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Abstract: With rapid economic and demographic growth, traffic conditions in medium and large
cities are becoming extremely congested. Numerous metropolitan management organizations hope
to promote the coordination of traffic and urban development by formulating and improving traf-
fic development strategies. The effectiveness of these solutions depends largely on an accurate
assessment of the distribution of urban hotspots (centers of traffic activity). In recent years, many
scholars have employed the K-Means clustering technique to identify urban hotspots, believing it to
be efficient. K-means clustering is a sort of iterative clustering analysis. When the data dimensionality
is large and the sample size is enormous, the K-Means clustering algorithm is sensitive to the initial
clustering centers. To mitigate the problem, a hybrid heuristic "fuzzy system-particle swarm-genetic"
algorithm, named FPSO-GAK, is employed to obtain better initial clustering centers for the K-Means
clustering algorithm. The clustering results are evaluated and analyzed using three-cluster evaluation
indexes (SC, SP and SSE) and two-cluster similarity indexes (CI and CSI). A taxi GPS dataset and a
multi-source dataset were employed to test and validate the effectiveness of the proposed algorithm
in comparison to the Random Swap clustering algorithm (RS), Genetic K-means algorithm (GAK),
Particle Swarm Optimization (PSO) based K-Means, PSO based constraint K-Means, PSO based
Weighted K-Means, PSO-GA based K-Means and K-Means++ algorithms. The comparison findings
demonstrate that the proposed algorithm can achieve better clustering results, as well as successfully
acquire urban hotspots.

Keywords: urban hotspots; K-means clustering; genetic algorithm; fuzzy system; particle swarm
optimization; taxi GPS data

1. Introduction

Cities have traditionally been recognized as the primary drivers of economic activity
and play a crucial role in human society. By evaluating the spatial distribution pattern of
human economic and social activities, we can determine that humankind has entered a
city-centric era [1]. The subject of “Urban Problems” has become increasingly prominent
due to the rapid expansion of the size and population of major cities around the world
[2]. The fundamental source of “urban problems” is the conflict between limited local
resources and the needs of numerous city residents [3]. The typical phenomenon is traffic
congestion [4]. Faced with the most challenging urban traffic problems, many international
metropolitan management organizations hope to promote the coordination of traffic and
urban development by formulating and improving traffic development strategies. The
effectiveness of these strategies essentially depends on an accurate understanding of urban
hotspots distribution [5]. Urban hotspots (also called human activity centers) generally
have higher traffic densities than other city areas [6].

Urban hotspots are usually the clustering centers of numerous traffic trajectory points
that affect population flow, movement patterns and human interaction. The urban road
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network’s complexity and surrounding space environment make it challenging to obtain
urban hotspots. The widespread application of information technologies in the cities,
such as GPS navigation, provides high-resolution Spatio-temporal perception [7]. In
particular, GPS navigation services are widely used in vehicles, making it possible to
accurately perceive the movement of many vehicles simultaneously in time and space [8].
The emergence of GPS trajectory data provides a new approach and method to solve the
problem of urban traffic optimization [9]. As ordinary day-to-day GPS trajectory data, taxi
track data not only reflects urban traffic conditions but also records people’s daily travel
information [10]. How to mine hidden knowledge from massive trajectory data has become
an important research topic [11,12].

Many researchers have analyzed the GPS data of vehicle trajectory and drilled the
connotative information behind these data, straining to find the spatial-temporal vari-
ation models reflecting vehicles distribution [13]. These models are applied to public
transportation optimization analysis [14], urban population spatial and temporal dynamic
distribution analysis [15], private car navigation real-time optimal path analysis [16], mu-
nicipal road planning [17], urban hotspots searching [18,19], etc. Many research results
have been applied to the practice of smart city construction, achieving good results in the
balance of urban traffic flow and human flow load, and playing a pivotal role in emergency
treatment.

These researchers use many machine learning methods based on GPS data sets, such as
clustering analysis algorithm, time series algorithm, deep learning algorithm, reinforcement
learning algorithm, and so on. Mariescu-Istodor and Fränti [20] proposed a grid-based
method for GPS route analysis for retrieval that achieves efficient route search under
noisy and variable sampling rate conditions. Zhang et al. [21] proposed a hybrid method
for incremental extraction of urban road network from GPS data set, which can mine
cumulative change patterns of road network. Shafabakhsh et al. [22] proposed a spatial
kernel density calculation method based on GPS data to provide decision support for the
allocation of medical emergency resources. Wang et al. [23] proposed a trajectory clustering
method based on adaptive distance and hierarchical clustering based on the optimal cluster
number to analyze similarities and anomalies in taxi GPS trajectory. Zhang et al. [24]
proposed combining fuzzy C-means clustering with quantitative spatial regression to
comprehensively analyze GPS data and establish the relationship model for improving the
traffic service level from the perspective of time and space.

To extract the important information and mine the knowledge concealed in the data,
a clustering algorithm is typically employed for preliminary data analysis [25,26]. The
clustering algorithm is a fundamental and effective unsupervised learning method widely
used in many fields. Clustering algorithms divide data set into different clusters according
to a fixed standard (distance, similarity, etc.) [27], making the similarity of objects in the
same cluster as ample as possible and the distinction of objects in the different clusters as
large as possible [28]. These unsupervised clustering algorithms can be broadly divided
into the following six categories: partition-based clustering , density-based clustering,
model-based clustering, hierarchical clustering, grid-based clustering, and graph-based
clustering [29]. Among the above algorithms, the clustering based on partition represented
by the K-means algorithm has the advantages of simple structure, high efficiency, easy
convergence and muscular universality. As one of the mature clustering algorithms, the
K-means algorithm has achieved significant application effects in many fields. But it
has disadvantages such as sensitivity to noise and outliers, difficulty in selecting cluster
numbers, sensitivity to the initial clustering center, etc.

Numerous scholars have presented many ideas and approaches to locating the ideal
cluster centers. The K-means++ algorithm was designed to weaken the K-means algorithm’s
sensitivity to the initial clustering centers; the algorithm’s fundamental idea is to maximize
the distance between the original clustering centers [30]. Krishna and Murty [31] combined
the genetic algorithm with the K-means algorithm to obtain the Genetic K-means algorithm
(GAK) converged to the global optimum. The K-means algorithm execution is regarded as
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the K-means operator viewed as the search operator to replace crossover; Simultaneously,
a kind of clustering-specific bias mutation operator is defined, called a distance-based
mutation. Lu et al. [32] proposed a new clustering algorithm called Fast Genetic K-means
Algorithm (FGAK) inspired by GAK, always converging to the global optimum eventually
and running much faster. Islam et al. [33] advanced a previous genetic-searching approach
called GenClust, with the intervention of fast hill-climbing of K-means and obtain an
algorithm that is faster than its predecessor. Dowlatshahi and Nezamabadi-Pour [34] adapt
the structure of stochastic population-based Gravitational Search Algorithm for effectively
solving the multivariate data clustering problem. Some scholars have proposed that the
combination of nearest-better neighborhood and fuzzy PSO is statistically superior to
multi-mode optimization, indicating that the hybrid algorithm has advantages [35].

