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Abstract: Electroencephalography (EEG) has been widely used in the research of stress detection in
recent years; yet, how to analyze an EEG is an important issue for upgrading the accuracy of stress
detection. This study aims to collect the EEG of table tennis players by a stress test and analyze
it with machine learning to identify the models with optimal accuracy. The research methods are
collecting the EEG of table tennis players using the Stroop color and word test and mental arithmetic,
extracting features by data preprocessing and then making comparisons using the algorithms of
logistic regression, support vector machine, decision tree C4.5, classification and regression tree,
random forest, and extreme gradient boosting (XGBoost). The research findings indicated that, in
three-level stress classification, XGBoost had an 86.49% accuracy in the case of the generalized model.
This study outperformed other studies by up to 11.27% in three-level classification. The conclusion of
this study is that a stress detection model that was built with the data on the brain waves of table
tennis players could distinguish high stress, medium stress, and low stress, as this study provided
the best classifying results based on the past research in three-level stress classification with an EEG.

Keywords: EEG; stress; machine learning; XGBoost

1. Introduction

The psychological quality of competition sports players is critical for them to achieve
peak performance, but psychologically, they are liable to stress regardless of everyday
stresses or the stresses of competition [1,2]. While appropriate levels of stress help men
and women achieve optimal performance, improper stresses impair performances [3–5].
When a person is subject to external stimulation that threatens the balance within his/her
body, an adaptation of physical and mental status emerges; in that sense, stresses are an
adaptive reaction [6]. Despite different sources of stress, in order to maintain a physical–
mental balance, certain similar physiological reactions occur in people due to stress: the
secreted adrenaline increases, along with increased heartbeats, fast breathing, increased
blood pressure, increased blood sugar content, and other changes [7]. Though stresses can-
not be measured directly, individual physiological reactions and changes can be detected
through physiological parameters such as electroencephalography (EEG), electrocardiog-
raphy (ECG), and electromyography (EMG) to analyze the status of stresses to which the
individuals are subject [8].

Stressors are the stimulative contexts that cause stress reactions and can be applied
in stress detection. The Stroop color and word test (SCWT) was, at first, widely used
in experiments of clinic research of neuropsychology and then discovered to induce
an increase in adrenaline, heartbeats, respiratory rates, anxiety, etc., which are all that
emerge as a result of stress reactions caused by stressors and, thus, can be effectively
applied in stress detection [9–11]. In the Montreal imaging stress task (MIST), which
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originated from the Trier social stress test (TSST), difficulty in mental arithmetic (MA)
and a time limit were used in the experiment groups, and it showed a significant increase
in the level of cortisol in saliva compared with the control groups and the rest groups.
Cortisol is also called a stress hormone, as cortisol begins to increase when stressors
appear, with the effect of increasing the blood pressure and blood sugar. Hence, MIST
can serve as a tool for stress detection to be used in research on the influences of social–
psychological stresses [12].

EEGs reflect the psychological and physiological status of a person. EEG measure-
ments work to detect the stress condition of a subject promptly, making an objective and
quantifiable assessing tool [13]. However, the original signals of brain waves have a low
signal-to-noise ratio (SNR), are not stable signals, and have high variations among individ-
uals; thus, how to analyze the physiological signals from the brain is an important issue in
increasing the accuracy of stress assessments [14]. According to the International Federation
of Clinical Neurophysiology (IFCN), by the most common categories, the frequencies of
brain waves, are divided, from low to high, into the Delta band (0.1–<4 Hz), the Theta
band (4–<8 Hz), the Alpha band (8–13 Hz), the Beta band (>13–30 Hz), and the Gamma
band (>30–80 Hz) [15]. Delta waves represent the sleeping status of a person; Theta waves
a shallow sleeping status; Alpha waves a relaxed and calm status; and Beta waves the
statuses of thinking, working, tension, anxiety, or stress.

