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Abstract: Sentencing prediction is an important direction of artificial intelligence applied to the
judicial field. The purpose is to predict the trial sentence for the case based on the description of the
case in the adjudication documents. Traditional methods mainly use neural networks exclusively,
which are trained on a large amount of data to encode textual information and then directly regress or
classify out the sentence. This shows that machine learning methods are effective, but are extremely
dependent on the amount of data. We found that there is still external knowledge such as laws and
regulations that are not used. Moreover, the prediction of sentences in these methods does not fit well
with the trial process. Thus, we propose a sentence prediction method that incorporates trial logic
based on abductive learning, called SPITL. The logic of the trial is reflected in two aspects: one is
that the process of sentence prediction is more in line with the logic of the trial, and the other is that
external knowledge, such as legal texts, is utilized in the process of sentence prediction. Specifically,
we establish a legal knowledge base for the characteristics of theft cases, translating relevant laws
and legal interpretations into first-order logic. At the same time, we designed the process of sentence
prediction according to the trial process by dividing it into key circumstance element identification
and sentence calculation. We fused the legal knowledge base as weakly supervised information into
a neural network through the combination of logical inference and machine learning. Furthermore,
a sentencing calculation method that is more consistent with the sentencing rules is proposed with
reference to the Sentencing Guidelines. Under the condition of the same training data, the effect
of this model in the experiment of responding to the legal documents of theft cases was improved
compared with state-of-the-art models without domain knowledge. The results are not only more
accurate as a sentencing aid in the judicial trial process, but also more explanatory.

Keywords: machine learning; judicial sentencing; abductive learning; artificial intelligence

1. Introduction

With the construction of the rule of law, the large number of cases makes the court
overburdened, and the time required to train highly qualified judges makes it impossible
to fundamentally solve the contradiction of having too many cases and too few judges by
simply increasing trial resources and increasing the number of judges. Therefore, we can
use sentencing prediction techniques to reduce the burden on judges. Sentencing prediction
is an important aspect of intelligent justice trials that aim to use computer technology to
predict sentences from semi-structured adjudication documents.

As shown in Figure 1, the adjudication documents are mainly composed of the court
case number, name of the court, defendant information, description of the case, judgment
elements, legal articles involved, and trial results.
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Figure 1. Adjudication documents’ structure. On the left is the structure of Chinese adjudication
documents, and on the right is its English equivalent.

Among the present methods, there are many that use neural networks for sentencing
prediction. This can be roughly divided into threedifferent solutions: first, feature extraction
of the case description part in the adjudication document; second, regression prediction by
connecting a layer of the neural network directly afterwards; third, dividing the sentence
into intervals to transform it into a classification problem. However, these strategies only
use the case description part of the decision document without using external knowledge
such as the law, and these rely on the lack of interpretation of a large amount of data.
Huang [1] uses inverse abductive learning, which combines machine learning and logical
reasoning, and uses the relationships summarized in the data as external knowledge to solve
the problem of a small amount of labeled data, called semi-supervised abductive learning
(SS-ABL); yet, it still lacks the explanatory and logical aspects of the trial. Traditional
methods use a neural network to directly fit the final sentence, which does not fit the logic
and flow of the trial.

Thus, the traditional methods of sentence prediction have the following problems:
they do not make full use of the external knowledge of legal features; they do not refer to
the process of the judge’s trial, and the reference basis of the trial is not clear; the method of
judging the sentence is not in line with the process and logic. We conducted the following
research to address these issues.

We noticed in this particular area of law that there is some logical and rule-based
knowledge, such as legal texts and judicial interpretations. These rules can be used as
a priori knowledge and act as a weak supervisor in sentencing prediction, which is not
used in the traditional approach, such as: (1) If the clause about intentional homicide
appears in the adjudication document, the circumstance of intentional homicide must have
appeared in the case of the offender, and then, the sentence will be increased at the trial.
(2) It is clearly stated in the law that different degrees of crime correspond to different
levels of sentencing. For instance, when the amount of theft is smaller, the sentence in
the law will be a shorter range. When the amount is larger, the sentence is in a longer
range. This makes different amounts of theft under the provisions of the law affect the
base sentence, and thus the final sentence. Thus, we note that there is a certain logical
nature between key circumstance elements, legal provisions, and legal interpretations. This
nature can be applied to logical reasoning, allowing it to play a supervisory role in both
the identification of key circumstance elements and the calculation of the sentence. If the
result of the identification does not conform to the logic in the law, one of the results can be
changed to make it conform to that logic to the maximum extent possible. This allows for
explanatory correction of misidentified labels and improves recognition rates.