These improved K-means clustering algorithms achieved good results but still have
disadvantages, such as excessive dependence on hyperparameters [36], over-sensitivity to
outliers, and sensitivity to cluster center initialization. Toward alleviating these problems,
this paper proposes a novel K-means clustering algorithm based on hybrid “fuzzy system-
particle swarm-genetic” to automatically obtain the optimal initial centers, namely the
Novel FPSO-GAK clustering algorithm. This algorithm can enhance the processing effect of
automatic clustering, avoid too much uncertainty of manual configuration parameters and
clustering results falling into local optimum. The initialization operation of the K-means++
was used to obtain a relatively optimal cluster center points group as one initial particle
of the Particle Swarm Optimization (PSO). Then, the parameters of the PSO algorithm
were optimized by a fuzzy system and the GA algorithm was implemented to search for
better clustering centers. Finally, the optimal clustering center points were found after
several iterations. Three unsupervised evaluation indexes, the Separation (SP), Silhouette
coefficient (SC) and the Sum of Squared Error (SSE), as well as two cluster similarity indexes
Centroid index (CI) and Point-level centroid similarity index (CSI), were used to evaluate
the clustering results. Five taxi GPS datasets were selected and compared with GAK, PSO
based K-Means (PSOK), PSO based constraint K-Means (PSOCK), PSO based Weighted
K-Means (PSOWK), PSO-GA based K-Means (PSO-GAK), and K-Means++ algorithms to
verify the validity of the proposedalgorithm.

The innovations and main contributions of this paper are as follows:

• A novel FPSO-GAK algorithm based on hybrid “fuzzy system-particle swarm-genetic”
was designed to obtain excellent non-homogeneous search capability.

• The PSO algorithm, fuzzy system algorithm, and genetic algorithm were organically
combined to obtain the optimal initial clustering centers.

• Three unsupervised evaluation indexes (SP, SC and SSE) and two cluster similarity
indexes (CI and CSI) were employed to evaluate and analyze the clustering results.

• The comprehensive experiment was designed and implemented to verify the effective-
ness of the novel FPSO-GAK clustering algorithm.

2. A Novel FPSO-GAK Clustering Method
2.1. The Idea of the Novel FPSO-GAK Method

K-means is an exclusive distance-based clustered partitioning algorithm that is imple-
mented iteratively [37]. Scholars have regarded it as an effective means to discover urban
functional areas in the past decades [38,39]. The K-means clustering problem on n points
is NP-Hard for dimension d ≥ 2 [40], and it is a demanding but unavoidable problem to
determine the optimal clustering centers accurately. The acquisition of the optimal cluster
centers depends greatly on the initial cluster centers, which is also an NP-hard problem. In
practice, one of the effective methods of approaching NP-hard problems is the heuristic
method. Many researchers have applied heuristic algorithms to initial cluster centers [41],
exposing the issues that one single heuristic algorithm is prone to fall into local optimization
and premature convergence in the process of searching. These problems are caused mainly
by the homogeneity of the search strategy of one single heuristic algorithm. The proposed
algorithm is formed by a suitable embedded combination of PSO, GA heuristic algorithm
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and fuzzy system, which maintains the advantages of each algorithm and overcomes local
optimization and premature convergence to a great extent. In order to solve the problems
existing in the K-means clustering algorithm and make use of the advantages of the hybrid
heuristic algorithm, this paper proposes a new K-means clustering algorithm which can
obtain better clustering centers and capture urban hotspots under the premise of given
cluster number.

The proposed noevel FPSO-GAK algorithm consists of three parts. Given the number
of clusters K, perform the following steps: Firstly, the k-means++ initialization method is
employed to obtain K initial cluster center points and treat them as one particle. Perform
this process for the provided number of rounds to obtain the desired number of particles.
Secondly, particles are put into the PSO algorithm. The PSO algorithm is employed to
update the particle information and use the fuzzy system to update the parameter Settings
of the PSO algorithm; the cycle is executed alternately until the iteration criteria are satisfied.
Then, the optimized particles are put into the GA algorithm for optimization. In this stage,
the GA, fuzzy, and PSO algorithms are executed alternately until the iterative convergence
criteria is satisfied. Finally, the initial clustering center data corresponding to the optimal
particle extracted in the above steps are input into the K-means clustering algorithm to
cluster the given data. The excellent clustering centers, namely the urban hotspots, are
captured.

2.2. The Flow of the Novel FPSO-GAK Clustering Method

The flow of the Novel FPSO-GAK clustering algorithm is shown in Figure 1.

Start

Initializes the number of itera-
tions and particles of the PSO.
Initialize position information
and velocity of each particle.

Calculate the fitness and DN
values of each particle. The
fuzzy system calculates opti-
mization parameters of particles.
UpdatePbest and Gbest values.

i + 1

Iterations number
of PSO reached?

Performs genetic selection.

Use adaptive crossover probabil-
ity to realize the genetic single-
point crossover operation.

A

A

Use adaptive mutation probabil-
ity to realize genetic mutation.

Calculate particle’s fitness and
DN values to start fuzzy system.
After PSO, use the fuzzy system
to calculate ω, c1, c2.

Update Pbest, Gbest, particle
speed and position again after
genetic manipulation.

ϕ(t) = f (g)− f (g+1)
f (g) < ε

Iterations reached?

Output the optimal particle.

j + 1

No

Yes

No

No

Yes

Yes

Figure 1. The flow of the novel FPSO-GAK clustering algorithm.

2.3. The Realization of the Novel FPSO-GAK Clustering Method

The detailed execution steps of the proposed clustering algorithm (pseudo-code is
shown in Algorithm 1) are as follows.



Appl. Sci. 2022, 12, 8047 5 of 26

Algorithm 1: Novel FPSO-GAK Clustering Algorithm.
Input:

The taxis GPS data set and the number of the data points;
The population size of PSO alogrithm, Nswarm;
The termination condition and/or The maximum number of clustering iterations;

Output:
Clustering center points and Clustering results.