Over recent years, EEG was widely used in research regarding stress detection. The
authors of [16] used the exercises memory search, SCWT, and public speech as stressors,
with sources of records, including a heart rate monitor (HRM), electrodermal activity (EDA),
respiratory changes, and EEG. An independent component analysis (ICA) was used to
eliminate artifacts from the EEG, a 4–400 Hz band pass filter to rule out undesired bands,
and last, the framework of a convolutional neural network (CNN) in combination with
long short-term memory (LSTM) to perform two-level classification with an accuracy at
90%. When using only EEG features, they achieved an 87.5% accuracy. In the research [17],
a novel wearable device that is capable of measuring both the ECG and EEG was designed,
and two stress sources, which were SCWT and MA, were used for recording the heart
rate variability (HRV) and EEG. EEG signals were put to calculations with fast Fourier
transform (FFT) into a power spectral density (PSD) to allow the extraction of features from
the resultant PSDs of each band (Delta, Theta, Alpha, and Beta); the features selected by
the analysis of variance (ANOVA) were classified by the support vector machine (SVM)
with an accuracy at 77.9%. The authors of [18] employed MA tasks to cause a stress state,
where ECG, breath signals, blood volume pulse (BVP), and EEG were extracted. From EEG,
the physiological signals contained in brain waves of 14 channels on Delta, Theta, Alpha,
and Beta bands were extracted. When using the random forest as the classifier on only
the features provided by EEG data, the accuracy of distinguishing between resting and
stressed states was 96.0%.

In research [19], computer-based MA was used to induce stresses, which, and control
conditions too were divided into four levels of difficulty. The features extracted from
EEG signals were absolute power, relative power, coherence, phase lag, and amplitude
asymmetry. They began by standardization with a z score, then used receiver operating
characteristic curve (ROC), t-test, and Bhattacharya distance for feature selection, and
finally used logistic regression, SVM, and Naive Bayes to classify. Their findings suggested
that a two-level stress classification achieved a 94.6% accuracy. The authors of [20] used MA,
memory image, and public speech as the tests for stress-inducing tasks and resulted in ECG
and EDA records. The results of the experiment indicated that the use of single-channel
EEG features landed an optimal accuracy in classification between relaxed and high brain
load states at 86.66%. The authors of [21] used EEG of 14 channels of brain waves on Alpha
and Beta bands and combined with SCWT and MA. The brain waves collected by SCWT
were those of a relatively low-stressed state, and those collected by MA were of a relatively
high-stressed state. Last, SVM was employed to discern the indicators for brain waves
stress levels. The accuracy for three-level stresses was 75%, and those for two-level stresses
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were 88% and 96% in the cases of SCWT and MA. The authors of [22] utilized SCWT as a
stressor to induce four levels of stress and extracted combinations of features from EEG
signals, including fractal dimensions and statistical features; the use of SVM as a classifier
was able to identify two-level, three-level, and four-level stress classifications, where the
accuracy for two-level stresses was 85.17%.

Past documents suggested that the measurements by different methods of mental
stresses through EEG usually involved three stages, namely, data collection, data prepro-
cessing, and classification [16–22]. (1) Data collection: in regard to short-term stresses,
stressors are used to induce acute stresses, e.g., SCWT [16,17,21,22] and MA [17–21]. (2)
Data preprocessing: intended to eliminate artifacts and noises and to extract useful features,
where the methods available for eliminating artifacts and noises are the ICA and filters. (3)
Classification: as classifiers, there is machine learning [17–22] and deep learning [16].

Machine learning is one of the core areas of artificial intelligence, which is the
study of how to create algorithms that are capable of learning from experiences and
improving their own ability, dissimilar to the algorithms that simply operate by given
specific rules [23]. Machine learning is based on the study of statistical probabilities and
computer science; employs algorithms such as logistic regression, SVM, decision tree,
multilayer perceptron (MLP), and K-Nearest Neighbor (KNN); and has been applied in
various fields, including physiological signals, medicine, industry, agriculture, and mail
management [24,25].