First of all, in order to use this external knowledge, we write the external knowledge
in the form of first-order logic to form a logical knowledge base for logical reasoning. Next,
we took a theft case as an example and extracted 23 key trial circumstance elements by
referring to the legal provisions, as well as the “Guidelines of the Supreme People’s Court
on Sentencing for Common Crimes” (“Sentencing Guidelines”). These key plot elements
are highly informative for trial purposes. Additionally, to design a sentence calculation that
is logical for the trial, we refer to the Sentencing Guidelines. There are four main features
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as follows: (1) the basis for sentencing is the key circumstantial element of the criminal act
of the basic crime-constituting facts; (2) the starting point of the sentence is ruled within the
range of the sentence in accordance with the provisions of the law; (3) increase or decrease
the starting point of sentencing based on other criminal facts affecting the amount, number,
consequences, and purpose of the crime; (4) consider the entire case and decide the final
sentence to be pronounced. This shows that sentencing needs to be based not only on the
basic constituent facts of the case, i.e., the key elements of the case, but also on the totality
of the circumstances of the case. In determining the base sentencing, it is necessary to refer
to the range of sentences stipulated in the legal provisions.

Therefore, combining the above studies and findings to address the lack of trial logic,
inadequate use of knowledge of the law, and lack of interpretability in the traditional
approach, we propose a new model based on the existing algorithm SS-ABL. The main
innovation points are as follows:

• Prepared and expanded the legal knowledge base (KB). Not only does it use common
sense constraints from data, but it also converts legal texts and judicial interpretations
into a form of first-order logic to constitute the knowledge base.

• Applying knowledge-base-based logical reasoning to the process of key circumstance
element identification and sentencing calculation makes it more adequate for both the
upstream and downstream tasks of sentencing prediction to provide some oversight.

• Incorporating the descriptive features of the case and key circumstance elements,
a sentencing calculation method that is more in line with the judge’s trial process was
developed in accordance with the Sentencing Guidelines.

The paper is structured as follows. Relevant work in this area is described in Section 2.
Section 3 details the sentencing prediction model that combines domain knowledge.
The evaluation and results are presented in Section 4. The conclusions of the paper are
presented in Section 5.

2. Related Work

Case sentencing prediction has been studied by domestic and foreign researchers for
many years [2–5]. Since the last century, researchers have been exploring the possibility
of using mathematical methods to quantitatively analyze and predict the behavior of
justice. Kort [6] analyzes a number of decided cases to determine the factual elements
that affect the verdict, scores those elements using a mathematical formula, and uses
the resulting content to aid the judge’s decision. Shapira [7] implemented a system for
juvenile probation decision-making for probation officers in Israel using a rule-based expert
system [8]. Sulea et al. [9] used an integrated model of multiple support vector machines
(SVMs) to predict the outcome of French Supreme Court cases based on a large-scale
corpus of cases. Liu and Hsieh et al. [10] proposed extracting shallow textual features (e.g.,
characters, words, and phrases) from adjudication documents for case charge prediction.
Katz et al. [11] predicted the outcome of a U.S. Supreme Court decision by using random
forest (RF) to extract valid features from the case description.

In early studies, researchers mostly conducted research on sentence prediction by
means of rules, mathematical statistics, and machine learning. However, the development
of research on automated sentence prediction methods has not been long.