1: The population size is set as Nswarm (number of particles). And the initial velocity
of particles is randomly generated within the given [νmin, νmax]; the initial velocity
of different particles is different. Nswarm rounds of initialization operations of
K-Means++ are performed in the GPS data set, and each round’s initial cluster
center points are taken as a particle.

2: The fitness value of each particle is calculated and sorted in descending order to
find out the optimal fitness value Pbest of each individual and the optimal
population value Gbest.

3: Operate the fuzzy system, put the calculation results of Formulaes (1) and (2)
into the fuzzy system, and calculate the values of ω, c1, and c2. The above output
results control the inertia weight and the particle velocity and change the particle
position distribution.

4: Update the velocity and position of the particles according to Formula (4a,4b).
5: Repeat Step 1 to Step 4 until the termination conditions are met. The fitness of

each particle is calculated, and the previous best even number of particles are
stored in memory for subsequent genetic algorithm operations.

6: The results of Step 5 are manipulated by the genetic algorithm, including
crossover, mutation, and elite operation. In particular, genetic selection has been
performed in step 5, directly utilizing roulette to pick individuals for the
crossover operation, but without genetic rearrangement operation.

7: Update the velocity and position of the particles according to Formula (4a,4b).
8: Determine whether the termination condition is met. If true, output the optimal

particle and proceed to Step 9. Otherwise, return to Step 6 until the termination
condition is met.

9: Run the K-means algorithm.

step.1 The initial parameter setting
According to the literature [42–45], one of the most remarkable features of PSO algo-

rithms is their speed. As per experience, the initial population should range from 50 to
1,000; while the convergence will be better with a larger initial population, a population that
is too large will also affect the algorithm’s speed. In our experiment, the initial population
Nswarm was between 100 and 200. Nswarm rounds of initialization operations of K-means++
were performed in the GPS data set, and each round’s initial center points were taken as one
particle. Many researchers believe that the clustering number of the K-means algorithm is
usually between 2 and

√
N, where N is the number of data points in the data set [46,47].

The urban hotspots must be depicted at a specified density; the initial clustering number

was set to around
√

N
8 .

step.2 Optimizing the initial clustering center points
The fitness and DN values of each particle were calculated for the fuzzy operation.

The fitness function, also known as the evaluation function, is a criterion determined by
the objective function to assess the quality of individuals within a group. It is always
non-negative, the greater the value, the better it is. The fitness function design should be as
straightforward as feasible to reduce computation time complexity. The fitness function f
in this paper is as follows:
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f =
1

∑K
i=1 ∑Xij∈Xi

(Xij − Xi)2
(1)

where, K represents the number of clusters, J means the number of the point that belong to
cluster i. The following formula for DN is used to change the fuzzy system and control the
maximum invariant fitness values:

DN =

∣∣∣∑ fPG− fCG<0( fPG − fCG)
∣∣∣

Nswarm
(2)

where PG and CG indicate the optimal population extremum/individual extremum, re-
spectively, f denotes fitness value of a particular particle, Nswarm means the population size
of the particle swarm. As found in related literature [48,49], the fitness value of particle
swarm is normalized as the parameter of the fuzzy system according to the following
formula:

NBF =
f − fmin

fmax − fmin
(3)

Then the particle optimization parameters ω, c1, and c2 are calculated by the fuzzy
system according to the fuzzy rules in the Table 1 and Mamdani fuzzy inference algorithm.

Table 1. Fuzzy rules for inertia weight ω, learning factor c1 and c2.

ω
DN c1

DN c2
DN

PS PM PB PR PS PM PB PR PS PM PB PR

NBF

PS PS PM PB PB

NBF

PS PR PB PB PB

NBF

PS PR PB PM PM
PM PM PM PB PR PM PB PM PM PS PM PB PM PS PS
PB PB PB PB PR PB PB PM PS PS PB PM PM PS PS
PR PB PB PR PR PR PM PM PS PS PR PM PS PS PS

PS: positive small; PM: positive middle; PB: positive big; PR: positive rare.

After a PSO routine runs once, the values of Pbest and Gbest are updated according to
the sorted fitness values of each particle. Particles update velocity νid and position zid using
the following formula:

ν
g+1
id = ων

g
id + c1r1(pid − zg

id) + c2r2(pgd − zg
id) (4a)

zg+1
id = zg

id + ν
g+1
id (4b)

where ω denotes the inertia weight, c1 and c2 are two positive learning factors, r1 and r2 are
random functions to generate uniformly distributed random values in the range [0, 1). The
fuzzy system updates the parameter settings of the PSO algorithm, and the PSO algorithm
is employed to update the particle information; the cycle is executed alternately until the
iteration conditions are satisfied. The optimized particles obtained in the previous stage are
sorted in descending order, and a certain number of the top particles are selected to enter
the subsequent genetic algorithm. The top 30% of particles were picked for this paper.

Genetic selection operations were performed using roulette algorithms. The gene
rearrangement technique based on cosine similarity was used to deal with chromosomes of
unequal length and different shapes. According to the fitness value, the following adaptive
crossover probability Pc formula is designed to realize the genetic single-point crossover
operation:

Pc =

{ fmax− f ′
fmax− favg

if f ′ > favg

1 if f ′ ≤ favg
(5)
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where fmax represents the maximum fitness value in the current population; favg
represents the average fitness value in the current population; f ′ represents the more
significant fitness value of the two chromosomes that participated in crossover operation.
The crossover operation is performed when the Pc value is greater than the roulette pick
probability. Formula 5 works as follows: when the fitness value of chromosomes involved
in the crossover is small, crossover operation must be performed; otherwise, the probability
of crossover operation is low. Then, the adaptive mutation operation is carried out. Genetic
variation is the operation of gene mutation on chromosomes in a population to search for a
better solution. Usually, small changes are made to the chromosomes of the population,
such as mutating the chromosomes with lower fitness to expand the search space and
prevent falling into local optimality. As with crossover operations, a mutation probability
is required to perform chromosome mutation operations. This paper obtains the adaptive
variation probability Pm by using the following formula:

Pm =

{
ξ1 × fmax− f

fmax− favg
if f > favg

ξ2 if f ≤ favg
(6)

where ξ1 and ξ2 are gene mutation coefficients; fmax represents the maximum fitness value
in the current chromosomes population; favg represents the average fitness value in the
current chromosomes population; f represents the fitness value of chromosomes involved
in mutations.