Deep learning is a subfield of machine learning that uses deep neural networks as
an architecture. CNN are currently the most widely used models in deep learning. In
1998, LeNet [26] laid the basic framework for CNN, which consists of convolutional layers,
pooling layers, and fully connected layers. AlexNet [27] won the classification task in
the 2012 ImageNet Large Scale Visual Recognition Competition (ILSVRC). Since then,
deep learning has developed rapidly, including VGG [28], GoogLeNet [29], ResNet [30],
InceptionResNetV2 [31], etc. In 2018, BERT (Bidirectional Encoder Representations from
Transformers) achieved good results in NLP (Natural Language Processing) tasks [32].
The Transformer network structure is based on the attention mechanism. At present, the
network structures mainly include MLP (multilayer perceptron), CNN, RNN (recurrent
neural network), and Attention, which can be combined. Deep learning has been applied
to the EEG for the mental workload, emotion recognition, motor imagery, event-related
potential detection, etc. [33–35].

Taiwan’s table tennis is famous worldwide, and it is also one of the critical projects
in developing sports in Taiwan. Studying table tennis players’ psychological stress can
help manage stress and improve the sport performance. Compared with other sports, table
tennis is a fast, precise, and open sport.

Since the original signals of brain waves have many noises and errors tend to arise
during the process of signal extraction, how to extract and analyze EEG signals is an
important issue for increasing the accuracy in stress assessment [14]. Therefore, this study
uses different extraction methods and analysis methods to improve the accuracy of stress
assessment. This study aims to collect EEG data of competition table tennis players by
SCWT and MA and analyze brain waves by using machine learning and build models
for stress classification, in which the stress classifying models include generalizing and
personalizing ones to distinguish high, medium, and low stresses.

In this study, the EEG of table tennis players was collected by using SCWT and MA
and analyzed by algorithms of machine learning; our experiment revealed XGBoost as
the optimal model. The research findings indicated that, in three-level stress classifica-
tion, XGBoost had an 86.49% accuracy in the case of the generalized model. This study
outperformed other studies by up to 11.27% in three-level classification.
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This study comprises four sections, including the introduction provided above. Sec-
tion 2 presents the materials and methods used herein. Section 3 presents the results of the
stress classification and discussion. Section 4 presents the last conclusions.

2. Materials and Methods

The experiment process of this study is as Figure 1 shows, comprising three stages:
data collection, data preprocessing, and data analysis. In the data collection stage, EEG data
at rest, SCWT, and MA were collected using an electroencephalograph. The data preprocess
stage rules out undesired signals and transforms the data from the time domain into the
frequency domain. The data classification stage performs feature analysis using machine
learning and builds generalizing and personalizing stress models. The hyperparameters of
the model are tuned using a grid search. A generalizing stress model is a stress detection
model built by mixing the data of all persons, while a personalizing stress model is a stress
detection model built based on personal data.
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Figure 1. Diagram for the research flow.

2.1. Data Collection
2.1.1. Participants

We recruited 26 Class A table tennis players (there are 12 male players) at the National
Taiwan University of Sport as participants, and we considered only those without brain
neural diseases. Their age was 20 ± 1.3 years. Before the research began, we outlined the
experiment process to them, and they also signed the description and consent on human
research form. This study was approved by the First Human Research Ethics Review Board
affiliated with the College of Medicine, National Cheng Kung University (A-ER-108-041).