With the development of deep learning techniques, most researchers have studied
the task of sentencing prediction research on the idea of adopting text classification [12]
by extracting some features. The Challenge of AI in Law 2018 (CAIL2018) and Legal AI
Challenge 2021 (LAIC2021) both opened sentencing prediction tracks, and the baseline
model used was the traditional text classification method. This approach transforms the
sentencing prediction problem into a text classification problem by dividing the sentencing
into intervals. Luo et al. [13] proposed a neural network model based on an attention
mechanism to predict case charges based on the factual description of the case by intro-
ducing relevant legal provisions. Hu et al. [14] blend 10 different legal attributes to predict
a small number of shooting and confusion charges. Ye et al. [15] proposed a sequence-to-
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sequence (Seq2Seq) model under labeling conditions to provide a courtroom view to assist
in sentencing based on factual descriptions of criminal cases with coding of charge labels.
Wu et al. [16] study the sentencing of environmental rights cases from the perspective of
international criminal law and uses convolutional neural networks (CNNs) to determine
the sentencing of environmental rights cases. Their results show that the introduction of
CNNs improves the effect of the sentencing term prediction model and the fine prediction
model significantly. Yang et al. [17] proposed a hierarchical attention network (HAN) that
combines static spatial information, short-term motion information, and a long-term video
temporal structure for complex human behavior understanding, while Wang et al. [18]
later applied HAN to sentencing prediction models by using residual networks to fuse
an improved hierarchical attention network (iHAN) and a deep pyramidal convolutional
neural network (DPCNN) and proposed a hybrid deep neural network model, hybrid
attention and CNN (HAC), to apply HAC to sentencing prediction models. Park et al. [19]
used a multi-task deep learning model with an attention mechanism for combining three
tasks (accident types, applied articles, and the sentencing of ship accidents) for sentenc-
ing prediction. All of the above methods use text classification methods for sentencing
prediction. Zhong et al. [20] considered the existence of dependencies between multiple
subtasks of legal trials (e.g., applicable legal provisions, charges, fines, and sentencings)
and proposed a multitask topological dependency learning model called TOPJUDGE to
predict the legal trials of cases. Yang et al. [21] proposed a multiperspective bidirectional
feedback network (MPBFN) based on topological dependencies between multiple subtasks
and the introduction of combinatorial semantic relations between words to predict the
legal trials of cases. Zhou et al. [22] proposed an inverse deduction learning framework
to solve the problem that machine learning and logical reasoning are difficult to combine
by introducing a knowledge base in the logical reasoning part and using a heuristic trial-
and-error search algorithm to combine machine learning. Huang et al. [1] used the inverse
deduction learning framework to solve the problem of case element identification by taking
advantage of the strong logic of the joint trial documents.

The current research on sentencing prediction in general can be divided into two
methods: text classification and regression analysis prediction. Text classification methods
can be combined with crime prediction and law recommendation to achieve better results.
In contrast, regression analysis prediction identifies the elements of the crime or the relevant
law for prediction. The textual classification method may focus on the semantic information
of the crime elements, but ignores the final calculation of the sentencing, and the regression
analysis method focuses on the construction of the regression model, but does not pay
attention to the information of the key crime circumstance elements themselves. The above
methods do not combine the characteristics of the other methods well, so they do not
achieve better results in sentencing prediction.

3. Methods

In this section, we will describe our proposed model in terms of the logic of the trial: it
is divided into three modules, namely knowledge base preparation, element identification,
and sentencing calculation. This sentence prediction model is an effective combination,
and it is a new contribution of our work. In the following, we will present each of these
three components.

3.1. Knowledge Base

When we combed through the statutes and adjudication documents, we sorted out
approximately 23 key circumstance elements that can also be called trial elements to better
use the logical relationships between the statutes, between the statutes and adjudication
documents, and within the adjudication documents, referring to the Sentencing Guidelines.
See Table 1.
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Table 1. The key circumstance elements.