After performing a genetic algorithm operation, the generated particle’s fitness value
and DN value are calculated to start the fuzzy system. The fuzzy system calculates out the
particle optimization parameters ω, c1, and c2 parameter. The Pbest and Gbest are updated
according to the fitness of each particle; then, the particle swarm optimization algorithm
is activated to update the particles velocity and position information. Genetic mutation
operation, fuzzy system operation and particle swarm operation are performed alternately
until iteration conditions are satisfied. Then, the particle with the highest fitness is selected
as the initial clustering center of the subsequent K-means algorithm.

step.3 Capturing the optimal urban hotspots
On the premise that superior initial clustering centers were obtained, the K-means

algorithm can converge to the final outcome more quickly and accurately. Especially when
the number of clustering data points is enormous and the dimension of data is high, the
initial clustering centers have a substantial influence on the K-means algorithm’s efficiency.
We used the particle with the highest fitness value acquired in Step 2 as the initial clustering
centers of the k-means algorithm to analyze the GPS data set of urban taxis. The final
clustering centers of taxi GPS data are the urban hotspots we are searching for.

2.4. Synthetic Data Test

To validate the effectiveness of the proposed algorithm, a synthetic dataset was em-
ployed for testing. The synthetic dataset (Figure 2) contains 1000 data points divided into
120 clusters with random distribution of centroids, and the data variance within the clusters
is 15. There are various enhanced versions of the K-Means algorithm now available. The
proposed algorithm was compared with the state-of-the-art Random Swap clustering algo-
rithm (RS) [50], a lightweight and efficient clustering algorithm with linear time complexity
depending on the size of the data. The proposed algorithm contains meta-heuristic type
methods whose time complexity will be higher than the time complexity of K-means arith-
metic. According to the analysis in Section 3.5, it knows that the proposed algorithm’s time
complexity shows a basically linear relationship with the number of data. It is estimated
that the time consuming of the proposed algorithm is about 20 to 50 times that of the
random-swap clustering algorithm. At the cost of time complexity, the non-homogeneous
search capability of the proposed algorithm can achieve better clustering results on medium
and large data sets.
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Figure 2. The synthetic dataset distribution diagram.

Thirty clustering operations were performed on the synthetic data using the proposed
algorithm and random swap clustering algorithms according to the accuracy convergence
condition and a fixed number of iterations, respectively (the number of clusters for each
clustering operation was selected randomly between 70 and 90). The average SC, SP, SSE
and ACI (reference to Section 3.6) indexes were used to evaluate the results of clustering, as
shown in Table 2.

Table 2. Average indexes for clutering operations in synthetic dataset.

Algorithms Time-
Consuming SC SP SSE ACI

RS(60) 2.518 s 0.9258 265.24 277,835.5 0.2199
FPSO-GAK(85) 65.495 s 0.9365 266.79 275,294.1

RS(5000) 206.853 s 0.9297 266.42 271,651.7 0.2213
FPSO-GAK(1000) 803.172 s 0.9383 267.13 269,894.1

The number within parentheses represents the number of iterations performed by the algorithms.

Table 2 demonstrates that the state-of-the-art Random Swap clustering algorithm is an
effective clustering algorithm that achieves excellent results with respect to all clustering
indexes. The ACI index of FPSO-GAK and Random Swap Clustering algorithms is greater
than 0.15, indicating a substantial difference in their clustering-level similarity. The pro-
posed algorithm slightly outperforms the Random Swap Clustering algorithm in many
indexes except the time-consuming index. The time complexity of both algorithms shows a
linear relationship with the amount of data, but the proposed algorithm will take an order
of magnitude more time-consuming than the Random Swap Clustering algorithm. Con-
sidering the rapid increase of computing power nowadays, it is acceptable in applications
to sacrifice a certain time loss to obtain the improvement of the clustering effect. In the
subsequent test and analysis of the real dataset, we will further conduct a comparative
analysis of the proposed algorithm with similar types of heuristics algorithms.

3. Experiment Results and Analysis
3.1. Experiment Data Set
3.1.1. Taxis GPS Data Set

For the purpose of verifying the performance of the novel algorithm, five GPS data
sets were used as shown in Table 3. GPS data sets typically contain vehicle ID numbers,
longitude values, latitude values, altitude values, timestamps, GpsSpeed, etc., which are
periodically recorded by the onboard GLOBAL positioning system (GPS). Currently, public
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transport authorities in many cities have accumulated taxi GPS data sets for several years.
In this study, we focused on GPS data sets from representative metropolitan areas in several
countries, i.e., Aracaju (Brazil), Beijing (China), Chongqing (China), Rome (Italy), and
San Francisco (USA). Data set Aracaju is a taxi GPS data set from Aracaju city in Brazil,
which belongs to the standard data set in UCI Machine Learning Repository. Data set
Beijing (China) is a taxis GPS data set from downtown Beijing, China, which is from the
well-known Geolife Trajectories project [51,52]. Data set Chongqing (China) is a taxis GPS
data set from urban area Chongqing, China. Data set Rome (Italy) is a taxi GPS data set
from Rome city, which belongs to the data set in Crawdad and contains GPS data of about
320 taxis’ trajectories [53]. Data set San Francisco (USA) is a taxi GPS data set from San
Francisco, which belongs to the data set in Crawdad and contains GPS data of about 500
taxis’ trajectories [53]. The data sets have been cleaned beforehand; just a subset of the
original data sets has been extracted, and a few records between 1:00 and 6:00 p.m. have
been eliminated.

Table 3. Summary information of Taxis GPS data sets.

Taxi GPS Data Sets Latitude and Longitude Span Number of Data Points

Aracaju (Brazil) 0.14× 0.16 16,513
Beijing (China) 0.90× 0.90 17,387

Chongqing (China) 0.60× 0.36 19,149
Rome (Italy) 0.35× 0.50 20,254

San Francisco (USA) 0.10× 0.10 21,826

3.1.2. Multi-Source Trajectory Data Set

In addition to the taxi vehicle GPS dataset, we validated the proposed algorithms using
the multi-source trajectory dataset. The multi-source trajectory dataset is derived from
the Routes 2019 subset of the MOPSI dataset (http://cs.uef.fi/mopsi/data, accessed on 5
July 2022), which contains approximately 3 million trajectory data points [54]. Trajectories
encompass a variety of activities, such as walking, biking, hiking, jogging, driving, taking
the bus, and others. Some of these trajectory points record life routines, such as going
to work or shopping. The dataset is particularly suitable for migratory pattern mining,
person activity identification, and location-based similarity. In the experiments of this
paper, we select multi-source trajectory data points within the urban area for analysis,
mainly including trajectory point data of vehicles, walking, jogging and biking. The spatial
distribution of the multi-source data trajectory points is shown in Figure 3.