2.1.2. Stress Test

In the table tennis training hall, the participants wear an electroencephalograph,
which is Portable 40—the lead system of recording neural image electric potential—with
the leads, onto which conductive glue is applied, attached to the scalp. The resistance at
every electrode position should be under 5 Ω, the sampling frequency is 1024 Hz, and the
intensity of brain waves is µV signals. The stress test is conducted to gather changes in
electric potential on the scalp. For the electrode positions, the international 10–20 system is
used [36,37], as Figure 2 shows.
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Figure 2. International 10–20 system, with the designator Fp corresponding to the frontal polar area
of the brain, F to the frontal area, C to the central area, P to the parietal area, O to the occipital, T
to the temporal area, and A to the auricular area. In this study, a total of 10 electrode positions on
the head are recorded; they are Fp1 (left frontal lobe electrode), Fp2 (right frontal lobe electrode), Fz
(frontal midline), C3 (left central), C4 (right central), Pz (middle line of vertex), O1 (left occipital lobe),
O2 (right occipital lobe), A1 (left auricular), and A2 (right auricular), of which A1 and A2 are the
reference electrodes.

The stress test is a test designed with reference made to Reference [21] and includes
the SCWT and MA. Prior to the formal test, we would collect the brain waves in a resting
state for 60 s and allow the subjects to practice once on the SCWT and MA. The formal test
includes the following sequence: SCWT, MA, MA, black screen (participant at relaxed rest),
and SCWT, as Figure 3 shows. The participants would not be informed of the sequence.
The time for each test is 30 s. The time between two tests is 20 s. In this study, the EEG data
were collected during the formal testing of the SCWT and MA.
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Figure 3. Diagram for the stress test.

With the SCWT, new words appear on the screen at three-second intervals; these
testing words come in random combinations of colors among red, blue, green, and yellow
and a font type. The participants are required to choose correctly the color they see in the
words on placards. The brain wave data collected at this test are of high stress compared
with the rest state but are of a medium-stress state when compared with the brain waves of
a low-stress state in the MA test.

With MA, questions of arithmetic (addition, subtraction, multiplication, and division)
with numbers in the range of 1 to 1000 appear on the screen at five-second intervals, where
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the participants should complete responses by MA. The brain waves collected at this test
are those of a high-stress state if compared with the SCWT.

2.2. Data Preprocessing
2.2.1. Filter

The Butterworth filter is used to extract the signals of a certain range of frequencies.
As brain wave signals are weak and susceptible to interference when being gathered, a filter
is needed to screen out unwanted frequency bands. To remove lower bands, a low-pass
filter can be used to block the frequencies in certain bands; to remove higher bands, do
otherwise. In this study, the Butterworth filter (BF) is used to remove the bands above
70 Hz to capture the 0–70 Hz band, as well as to eliminate a certain baseline shift due to
external factors. The amplitude and frequency relationship of the Butterworth low-pass
filter is defined in Formula (1):

Gn(ω) = |Hn(jω)| = 1√
1 +

(
ω
ωc

)2n
(1)

where H is the transfer function, n is the order of the filter, j is the Imaginary unit, ω is the
angular frequency, and ωc is the cutoff frequency.

2.2.2. Feature Extraction

Signal processing and analysis methods are divided into two types: time domain and
frequency domain. The time domain analysis is time-based and observes signal variations
on the time axis. In this study, the time domain signals are converted by FFT into amplitudes
of multiple bands to form PSD in order to capture the PSDs of different brain wave bands.
FFT is a fast algorithm for discrete Fourier transform (DFT). The calculation of DFT is
defined as Formula (2):

Xk =
n−1

∑
j=0

xje−2πikj/n , k = 0, 1, . . . n− 1 (2)

where X is the discrete frequency signal, x is the discrete time signal, and n is the number
of samples.

During the stress test, the time domain signal is 30 s for each test or 60 s of rest
before the test is obtained. The conversion of the time domain signals by FFT organizes
and obtains 8 bands per second, namely, Delta (0–<4 Hz), Theta (4–<8 Hz), Low Alpha
(8–<10 Hz), High Alpha (10–<13 Hz), Low Beta (13–<20 Hz), High Beta (20–<30 Hz), Low
Gamma (30–<46 Hz), and High Gamma (46–70 Hz). Every one of the 8 electrode positions
corresponds to these 8 bands (such as Fp1_HighAlpha, Fp1_LowAlpha, etc.), resulting in a
total of 64 features, and the unit is µV/

√
Hz.