Element Ratio Element Ratio

In Hospital 2.56 Minor 10.96

Production Materials 0.22 Burglary 21.56

Returned Items 1.47 Pickpocket 14.42

Main Culprit 2.59 Accomplice 2.62

Carrying Weapons 1.39 Surrendering 10.61

For Drug Addiction 1.94 First Offender 6.19

For Gambling 0.25 Many Times 35.11

Psychiatric Patients 0.11 Have Criminal Record 19.19

Compensation for Damages 57.17 Plead Guilty 35.20

Seniors 0.16 Deaf and Mute 1.06

Blind Person 0.05 Get Forgiveness 8.04

Confession 62.38

Among these are the key circumstance elements, which are elements summarized by
the circumstances that have a significant impact on the sentence according to the Sentencing
Guidelines. The ratio refers to the number of occurrences of the element as a percentage
of the number of occurrences of all elements. With these key elements, we followed
this table to extract the corresponding elements in the law, such as theft, multiple theft,
etc., and the corresponding sentence ranges. Then, we chose to represent their logical
structure using first-order logical relations to form a knowledge base. At the same time, we
observed some potential logical relationships among the key plot elements in the data of
the adjudication documents when we organized them. As you can see, the legal knowledge
base is composed of first-order logical forms bounded by legal rules and common sense.
The key plot elements involved in each judgment document are also present in the legal
knowledge base in a first-order logical form. A portion of the legal knowledge base is
shown in Figure 2.

(a)

(b)
Figure 2. Examples of laws and part of the legal knowledge base. (a) Part of Article 264 of the
Criminal Law of the People’s Republic of China. (b) Part of the legal knowledge base.

This figure shows how we parse the law and transform it into a first-order logical
form. In Figure 2a, on the left is Article 264 of the Chinese Criminal Law and on the right
is its corresponding English version. The blue section is the key circumstance elements,
and the red section is the range of sentencing given. In Figure 2b, the part in the box
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above corresponds to the result of transforming the part into first-order logic where the
“score” value is the sentence interval specified in the law. The following part is an example
of the common sense constraint. In the legal interpretation document, “pickpocket” is
defined as “stealing property carried by another person in a public place or on public
transportation.” and “burglary” is defined as “entering a room and stealing it secretly.”
Obviously, “pickpocket” and “burglary” do not exist at the same time. The legal rules are
decomposed into sentence intervals corresponding to key circumstance elements through
legal provisions and judicial interpretations, which have reference values for subsequent
sentencing calculation. For example, in Figure 2b, if the first paragraph of section 264
is met, the “score”, which means the range of the sentence, is between 0 and 36 months
(sentences are in months in this article). The common sense constraint describes the
relationship between key plot elements and has a weak supervisory effect on the subsequent
identification of key plot elements.

3.2. Key Circumstance Element Identification

In this section, we use a method based on the abductive learning method to identify
key plot elements, the flow of which is shown in Figure 3.

Figure 3. The architecture of key circumstance element identification.

In the first part, we identified the key plot descriptions in the adjudication documents
by the element extraction algorithm. To better obtain the key plot elements of the case and
to solve the problem of the insufficient generalization of existing methods, we adopted the
BERT [23] pretraining model for the extraction of text features through the comparison of
multimodel experiments. The model employs a connection using the bidirectional encoder
block layer part of the transformer [24] model, discarding the decoder module so that it
automatically has bidirectional coding capability and powerful feature extraction capability.
Transformer’s encoding sequence uses the idea of a self-attention mechanism that can read
the whole text sequence at once. By capturing the global contextual information to establish
a long-range dependency on the target, stronger features of the whole text can be extracted.

First, we need to process the text descriptions in the key episodes into the standard
input form of BERT. We add the marker “[CLS]” as the start of a sentence and the marker
“[SEP]” as the end of a sentence to the entire text. The initial input is W = {W1,W2, . . . ,Wn},
where Wi is a word in a sentence and n is the length of the sentence from each sentence in
the judgment elements section. Then, three kinds of embeddings corresponding to W are
added together to obtain the BERT input:

