. Effectiveness of SVM Batch Size

In theory, the SVM classifier should train all examples at the same time in order to find
support vectors more accurately. However, such problems are difficult to optimize, so we
use small batches to converge the training. Table 2 shows the influence of SVM batch size
on the robustness of the model. k represents the ratio of the batch size of the SVM auxiliary
classifier to that of the original network during training.

It can be seen that if k is too small, the effect of improving robustness is not obvious.
When k is too large, the SVM auxiliary classifier will be difficult to train and the performance
will decrease. The experiment found that set k = 30 is appropriate.

Table 2. Test accuracy of models training with different batch size radios.

k Clean FGSM MIM PGD PGD-b Robutsness

1 81.37 56.92 54.99 51.13 59.42 51.13
5 84.64 58.42 56.42 54.17 61.06 54.17
10 84.02 58.83 57.22 54.59 60.26 54.59
20 83.27 60.30 58.91 56.11 59.62 56.11
30 83.51 59.35 58.54 56.38 59.76 56.38
40 82.25 58.14 56.94 53.28 58.20 53.28
50 81.99 58.55 57.26 53.99 58.38 53.99

4.4. AT-SVM with WideResNet

We use WideResNet-34-10 (depth 34 and width 10) [46] to evaluate the performance
of our AT-SVM method in different networks. Other settings are the same as those in the
experiment of ResNet-18. The results are shown in Table 3. We can get the same conclusion
as ResNet-18, so AT-SVM is suitable for different networks.

Table 3. Test accuracy of WideResNet-34-10 on the CIFAR-10 dataset.

Methods Clean FGSM MIM PGD PGD-b Robustness

Natural 95.63 0 0 0 0 0
SAT 86.91 61.39 59.10 55.66 55.66 55.66
GAIRAT 82.70 62.24 62.19 60.65 56.71 56.71
AT-SVM 86.87 62.82 60.70 58.70 63.24 58.70

4.5. AT-SVM in SVHN

We also used ResNet-18 to conduct experiments on the SVHN dataset [47] to verify
that our AT-SVM method is effective on different datasets. The initial learning rate is set to
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0.01, and the other experimental settings are the same as the basic model. The results are
shown in Table 4. We can achieve the same conclusion as CIFAR-10, so AT-SVM is suitable
for different datasets.

Table 4. Test accuracy of ResNet-18 on the SVHN dataset.

Methods Clean FGSM MIM PGD PGD-b Robustness

Natural 96.32 0 0 0 0 0
SAT 91.08 68.06 62.42 57.49 57.49 57.49
AT-SVM 92.38 75.77 65.94 60.32 67.49 60.32

4.6. AT-SVM with RST

The experiments use the unlabeled data from [48] to enhance model training. Ref. [48]
augment CIFAR-10 with 500K unlabeled images sourced from 80 Million Tiny Images and
use robust self-training (RST) to train a more robust model. We combine the proposed
method with the RST method and the other experimental settings are the same as the basic
model. The results are shown in Table 5. The conclusion is that our proposed method can
be combined with the RST method to obtain a more robust model.

Table 5. Test accuracy of models training with/without RST.

Methods Clean FGSM MIM PGD PGD-b Robustness

SAT 82.64 57.15 55.15 52.23 52.23 52.23
SAT+RST 85.21 60.31 58.17 54.53 63.84 54.53
GAIRAT 78.84 62.62 62.30 60.47 54.19 54.19
GAIRAT+RST 82.03 67.90 67.67 67.16 56.93 56.93
AT-SVM 83.51 59.35 58.54 56.38 59.76 56.38
AT-SVM+RST 81.68 59.72 59.53 58.34 60.06 58.34

4.7. AT-SVM with TRADES

We use ResNet-18 to evaluate the performance of our AT-SVM method under AutoAt-
tack (AA) [49]. We use CW attack to generate adversarial examples at training time, and
the other experimental settings are the same as the basic model. The results are shown
in Table 6. It can be seen that although AT-SVM is more robust than SAT, TRADES [20]
gets higher robustness. We state that our approach is not designed to defeat other existing
defense methods, but rather a plug-and-play defense strategy. As shown in Table 6, adver-
sarial training using both AT-SVM and TRADES gives better results. This proves that our
algorithm can be integrated into other effective defense methods and make improvements.

Table 6. AutoAttack’s test accuracy of ResNet-18 on the CIFAR-10 dataset.

Methods Clean AA

Natural 95.63 0
SAT 86.91 47.73
GAIRAT 82.70 32.19
AT-SVM 86.87 48.09
TRADES 78.89 48.73
AT-SVM&TRADES 81.04 49.49

5. Conclusions

This paper proposed a novel adversarial training method AT-SVM, which inserts an
SVM auxiliary classifier in CNN. The input of the SVM auxiliary classifier was linearly
separable features after passing through part of the original network. It can learn the
decision boundary with the largest margin in this feature space. When training the original
network, a new loss function obtained by the SVM auxiliary layer was used. In addition,
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we used the SVM layer to select examples close to the boundary for training. Experiments
show that conventional cross-entropy loss cannot constrain the margin while our method
can effectively increase the margin of the network to improve the robustness against
adversarial examples.
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