2.3. Classification

Data classification utilizes the algorithms of logistic regression, SVM, decision tree
C4.5, classification and regression tree, random forest, and extreme gradient boosting
(XGBoost) in machine learning and builds stress detection models.

2.3.1. Logistic Regression (LR)

LR takes logarithms of the odds ratio, which further undergo transformation with the
Sigmoid function, to create regression equations on the assumption that the conditional
probability distributions of the dependent variables subject to independent variables are a
Bernoulli distribution instead of non-normal distribution [38]. This is a model capable of
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leading to dichotomous results to determine the “probability of a certain sample belonging
to a certain category” as the basis for classification. The LR model is Formula (3):

P(y = 1|x) = 1
1 + e−(wT x+b)

(3)

where P is the conditional probability, y is the output, x is the input feature vector, w is the
weight vector, and b is the bias.

2.3.2. Support Vector Machine (SVM)

SVM is a supervised learning method. Support vectors serve to identify an optimal
hyperplane for classification, such that the margins between two categories are maximized
to be able to separate them by maximal intervals, also allowing calculations using kernel
functions at low dimensions before displaying classification results at higher dimensions
to deal with nonlinear problems [39]. The advantages of SVM are higher abilities specific
for small samples, nonlinearity, and high dimensions. Its drawbacks are the difficulty of
choosing kernel functions and sensitivity to deficiencies. Given the difficulty of choosing
kernel functions, it is possible to attempt different kernel functions in order to find the
appropriate kernel functions. The SVM model is Formula (4):

f (x) =
n

∑
i=1

αiyixi
Tx + b (4)

where αi is the Lagrange multiplier of the ith training sample, yi is the output of the ith
training sample, xi is the ith training sample, x is the novel sample, b is the bias, and n is
the number of training samples.

The model of the SVM using the kernel function is shown in Formula (5):

f (x) =
n

∑
i=1

αiyik(xi, x) + b (5)

where αi is the Lagrange multiplier of the ith training sample, yi is the output of the ith
training sample, xi is the ith training sample, x is the novel sample, b is the bias, n is the
number of training samples, and k represents the kernel function. The kernel functions
include a linear, polynomial, radial basis and so on.

2.3.3. Decision Tree C4.5 (C4.5)

C4.5 was improved based on the ID3 algorithm [40]. C4.5 uses a gain ratio as the
branching criteria, where branch attributes are chosen by means of the randomness differ-
ence between parent nodes and child nodes and the amount of split information. As the
gain ratio is the ratio of information acquired to the split information, we will first describe
the information gain and split information. Gain(D, A) means that attribute A will profit
from the information divided by dataset D, as shown in Formula (6):

Gain(D, A) = I(D)−
m

∑
j=1

∣∣Dj
∣∣

|D| I
(

Dj
)

(6)

where I(D) represents the information entropy of dataset D, j represents the jth value
of different values of attribute A, m represents how many different values there are,

∣∣Dj
∣∣

represents the number of subsets contained in the jth value, |D| represents the number of
datasets D, and I

(
Dj
)

represents the information entropy of dataset Dj.
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SplitIn f o(D, A) represents the split information of attribute A for the dataset D split,
as shown in Formula (7):

SplitIn f o(D, A) = −
m

∑
j=1

∣∣Dj
∣∣

|D| log2

∣∣Dj
∣∣

|D| (7)

where j represents the jth value of attribute A, m represents how many different values
there are,

∣∣Dj
∣∣ represents the number of subsets contained in the jth value, and |D| number

of datasets D.
GainRatio(D, A) represents the gain ratio of attribute A to the division of dataset D,

as shown in Formula (8):

GainRatio(D, A) =
Gain(D, A)

SplitIn f o(D, A)
(8)

where Gain(D, A) is the information gain of attribute A splitting dataset D, and SplitIn f o(D, A)
is the split information of attribute A splitting dataset D.