Einput = Et + Es + Ep (1)

where Et, Es, Ep are the token embeddings, segment embeddings, and position embeddings
corresponding to W, respectively. Since this paper is a single-sentence task, the identity
vector here is 0, and the inclusion of the position vector considers that the sequential nature
of the input sequence has an effect on the information in the text. The final input of BERT is
denoted as Einput ∈ Rn×d, where n denotes the length of the input text and d denotes the
dimension of the vector.
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A bidirectional transformer encoder block is used for connection in BERT, discarding
the decoder module so that it automatically has bidirectional encoding capability and pow-
erful feature extraction capability. In the output of BERT, for each input word embedding,
there is a corresponding output, and since the first token of each output sequence is always
a special classification, i.e., “[CLS]” token embedding, which does not contain any semantic
information, the vector is a collection of information of a whole sentence. We used this
vector to identify the key plot elements. It is followed by a fully connected layer that
transforms the vector dimension into the length of the number of key plot elements (m)
and by sigmoid as the activation function:

P(x) = Sigmoid(x) =
1

1 + e−x (2)

The probabilities of the key element classification are normalized and transformed
into a probability distribution with a 0 to 1 interval. We set a threshold value:

yp(x) =

{
0, P(x) < α

1, P(x) ≥ α
(3)

and the corresponding key plot element exists when its probability exceeds that value α.
Then, we obtain the temporary key plot elements yp, which can also be called pseudo-labels.

In the second part, we used regular expressions to extract from the involved law
articles in the adjudication documents. Additionally, we used the pseudo-labels obtained
by element identification as the input. The results of their reasoning generated by the legal
knowledge base (as a set) are corrected for the provisional key elements by maximizing
the consistency of operation to obtain the most likely result as the final key plot element.
The maximizing consistency is that after inputting the temporary key elements, the logical
reasoning of the legal knowledge base will produce some corrected results that conform to
the logical rules, and we only need to select one of them in the end. The basis of selection
is to pass the corrected list of key elements through the sentencing calculation module to
produce the corresponding sentencing loss and select the one with the smallest loss as the
final key circumstance element. Finally, we obtain the corrected label for the pseudo-labels.

The whole algorithmic process of key circumstance element identification presented
in this section is shown in Algorithm 1.

Algorithm 1 Key circumstance element identification.
Input: Judgment elements’ data Xi of judgment document with their labels Yi; unlabeled
data Xj with their legal articles involved Lj and true length of sentence Sj; legal knowledge
base (KB)
Output: Xj corresponding to label Yj

1: f ← TrainModel(Xi, Yi)
2: Yj ← f (Xj) # Generate pseudo-labels
3: Laws← RegularExpressions(Lj)
4: while t is change do
5: 4(Yj)← Abduce(KB, Laws, Yj) # Revise pseudo-labels
6: t̂← SentencingCalculation(4(Yj))
7: t = Min(| t̂− Sj |)
8: end while
9: f ← ReTrainModel( f , Xj, Yj, Xi, Yi) # Update recognizer f

10: return Yj

3.3. Sentencing Calculation

To be more in line with the flow of the trial, the sentence calculation module was
designed in accordance with the Sentencing Guidelines. As shown in Figure 4, we can see
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the process for obtaining a base sentence and a final sentence separately. We first combined
the amount of money involved in the case obtained from the judgment documents with the
sentence range obtained by logical reasoning based on the legal knowledge base to design
a method to obtain the base sentence.

BaseSentence = βm + γ (4)

where β represents the adjustment of the amount of theft to the starting sentence, m
represents the amount of theft in the case, and γ represents the starting sentence in the
statute. Since the base sentence is not defined in detail in the Sentencing Guidelines, we
can only calculate it based on one of the reference theft amounts, while the base sentence
can only be within the range specified in the involved law. Therefore, we constructed a
one-dimensional function of the amount to calculate the base sentence.

(a) (b)
Figure 4. A flow chart of the trial according to the relevant documents. (a) Base sentence; (b) final
sentence.

To focus on the key plot elements and consider the global features of the case, we
combined the key plot elements with the general features of the case by referring to the
self-attention [24] approach. In this way, not only the global features, but also the key
circumstances are considered. By combining the information of key plot elements and
general features of the case, we generated an attention weight for each part of the text and
weighted the text information, which can help us better capture the information related to
the key plot in the text paragraph.

We first performed feature extraction on the two texts by BERT as in Section 3.2 and
obtained the vector D of common features of the case and the feature vector E of key
elements of the case, where both D and E are global information about the respective text.