Figure 3. The spatial distribution of the multi-source data trajectory points.

http://cs.uef.fi/mopsi/data
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3.2. Experimental Environment and Parameter Setting

The experimental environment based on a personal computer featured the following:
Intel I5-8250U, dominant frequency 4 × 1.60 GHz with 8G RAM, Windows 10 operating
system, and the algorithm routines were coded in MATLAB 2018b.The taxi GPS data sets
contained subsets Aracaju, Beijing, Chongqing, Rome and San Francisco were used as
experimental data sets. In each algorithm routine, clustering performance was evaluated
using SC, SP, and SSE indicators, which paid particular attention to SC index. The above
algorithm routines were trained 20 times independently in the experiment. The clustering
numbers to GAK and K-means++ algorithms were initialized to 100. Then the parameters
were adjusted respectively within

√
n according to the amount of data sets to acquire the

best experimental results. The initial parameter setting of PSO and fuzzy system are shown
in Table 4.

For the PSO algorithm: the inertia weight ω keeps the particle moving with inertia,
giving it the tendency to expand the search space and the ability to explore new regions.
The acceleration constants c1 and c2 represent the weights of the statistical acceleration
terms that push each particle toward the Pbest and Gbest positions. A low value allows the
particle to hover outside the target region before being pulled back, while a high value
causes the particle to make a sudden dash toward or over the target region. The higher the
number of populations (NP), the higher the accuracy will be obtained, but at the same time,
it will prolong the computing time. The velocity range (VRP) determines the resolution
(or accuracy) in the region between the current position and the best position. If velocity
maximum is too high, the particle may fly past the good solution, and if velocity minimum
is too small, the particle cannot perform sufficient exploration, leading to becoming stuck
in local optima.

For the GA algorithm: the adaptive cross coefficient range (ACCR) is too large, it
is easy to destroy the existing favorable mode, increase the randomness and easily miss
the optimal individual; it is too small to renew the population effectively. The adaptive
variation coefficient range (AVCR)is too small and the diversity of the population declines
too fast, which easily leads to the rapid loss of effective genes and is not easy to repair; it
is is too large, the diversity of the population can be guaranteed, but the probability of
higher-order mode destruction also increases.

For the fuzzy system: the fuzzy range of ω in the PSO (FRW) control the variation
range in the defuzzification process. The fuzzy range of ci in the PSO (FRC) control the
variation range in the defuzzification process.

Table 4. PSO and fuzzy system parameter setting.

DS VRP NLDP NC NP ω c1 c2 FRW FRC ACCR AVCR

Aracaju 0.8,-0.8 16,513 120 41 0.9 1.5 1.5 0.2,1.2 1.0,2.0 0.5,1.0 0.5,1.0
Beijing 0.8,-0.8 17,387 130 41 0.6 1.2 1.2 0.2,1.2 1.0,2.0 0.5,1.0 0.5,1.0

Chongqing 0.4,-0.4 19,149 130 41 0.6 1.1 1.1 0.2,1.2 1.0,2.0 0.5,1.0 0.5,1.0
Rome 0.1,-0.1 20,254 140 51 0.6 1.5 1.5 0.2,1.2 1.0,2.0 0.5,1.0 0.5,1.0

San Francisco 0.3,-0.3 21,826 140 51 0.8 1.6 1.6 0.2,1.2 1.0,2.0 0.5,1.0 0.5,1.0

DS: data set; NLDP: number of location data points; NC: number of clusters.

3.3. Experimental Results and Comparison Analysis
3.3.1. Taxis GPS Data Set

Figures 4–8 show the convergence diagrams for the searching optimal initial clustering
centers stage of the GAK, PSOK, PSOCK, PSOWK, PSO-GAK, and the proposed algorithms
utilizing Section 3.2 parameters in five distinct GPS data sets. Figures 9–13 is the conver-
gence diagram for k-means clustering stage of 7 algorithms (the above six algorithms plus
K-means++ algorithm). Tables 5–7 are the comparison tables for the average Silhouette
coefficient (SC), the average degree of separation (SP), and the average SSE value of 20
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training sessions respectively (plus Random Swap Clustering algorithm). In order to ac-
curately analyze the above evaluation indexes, each algorithm was iterated 180 times in a
single run to guarantee convergence. Figures 14–19 show The obtained clustering centers of
Aracaju, Beijing, Chongqing, Rome, and San Francisco after the operation of six algorithms.
Clustering centers outcome are shown on the Baidu Map background.

Tables 5–7 demonstrate that the proposed algorithm has superior clustering perfor-
mance in terms of Silhouette coefficient, degree of separation and SSE, as well as the ability
to capture better clustering results and locate more effective urban hotspots. However,
in Table 7’s San Francisco data set, the K-Means++ algorithm delivers just slightly worse
than the proposed algorithm. It reveals that the K-Means++ algorithm can be used as
a preliminary coarse-grained clustering algorithm in such applications. The tables also
demonstrate that the overall clustering performance of the RS algorithm is good, and the
clustering effect is better than the K-Means++ algorithm in most cases. In Table 5, the
average Silhouette coefficient of the proposed algorithm is higher than other algorithms.
The greater the Silhouette coefficient, the more compact within a cluster and more dispersed
between the clusters, indicating that the clustering effect is superior to the competitors. In
Table 6, the proposed algorithm has a higher SP value than other algorithms. The higher
the SP value, the greater the separation between clustering clusters, and the higher the
clustering algorithm’s ability to satisfy the needs of the majority of clustering. Table 7
indicates that the average SSE value of the proposed algorithm in 20 training cycles is
superior to other algorithms. Overall, the clustering results of the proposed algorithms
all outperformed the comparison algorithms. The above suggests that hybrid heuristic
initialization algorithms are effective, practical and feasible.

Figure 4. The SSE convergence curve for the searching optimal initial clustering centers stage of taxi
GPS dataset from Aracaju(Brazil).
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Figure 5. The SSE convergence curve for the searching optimal initial clustering centers stage of taxi
GPS dataset from Beijing(China).

Figure 6. The SSE convergence curve for the searching optimal initial clustering centers stage of taxi
GPS dataset from Chongqing(China).

Figure 7. The SSE convergence curve for the searching optimal initial clustering centers stage of taxi
GPS dataset from Roma(Italy).
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Figure 8. The SSE convergence curve for the searching optimal initial clustering centers stage of taxi
GPS dataset from San Francisco (USA).