2.3.4. Classification and Regression Tree (CART)

CART is a binary tree classification algorithm; it uses the Gini coefficient as the branch-
ing criteria, where the features most suitable for branching are identified by comparing
impurities of the features [41]. A feature whose impurity decreased by the most significant
difference is the branching feature of the decision tree. The algorithm comprises four steps
as follows:

1. Determine the Gini coefficient for all the feature values of all the features in the dataset
and select the optimal feature and splitting point with the smallest Gini coefficient;

2. Generate two branches on both sides based on the optimal feature and the optimal
splitting point to divide the dataset into two branch datasets side by side;

3. Calculate the two branch datasets, where, if the Gini coefficient is smaller than the
threshold or the number of samples is smaller than the threshold or there are no
features, the node ceases to recur;

4. Repeat Steps 1–3 on the modes of the two branches to generate a CART decision tree.

The Gini coefficient means impurity, whereas a smaller Gini coefficient means a higher
purity, implying a better effect of the classification.

Gini(D) represents the Gini coefficient of the dataset D, such as Formula (9):

Gini(D) = 1−
n

∑
i=1

P2
i (9)

where i represents the ith category, n represents the total number of categories, and Pi
represents the probability that the ith category appears in the dataset D.

Gini(D, A) represents the Gini coefficient of attribute A partitioning dataset D, such
as Formula (10):

Gini(D, A) =
m

∑
j=1

∣∣Dj
∣∣

|D| Gini
(

Dj
)

(10)

where j represents the jth value of attribute A, m represents how many different values there
are,

∣∣Dj
∣∣ represents the number of subsets contained in the jth value, |D| is the number of

datasets D, and Gini
(

Dj
)

represents the Gini coefficient of dataset Dj.

2.3.5. Random Forest (RF)

RF is an algorithm consisting of multiple classifiers of a decision tree (usually using
CART), and its output categories are according to a majority vote of those of individual
output categories [42]. Compared with conventional decision trees, RF has many advan-
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tages, e.g., creating high-accuracy classifiers for many types of data, handling massive
input variables, and the importance of assessing the variables in deciding types.

2.3.6. Extreme Gradient Boosting (XGBoost)

XGBoost was developed from a gradient boosting decision tree (GBDT) [43]. GBDT
is an addition model (serial integration) comprising multiple CART trees, each of which
leans on the residuals from the sum of the conclusions of all previous trees, as in Formulas
(11) and (12). The step includes multiple iterations, each creating a decision tree in order to
continually decrease residuals to increase the precision. XGBoost exercises 2-order Taylor
expansion on loss functions to increase the precision, where regular items are incorporated
in objective functions to decrease the variance of the model, and uses feature sampling to
prevent overfitting. Its advantages are a higher precision and prevention from overfitting;
and its drawback is depleting computing resources by the presorting process.

tn(x) = argmin
c

m

∑
i=1

L(yi, c) (11)

where tn(x) is the currently fitted tree, c is the best output value of the fitted leaf node, L is
the loss function, m is the number of samples, and yi is the actual value of the ith sample.

Tn(x) = Tn−1(x) + tn(x) (12)

where Tn is the current ensemble of all trees, x is the input sample, Tn−1 is the ensemble of
all trees so far, and tn is the currently fitted tree.