Then, we put these two vectors through a control attention mechanism to obtain
features about the plot descriptions that exacerbate the critical plot element parts.

V = WVD (5)

K = WKD (6)

Q = WQE (7)

multiplying the two eigenvectors with the matrix W yields V, K, and Q.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (8)

We calculated the dot product between Q and K. Next, for its result to be too large,
a constraint operation was performed to divide the result by

√
dk, where dk is the dimen-

sionality of the vector K. After that, a softmax layer was added to it to normalize the result
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and then multiplied by the matrix V to obtain the final weight summation representation
Attention. Moreover, the obtained results were plugged into a layer of the neural network,
while the base sentence was added for linear regression, and finally, the final sentence
was obtained.

The whole algorithmic process of sentencing calculation presented in this section is
shown in Algorithm 2.

Algorithm 2 Sentencing calculation.
Input: Accident description data Di of judgment document and amount of theft Mi; key
circumstance element Yi; real sentence Si; unlabeled data Dj with their related laws Laws,
amount of theft Mj and key circumstance element Yj obtained from a previous mission;
legal knowledge base (KB)
Output: Dj corresponding to sentence Sj

1: g← TrainModel(Di, Mi, Yi, Si) # Training neural network g
2: γ← Abduce(Mj, Laws, KB)
3: BaseSentence← β×Mj + γ
4: Sj ← g(BaseSentence, Dj, Yj)
5: return Sj

4. Experiments and Results

In this section, we carried out experiments on the theft judicial sentencing task to
demonstrate that SPITL is able to leverage unlabeled data and symbolic knowledge.

4.1. Experimental Setup and Evaluation Index

Since there is no public dataset on evidence extraction from judgment documents, we
obtained the relevant judgment documents from the People’s Court of Guizhou Province,
erased the sensitive information, and used manual annotation to construct the dataset.
The dataset contains 3668 adjudication documents of theft cases, and the training sets
with 10%, 50%, and 90% of the cases were used for the experiments. To better measure
the performance of the model, we adopted the Monte Carlo cross-validation method by
randomly dividing the dataset into training and validation sets each time, so that three-
time separate model training and validations were performed, and finally, these validation
results were averaged as the validation error of this model. We set the length of the input
text to 512, the size of the hidden layer to 768, the threshold α to 0.25, β in the base penalty
to 0.065, and γ to the minimal sentence, where β is mainly used to reduce the amount of
integers to decimals in order to facilitate the calculation by the neural network and γ is
used to obtain the starting penalty specified in different laws through logical reasoning. In
particular, the effect of the α value on the results is relatively large, and we will analyze
its effect in Section 4.4. Experiments ran on a workstation with AMD EPYC 7742 64-Core
Processor, 40 GB memory, and the A100-SXM4-40GB GPU.

We chose to use the mean absolute error (MAE), mean-squared error (MSE), root-
mean-squared error (RMSE), and R2Score (coefficient of determination R2) as the evaluation
criteria. The MAE is a loss function used in regression models and is the sum of the absolute
values of the differences between the target and predicted values, which measures the
average modal length of the error between the predicted and target values. It can better
reflect the actual situation of prediction value error. The formula is as follows, where y is
the true value and ŷ is the predicted value:

MAE =
1
n

n

∑
i=1
| ŷi − yi | (9)

the MSE is the sum of squares between the predicted and true values, which is slightly
simpler to calculate than the MAE, but has strong robustness. It can be used to measure
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the dispersion of the difference between the predicted and true values. The formula is as
follows, where y is the true value and ŷ is the predicted value:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (10)

The RMSE is the square root of the ratio of the sum of squares of deviations of observations
from the true value to the number of observations n. It is used to measure the deviation of
the observed value from the true value and is often used as a measure of the prediction
results of machine learning models. The formula is as follows, where y is the true value
and ŷ is the predicted value:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (11)

The R2Score is generally used in regression models to assess the degree of conformity
between predicted and actual values and is defined as follows:

R2Score = 1− FVU = 1− RSS
TSS

= 1− ∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − ȳ)2 (12)

where y is the true value, ŷ is the predicted value, ȳ is the average of the true values, FVU
is called the fraction of variance unexplained, RSS is called the residual sum of squares,
and TSS is called the total sum of squares. In general, the closer R2Score is to 1, the better
the model fitting effect.