Table 5. Average Silhouette coefficient of 8 algorithms trained 20 times in 5 GPS data sets.

Algorithms Aracaju Beijing Chongqing Rome San Francisco

K-means++ 0.9339 0.8520 0.9289 0.9050 0.9183
RS 0.9301 0.8623 0.9252 0.9052 0.9190

GAK 0.9344 0.8595 0.9299 0.9065 0.9195
PSOK 0.9347 0.8616 0.9294 0.9031 0.9196

PSOCK 0.9339 0.8597 0.9286 0.9013 0.9182
PSOWK 0.9342 0.8622 0.9287 0.9042 0.9199

PSO-GAK 0.9341 0.8608 0.9296 0.9016 0.9185
FPSO-GAK 0.9360 0.8685 0.9301 0.9057 0.9209

Table 6. Average degree of separation of 8 algorithms trained 20 times in 5 GPS data sets.

Algorithms Aracaju Beijing Chongqing Rome San Francisco

K-means++ 0.0415 0.2430 0.1361 0.0756 0.0383
RS 0.0410 0.2442 0.1304 0.0760 0.0390

GAK 0.0424 0.2488 0.1355 0.0644 0.0371
PSOK 0.0439 0.2809 0.1570 0.0850 0.0434

PSOCK 0.0432 0.2748 0.1488 0.0840 0.0392
PSOWK 0.0438 0.2813 0.1636 0.0851 0.0443

PSO-GAK 0.0445 0.2843 0.1618 0.0864 0.0427
FPSO-GAK 0.0447 0.2858 0.1650 0.0865 0.0451

Table 7. Average SSE of 8 algorithms trained 20 times in 5 GPS data sets.

Algorithms Aracaju Beijing Chongqing Rome San Francisco

K-means++ 18.9475 213.4044 101.0077 51.3587 34.6147
RS 19.9865 212.5084 105.8674 51.0076 34.5113

GAK 19.0157 212.8031 100.7465 52.6603 35.1143
PSOK 19.8867 224.2299 109.4038 54.0949 36.4149

PSOCK 19.8712 223.6972 109.3995 54.1288 36.6931
PSOWK 19.5313 223.5987 110.5026 55.8484 35.7416

PSO-GAK 19.6945 224.5453 109.3748 55.1924 36.1069
FPSO-GAK 18.4654 212.3069 100.3002 50.5796 34.3267

Figures 4–8 show that the proposed algorithm undergoes minimal change during
the iterative convergence process. Within the five groups of taxi GPS data sets, the pro-
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posed really is in the optimal state, the optimization effect is noticeable, and its curve
variations are negligible. It indicates that the proposed algorithm can obtain relatively
better clustering centers by using the initialization operation of the k -means++ algorithm
when initializing the populations. Assuming that the proposed algorithm is equivalent
to the K-means++ algorithm, the two algorithms’ convergence curves will coincide in the
convergence scenario, which is not observed in the experiments. In the iterative optimiza-
tion process of the proposed algorithm, the fitness value changes slightly, and the location
distribution of particles and the clustering center are constantly modified to achieve a
more optimal clustering centers distribution throughout the whole GPS data set. The final
clustering effect can better accommodate actual requirements. The convergence curves of
the proposed algorithm and PSO-GAK algorithm remain close to each other, indicating
that the parameters of the proposed algorithm should be further adjusted to improve its
convergence effect, which will be studied in future work.

Figures 9–13 show that the proposed algorithm can obtain better particles than the
GAK, PSOK, PSOCK, PSOWK, PSO-GAK and K-means++ as the input initial clustering
centers of the K-means algorithm. With optimization by the proposed algorithm, improved
clustering centers can be captured, significantly reducing the K-means algorithm’s sen-
sitivity to initial clustering centers. When SSE is employed as the objective function of
the k-means clustering algorithm, the clustering centers obtained by the proposed algo-
rithm are used to perform the K-means clustering algorithm, which has faster convergence
characteristics and a lower SSE value overall.

Figure 9. The SSE convergence curve of taxi GPS dataset from Aracaju(Brazil).
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Figure 10. The SSE convergence curve of taxi GPS dataset from Beijing(China).

Figure 11. The SSE convergence curve of taxi GPS dataset from Chongqing(China).

Figure 12. The SSE convergence curve of taxi GPS dataset from Roma(Italy).
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Figure 13. The SSE convergence curve of taxi GPS dataset from San Francisco (USA).

In Figure 9, the proposed algorithm begins to converge in the second generation
and converges entirely in the fourth generation, and the SSE obtained is significantly
smaller than other algorithms. In Figure 10, before the seventh generation, the convergence
speed of the proposed algorithm is faster than other algorithms, and the SSE value is also
relatively small. After the tenth generation, the SSE value of the proposed algorithm is
slightly smaller than that of the K-means++ and GAK algorithms. In Figure 11 , proposed
converges from about the second generation and converges entirely in the fifth generation.
The SSE value is lower than that of other algorithms, showing that the clustering effect is
excellent and the separation between clusters is significant, consequently demonstrating the
algorithm’s effectiveness. In Figure 12, the proposed converges from the second generation
and entirely at about the fifth generation, with a very smooth convergence curve. In the
meantime, the figure demonstrates that the SSE value is less than that of other algorithms,
indicating that the clustering center captured by the proposed algorithm is effective and
does not cause k-means clustering to fall into local optimal solutions. In Figure 13, the
proposed converges from about the second generation and ultimately converges at the
fifth generation. In the beginning stage, the SSE value of the algorithm is substantially
lower than that of other algorithms, and after convergence, it is extremely stable.

Overall, experiments on various datasets indicate that the algorithm that combines
the genetic algorithm, fussy system, and particle swarm algorithm virtually captures the
optimum clustering centers more effectively.

3.3.2. Multi-Source Trajectory Data Set

To further validate the performance of the proposed algorithm, we employed a more
complex multi-source dataset. In order to accurately analyze the above evaluation indexes,
The number of clusterings is randomly generated between 130 and 150, each algorithm
was iterated 120 times in a single run to guarantee convergence. Table 8 is the comparison
tables for the average Silhouette coefficient (SC), the average degree of separation (SP), and
the average SSE value of 20 training sessions respectively.
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Table 8. Average evaluation indexes of 8 algorithms in multi-source dataset.