3. Results and Discussion
3.1. Brain Wave Dataset

In this study, brain wave data of 25 regularly trained players were collected. Since one
person’s information was incomplete, it was removed, resulting in a total of 4433 records
of data from all the subjects. Additionally, other attributes of stress were incorporated
based on the stress classification in our experiment as indicators of high, medium (mid),
and low stresses. In the end, each record of data included eight electrode positions (Fp1,
Fp2, Fz, C3, C4, Pz, O1, and O2), each of which had the electrode data on eight frequency
bands (Delta, Theta, Low Alpha, High Alpha, Low Beta, High Beta, Low Gamma, and
High Gamma) (in µV/

√
Hz); that was 64 attributes. An additional stress indicator made a

total of 65 attributes. Of all the attributes, the brain wave data of the frequency bands were
continuous data, while the stress levels and player groups were discrete data.

The brain waves at a resting state prior to the test served as the data for low stress
(1476 records), the SCWT as mid-stress data (1469 records), and MA as high-stress data
(1488 records). The labeling method, when classifying rest, SCWT, and MA, was set to
0, 1, and 2, respectively; when classifying rest and SCWT, the label was set to 0 and 1,
respectively; and when classifying rest and MA, the label was set, respectively, to 0 and 1.

3.2. Evaluation Metrics

A Confusion matrix is a matrix for statistical work on the correctness or incorrectness
of classification. In the case of two-level classification, there are four types of results,
namely, True Positive (TP): correctly predicting a positive sample as positive, True Negative
(TN): correctly predicting a negative sample as negative, False Positive (FP): incorrectly
predicting a negative sample as positive, and False Negative (FN): incorrectly predicting a
positive sample as negative.

The commonly used assessing indicators are described next. Accuracy (Acc), which is
the proportion of correctly predicted samples to the total predicted samples, as Formula
(13) shows. Precision (Pre), which is the proportion of correctly predicted positive samples
to the total samples predicted as positive, as Formula (14) shows. Recall (Rec), which is
the proportion of correctly predicted positive samples to the total actual positive samples,
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also called the true positive rate (TPR), as Formula (15) shows. The F1-score (F1), which
is the harmonized means of precision and recall, as Formula (16) shows. The Matthews
correlation coefficient (MCC), which consists of all four types of the Confusion matrix
(TP, TN, FP, and FN) and, thus, is a more balanced indicator for all types, as Formula (17)
shows. In multi-level classifications, only the indicators of two-level classification that can
be used would differ according to the way of the calculations; the method of this study
is to determine, straightforwardly, the means of assessing indicators of different types
added together.

Acc =
(TP + TN)

(TP + TN + FP + FN)
(13)

Pre =
TP

TP + FP
(14)

Rec =
TP

TP + FN
(15)

F1 =
2Pre× Rec
Pre + Rec

(16)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(17)

The 10-fold cross-validation is a sampling of many times technique capable of mini-
mizing the bias and variance of datasets and avoiding the overfitting problem. In 10-fold
cross-validation, a dataset is randomly divided into ten subsets, of which one is used as a
test set and the rest as a training set; when all subsets have been run once, their evaluation
indicators are determined by a predicted value and real value. The mean measures are
determined to obtain the final validation of the models [44].

In order to assess the results of the performance validation of the models, the 10-fold
cross-validation was used in this study, along with a variety of model assessing indicators,
which were five in the two-level classification, including accuracy, precision, recall, F1, and
MCC, or four in the three-level classification, including accuracy, precision, recall, and F1.

3.3. Performance Evaluation of Classification Models

In this study, the algorithms of LR, SVM, C4.5, CART, RF, and GXBoost were used
for comparison (see Table 1 for the parameters for the model), and a generalizing and a
personalizing stress model were built. The generalizing stress model is a stress detection
model built by mixing the data of all persons, whereas the personalizing stress model is
one built based on their individual data. For the analytic results of stress classification, see
Tables 2–7 and Figures 4–7.

Table 1. Table of the model parameters.

Model Parameter Name Parameter Value

LR Penalty L2
Penalty coefficient 100

SVM Kernel function RBF
kernel coefficient γ 1/64
Penalty coefficient 100

C4.5 Feature selection criteria Information gain ratio
Maximum number of features when branching No limit

Maximum depth No limit
Minimum number of samples for node splitting 2

Minimum number of samples for leaf nodes 1
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Table 1. Cont.