4.2. Result Analysis

We chose five baseline models for the comparison experiments:

• TFIDF-SVM: We transformed sentence prediction into a classification problem by
dividing the sentence intervals into one class. The text is first divided into words,
then feature extraction is performed using TFIDF, classification is performed using
SVM [25], and the median of the intervals is used as the prediction result.

• CNN [26]: Using a CNN-based classification model with multiple filter window widths
for text classification, we transformed sentence prediction into a classification problem
by taking the final sentence as the middle value of the classification interval.

• LSTM-FC [27]: A vectorized representation of the text using LSTM is followed by a
linear layer for sentencing prediction.

• BERT-FC [23]: Feature extraction is performed on the text using BERT, and sentence
prediction is performed in a linear layer.

• SS-ABL [1]: Sentence prediction directly using the inverse abductive learning framework.

Comparative experiments are shown in Table 2.
We can see that comparing the three models with different training set proportions,

our model is better in terms of key element recognition and sentence calculation. Moreover,
when the training set is 90%, the error of our model in the prediction of the prison sentence
is within three months, reaching 2.6 months. Although the MAE of the SS-ABL model is
only slightly lower than that of our model when the training set accounts for 10%, the MSE
and RMSE are higher and show that the prediction result fluctuates greatly and does not
have good stability. Again, we can see from the R2Score that the SPITL model is better. For
the R2Score, the closer to 1, the better the fit of the model is and the better the model is. It
can also be seen from the table that the R2Score of the SPITL model is always closer to 1 than
those of the other models for the same training ratio. Especially when the training accounts
for a relatively small amount of time, the difference with other models is more obvious,
which should be played by the use of external knowledge through logical reasoning.
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Table 2. Performance results for different methods.

Model Training Ratio MAE MSE RMSE R2Score

TFIDF-SVM 10% 8.50 89.06 9.44 0.3772
CNN 10% 8.04 80.47 8.97 0.4286

LSTM-FC 10% 7.95 80.28 8.97 0.4173
Text CNN 10% 8.34 82.74 9.10 0.3858
BERT-FC 10% 7.12 80.39 8.96 0.4592
SS-ABL 10% 3.46 56.48 7.52 0.5934
SPITL 10% 3.49 41.55 6.45 0.6684

TFIDF-SVM 50% 7.50 78.35 8.85 0.4592
CNN 50% 7.04 80.47 8.97 0.4257

LSTM-FC 50% 6.34 82.74 9.10 0.3876
Text CNN 50% 7.34 82.74 9.10 0.3928
BERT-FC 50% 5.68 67.20 8.20 0.6735
SS-ABL 50% 3.53 45.36 6.73 0.6472
SPITL 50% 3.25 34.94 5.91 0.7895

TFIDF-SVM 90% 7.02 70.33 8.39 0.6782
CNN 90% 5.86 64.36 8.02 0.6895

LSTM-FC 90% 5.32 52.71 7.26 0.6361
Text CNN 90% 5.51 49.56 7.03 0.6530
BERT-FC 90% 4.25 40.42 6.36 0.6982
SS-ABL 90% 3.28 38.05 6.17 0.7468
SPITL 90% 2.62 22.83 4.77 0.8734

From the above experiments, it is clear that SPITL outperforms the traditional model.
Since most traditional models are based on using data to adjust parameters to fit the results,
the accuracy is not particularly high when the amount of data is small. However, this
model combines machine learning and logical reasoning and uses logical reasoning to
constrain and change the results of recognition when the amount of data is small, resulting
in a higher recognition rate and a smaller error in the sentence prediction. For example,
when it is known that the case involves Article 17 of the criminal code (About minors), then
the key circumstance element must contain the “Minor”, and if the identified pseudo-label
does not contain that label, it is modified to contain that label.

In addition, we verified the validity of the sentence calculation method. As shown in
Table 3, when key plot elements were obtained, we used different calculation methods for
comparison. This means that we used different methods for sentence calculation when the
correct key elements are known.