Algorithms SC SP SSE

K-means++ 0.9646 0.4415 1677.71
RS 0.9650 0.4402 1659.55

GAK 0.9633 0.4049 1668.38
PSOK 0.9640 0.4395 1687.45

PSOCK 0.9645 0.3317 1702.89
PSOWK 0.9654 0.4080 1645.93

PSO-GAK 0.9656 0.4238 1678.37
FPSO-GAK 0.9684 0.4628 1610.59

All eight algorithms converge well within less than 120 iterations in the multi-source
dataset. The K-Means++ and Random Swap Clustering algorithms are much less time
consuming than the other algorithms, and both achieve very good clustering results. The
analysis of the experimental data shows that the Random Swap Clustering algorithm
outperforms the K-Means++ algorithm. The Random Swap Clustering algorithm also
outperforms single-mode heuristics in many cases. With reasonable time consumption,
the evaluation indexes of the proposed algorithm are significantly better than those of
the compared algorithms. This may be due to the fact that the proposed hybrid heuristic
algorithm has stronger non-homogeneous spatial search capability, but also brings more
computing resources and time consumption. Overall, the clustering results of the proposed
algorithms all outperformed the comparison algorithms in the terms of above evaluation
indexes. The above suggests that the proposed hybrid heuristic algorithms are effective.

3.4. Visual Presentation of Experimental Results
3.4.1. Visual Presentation of Taxis GPS Data Set

Figures 14–19 shows the centers of the clustering results for each algorithm in Baidu
Map (put the clustering centers into the maps using the open software interface provided
by Baidu Map). On the corresponding map, we intuitively perceive the distribution of
clustering results based on various algorithms. According to pertinent maps, different
clustering algorithms yield different clustering centers, indicating that different clustering
results and identified urban hot areas are distinct. Since experiment GPS datasets are not
cleaned according to road location limitations, the map may contain a very small number
of outlier points.
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(a) (b) (c)

(d) (e)

Figure 14. The urban hotspots captured by the GAK algorithm. (a) Aracaju; (b) Beijing; (c) Chongqing;
(d) Roma; (e) San Francisco.

(a) (b) (c)

(d) (e)

Figure 15. The urban hotspots captured by the PSO-GAK algorithm. (a) Aracaju; (b) Beijing; (c)
Chongqing; (d) Roma; (e) San Francisco.
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(a) (b) (c)

(d) (e)

Figure 16. The urban hotspots captured by the PSOK algorithm. (a) Aracaju; (b) Beijing; (c)
Chongqing; (d) Roma; (e) San Francisco.

(a) (b) (c)

(d) (e)

Figure 17. The urban hotspots captured by the PSOCK algorithm. (a) Aracaju; (b) Beijing; (c)
Chongqing; (d) Roma; (e) San Francisco.
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(a) (b) (c)

(d) (e)

Figure 18. The urban hotspots captured by the PSOWK algorithm. (a) Aracaju; (b) Beijing; (c)
Chongqing; (d) Roma; (e) San Francisco.

(a) (b) (c)

(d) (e)

Figure 19. The urban hotspots captured by the novel FPSO-GAK algorithm. (a) Aracaju; (b) Beijing;
(c) Chongqing; (d) Roma; (e) San Francisco.
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3.4.2. Visual Presentation of Multi-Source Trajectory Data Set

Figure 20 shows the centers of the clustering results for each algorithm in multi-source
trajectory data set. On the corresponding map, we intuitively perceive the distribution of
clustering results based on various algorithms.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 20. The urban hotspots in multi-source trajectory data set. (a) K-Means++; (b) GAK; (c)
PSO-GAK; (d) PSOCK; (e) PSOK; (f) PSOWK; (g) RS; (h) FPSO-GAK.

3.5. Clustering Algorithm Complexity Analysis

The proposed noevel FPSO-GAK algorithm consists of three parts. To facilitate anal-
ysis, the following notation is used: the number of GPS data points is N, the number
of clustering is K, the particles population of PSO is M. In the first part, the k-Means++
initialization method is employed to obtain particles M population. The time complexity
of this part is O(P1) = MKlog(K). In the second part, the hybrid heuristic initialization
is utilized to determine optimal initial clustering centers. The iterations number of PSO
algorithm is T1, The iterations number of GA algorithm is T2, number of calculations to
fitness function is T3. The time complexity of the fuzzy system is related to the num-
ber of iterations and the number of fuzzy rules; it takes very little time and is negligible
in terms of computational time complexity. The time complexity of the second part is
O(P2) = MNKT1 + MNKT2 + MT3. In the third part, the K-Means clustering algorithm is
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used to locate the urban hotspots. The iterations number of K-Means clustering algorithm
is T4.The time complexity of the third part is O(P3) = NKT4.

The time complexity of the proposed clustering algorithm is O(FPSO − GAK) =
O(P1) +O(P2) +O(P3) ≈ NK((T1 + T2)M + T4). In practical applications, K and M are
very small relative to the number of GPS data points N. The number of iterations T of
the K-means++ algorithm in which the random initialization procedure fails to acquire
the better initialization tends to be extremely high for large-scale datasets. Due to the
good non-homogeneous search capability of the proposed hybrid heuristic initialization
algorithm, the value of (T1 + T2)M is relatively small. Furthermore, the better-initialized
centers makes T4 would be much smaller than T. The result of their interaction makes: the
complexity of the proposed algorithm is of the same order of magnitude as that of k-Means,
but it will be slightly larger numerically.

In the actual experimental operation, the PSO-GAK algorithm in literature [55] con-
sumes the most time since its complexity tends to O(N2). The proposed algorithm can
better adjust the search parameters automatically, and it will converge significantly faster
than the PSO-GAK algorithm. The complexity of an intelligent algorithm is generally
higher than the general iterative, recursive algorithm [56]. Collectively, it can be seen
that the complexity of the proposed algorithm is much less than O(N2) but greater than
O(NKT). The complexity of the proposed algorithm is roughly linearly related to the
number of samples, and it is very efficient and scalable for handling large data sets.

3.6. Clustering Results Similarity Analysis

External indexes have been commonly used to compare clustering algorithms by cal-
culating how many pairs of data points are partitioned consistently between two clustering
solutions. For both solutions to be consistent, a pair of points must be assigned to either the
same cluster or a distinct cluster. This offers an estimation of point-level similarity but no
direct information regarding cluster-level similarity. In most cases, information about the
cluster-level similarity of the algorithm is of more interest than the estimation of point-level
similarity. Fränti et al. [57] proposed Centroid index (CI) measures cluster-level differences
of two solutions, and centroid similarity index (CSI) measures point-level differences of
two solutions. The CI index has clear intuitive interpretation on how many clusters are
differently located in the two solutions by an integer value. A higher CI value indicates
a lower similarity between the two solutions when the number of cluster classes is deter-
mined. Considering the effect of the number of clustering, this paper employs a normalized
adjusted CI index (ACI) to compare solutions with the following formula:

ACI =
CI − abs(K1 − k2)

min(K1, k2)− 1
(7)

where K1, k2 represents the number of clusters in two solutions; abs() represents the ab-
solute value function; min() represents the minimum function. Tables 9 and 10 are the
comparison tables for the novel FPSO-GAK algorithm with other algorithms.