Table 3. Calculation of sentences for different methods.

Model Training Ratio MAE MSE RMSE R2Score

SVM 50% 3.43 59.96 7.74 0.5853
KNN 50% 3.23 38.44 6.20 0.6893
Bayes 50% 7.32 36.46 6.03 0.7239

Decision Tree 50% 3.58 41.93 6.48 0.6702
Linear Regression 50% 5.02 68.15 8.26 0.4570

Our Model 50% 3.01 32.72 5.72 0.7864

SVM 90% 3.04 26.55 5.15 0.8075
KNN 90% 3.04 23.69 4.87 0.8210
Bayes 90% 7.11 30.03 5.48 0.7926

Decision Tree 90% 3.24 29.41 5.42 0.8083
Linear Regression 90% 3.53 29.11 5.40 0.8095

Our Model 90% 2.60 20.76 4.56 0.8962

We can see that comparing some of the common methods of calculating sentences,
our calculation method is superior to the other methods. When having more training sets,
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the MAE, MSE, and RMSE values are smallest, and obviously, our model is more accurate
and stable. Furthermore, at the same training ratio, our model has a higher R2Score value,
closer to 1. From this perspective, the sentence calculation method of our model is better
than the others.

With the increase in the amount of data, the accuracy of traditional identification im-
proved, but in the calculation of sentences, it cannot absolutely rely on the key circumstance
elements, but needs to refer to the whole process of the case, such as the motive for the
crime, the means of the crime, etc. Therefore, the new sentence calculation model we used
will be more accurate with less error.

4.3. Chi-Squared Test

In order to check whether there is a significant difference between the actual (O) and
expected results (E), we used the mathematical statistics method of the chi-squared test to
perform hypothesis testing. First, we established the test hypothesis and determined the
test level.

H0 : O = E
H1 : O 6= E

Meanwhile, we set the significance level α to 0.05. We calculated the cardinality (χ2)
by predicting the sentence and the true sentence.

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei
(13)

We used the SPITL results after the 90% training set to perform the operation and
obtained a χ2 value of 340.8386. Since we know that its degree of freedom is the number of
data minus one, i.e., (n−1), we can obtain a right-tailed probability of cardinality (p-value
P) of 0.8231. Obviously,

P = 0.8231 > α = 0.05

so we accept hypothesis H0. From the above, it can be seen that the fit of the predicted
values with our method to the true values is high. It also proves that the method of this
paper is credible, valid, and accurate. To see more intuitively the fit between the predicted
and true values, we plotted them using a graph, as shown in Figure 5, where acc is the
actual value and pre is the predicted value.

Figure 5. Line graph of actual and predicted values.
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4.4. Hyperparameter α

In the model, α is used as a threshold in the identification of key plot elements and
has an impact on the results of identification. Therefore, we analyzed the effect of the
choice of α values on the recognition results when key plot elements were identified. Again,
the experiments were compared at a training ratio of 90% of the settings. Referring to
Figure 6, we can see that different α values still have an impact on the accuracy of key plot
elements’ recognition. At 0.25, the F1-value of recognition is the highest.

Figure 6. Line graph of α and element identification F1-value.

5. Conclusions

In this paper, we proposed a sentencing prediction model framework called SPITL.
In this framework, our core innovations were the first-order logicalization of legal texts and
their legal interpretations and adding to the legal knowledge base, which makes logical
reasoning more adequate to supervise machine learning, and the design of a sentence calcu-
lation method that is more consistent with the trial process. The model is set-associative and
consists of two subtasks, key circumstance element identification and sentence calculation.
It was experimentally demonstrated that this model not only solves the problem of few
labeled data by an abductive learning framework in sentence prediction, but is also more
accurate and explanatory in sentence calculation. Despite our model achieving some results
on theft cases, it is still challenging to migrate to other cases of different categories. Since
different cases have different focuses, there will be more laws involved, and the reasoning
will be more complicated and may take longer. In our future work, we will work on finding
a better way to integrate external knowledge into the neural network training process or
designing an objective function to improve inference efficiency and shorten inference time.
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