Table 9. ACI index for novel FPSO-GAK vs. other algorithms.

City
Algs GAK PSOK PSOCK PSOWK PSO-GAK K-Means++

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Aracaju 0.266 0.060 0.186 0.027 0.190 0.028 0.198 0.035 0.204 0.022 0.126 0.031
Beijing 0.182 0.075 0.111 0.027 0.200 0.062 0.190 0.054 0.161 0.042 0.096 0.022

Chongqing 0.307 0.042 0.151 0.022 0.208 0.029 0.198 0.025 0.207 0.026 0.131 0.037
Roma 0.364 0.039 0.162 0.030 0.249 0.023 0.243 0.027 0.272 0.025 0.181 0.024

San Francisco 0.353 0.044 0.204 0.041 0.205 0.040 0.222 0.037 0.231 0.040 0.165 0.039

mean: mean value ; std: standard deviation ; algs: algorithms. The above values are the statistical
values after 20 rounds of independent running.
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Table 10. CSI index for novel FPSO-GAK vs. other algorithms.

City
Algs GAK PSOK PSOCK PSOWK PSO-GAK K-Means++

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Aracaju 0.817 0.019 0.839 0.015 0.834 0.021 0.832 0.021 0.830 0.013 0.873 0.017
Beijing 0.737 0.018 0.750 0.022 0.746 0.018 0.747 0.018 0.753 0.020 0.753 0.019

Chongqing 0.750 0.015 0.789 0.029 0.774 0.019 0.781 0.020 0.770 0.018 0.790 0.016
Roma 0.747 0.023 0.808 0.019 0.795 0.020 0.782 0.021 0.772 0.019 0.802 0.018

San Francisco 0.700 0.021 0.722 0.024 0.721 0.027 0.727 0.024 0.717 0.026 0.745 0.021

mean: mean value ; std: standard deviation ; algs: algorithms. The above values are the statistical
values after 20 rounds of independent running.

Table 9 shows that the ACI indices of FPSO-GAK and other algorithms are greater
than 0.15, indicating a substantial difference in their clustering-level similarity. Obtaining
the above outcomes under identical data input conditions reveals that the equivalent
mathematical models of the FPSO-GAK algorithm differ significantly from those of other
algorithms. However, the value of the ACI index is generally less than 0.25, indicating
that the difference between equivalent mathematical models is not fundamental. The CSI
indices in Table 10 are more concerned with point-level similarity, and their values indicate
similar model analysis information.

4. Discussion

The K-Means algorithm can achieve very good results on convex, compressible
datasets. Urban roads are usually distributed in a neighborhood manner, and the tra-
jectory points of vehicles satisfy convexity and compressibility in a large local area. Using
the K-Means algorithm to identify urban hotspots can yield effective results. K-Means
algorithm is very sensitive to the initial center points. Excellent initial clustering centers
significantly impact the performance of the k-Means clustering algorithm. K-Means is
particularly effective in fine-tuning local cluster boundaries, but is incapable of solving
global cluster locations. The organic combination of global perception and local fine-tuning
is the key to obtaining good initial centers. Literature [50] proposed the method of random
swap clustering, which is simple and efficient. Under the condition of a suitable KNN super
parameter configuration, this method’s random swap efficiency is extremely high, it is an
exquisite lightweight clustering method. Inspired by the ideas of randomness and exchange,
the FPSO-GAK algorithm combines a variety of heuristic algorithms with the premise of
sacrificing a little efficiency to avoid the homogeneity of the random search process and
can better obtain global perception ability. At the same time, local search parameters can be
fine-tuned automatically to prevent over-dependence on super parameter.

In practical applications, in order to further improve the clustering efficiency, the
inertia weight and learning factor can better meet the iterative requirements by adjusting
fuzzy rules. At the same time, the combination mode of PSO and GA can also be changed.
PSO can improve the phenomenon that GA is prone to early maturity through global
optimization in the early stage. while PSO is prone to fall into local optimization in the late
stage, the deficiency can be made up through the global optimization in the late stage of
GA.

Compared with many existing research algorithms in this field, the proposed algo-
rithm has a better and relatively efficient non-homogeneous search capability, which can
effectively find excellent initial clustering centers and at the same time can reduce the
sensitivity of K-Means algorithm to noise to a certain extent. However, the proposed algo-
rithm is relatively complex in structure and has a relatively high time complexity compared
to many lightweight algorithms. The proposed algorithm is a class of algorithms based
on a heuristic mechanism, which can only guarantee to get a better solution and cannot
guarantee to obtain the optimal solution for sure.
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5. Conclusions

In this paper, a Novel FPSO-GAK clustering algorithm has been proposed to effectively
solve the problems of difficulty in determining the sensitivity of initializing the clustering
center for a K-means clustering algorithm. The Novel FPSO-GAK clustering algorithm
has been employed to capture urban hotspots in metropolitan areas in several countries
worldwide. After the experimental clustering operation was completed, the SC index, SP
index, and SSE index were applied to evaluate the clustering performance. The proposed
Novel FPSO-GAK clustering algorithm obtained better clustering results for urban hotspots
in metropolitan areas over the GAK, PSOK, PSOCK, PSOWK, PSO-GAK, and K-means++
algorithm. The algorithm presented in this paper can better improve the quality of public
service for people in cities. In addition, the Novel FPSO-GAK clustering algorithm proposed
in this paper can also be applied to the clustering analysis of remote sensing ground object
data, animal migration area analysis, urban subway data analysis, urban heating network
optimization analysis, detailed analysis of power supply flow of power grid and other
fields.

There are also some shortcomings of the algorithm proposed in the paper. On the one
hand, we only use the GPS data of taxis. The data amount is relatively small, leading to
an insufficient resolution in the refined analysis of the distribution relationship of urban
hotspots. On the other hand, the Novel FPSO-GAK clustering algorithm does not add
urban road constraints, leading to some hotspots falling into particular areas where traffic
vehicles cannot be reached, such as large lake areas in cities. These deficiencies will be
further improved in future research work.
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