Model Parameter Name Parameter Value

CART Feature selection criteria Gini
Maximum number of features when branching No limit

Maximum depth No limit
Minimum number of samples for node splitting 2

Minimum number of samples for leaf nodes 1

RF The number of trees 1000
Feature selection criteria Gini

Maximum number of features when branching No limit
Maximum depth 3

Minimum number of samples for node splitting 2
Minimum number of samples for leaf nodes 1

XGBoost The number of trees 100
Maximum depth 6
Learning rate η 0.3

Penalty L2
Penalty coefficient 1

Table 2. Generalizing model for the three-level stress classification.

Model Acc Pre Rec F1

C4.5 0.7223 0.7226 0.7232 0.7219
CART 0.7210 0.7217 0.7206 0.7203

LR 0.6749 0.6778 0.6751 0.6741
RF 0.8013 0.8021 0.8024 0.8009

SVM 0.7864 0.7868 0.7867 0.7853
XGBoost 0.8649 0.8657 0.8653 0.8647
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The results in Figure 4 indicate that, among all the assessing indicators, GXBoost is
always the highest, with an accuracy of 86.49%.

Table 3. Generalizing model for the two-level stress classification (high and low stresses).

Model Acc Pre Rec F1 MCC

C4.5 0.8631 0.8711 0.8530 0.8616 0.7261
CART 0.8549 0.8565 0.8538 0.8551 0.7092

LR 0.8380 0.8502 0.8222 0.8357 0.6762
RF 0.9029 0.9171 0.8859 0.9010 0.8061

SVM 0.9005 0.9142 0.8840 0.8986 0.8013
XGBoost 0.9427 0.9485 0.9365 0.9424 0.8852
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classification (high and low stresses).

The results in Figure 5 indicate that, among all the assessing indicators, GXBoost is
always the highest, with an accuracy of 94.27%.

Table 4. Generalizing model for the two-level stress classification (mid and low stresses).

Model Acc Pre Rec F1 MCC

C4.5 0.8567 0.8569 0.8556 0.8559 0.7133
CART 0.8462 0.8376 0.8573 0.8469 0.6928

LR 0.7959 0.7948 0.7975 0.7956 0.5919
RF 0.8761 0.8871 0.8599 0.8731 0.7521

SVM 0.8958 0.8883 0.9049 0.8964 0.7910
XGBoost 0.9243 0.9137 0.9364 0.9248 0.8485
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The results in Figure 6 indicate that, among all the assessing indicators, GXBoost is
always the highest, with an accuracy of 92.43%.
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Model Acc Pre Rec F1

C4.5 0.8568 0.8589 0.8567 0.8447
CART 0.8553 0.8574 0.8539 0.8445

LR 0.8727 0.8758 0.8732 0.8650
RF 0.8999 0.9027 0.8986 0.8906

SVM 0.8869 0.8900 0.8872 0.8796
XGBoost 0.9077 0.9082 0.9080 0.9003
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The results in Figure 7 indicate that, among all the assessing indicators, GXBoost is
always the highest, with an accuracy of 90.77%.



Appl. Sci. 2022, 12, 8052 14 of 19

Table 6. Personalizing model—GXBoost three-level stress classification (top five individuals).

No. Acc Pre Rec F1

1 0.9944 0.9952 0.9944 0.9944
2 0.9833 0.9878 0.9806 0.9822
3 0.9830 0.9827 0.9819 0.9804
4 0.9722 0.9746 0.9724 0.9710
5 0.9667 0.9660 0.9699 0.9638

The results in Table 6 indicate that, among the 25 players, the one with the best
accuracy was as high as 99.44%.

In this study, whether with the generalizing model or with the personalizing model, the
best algorithm was always XGBoost. The three-level stress classification of the generalizing
model had an accuracy of 86.49%. With the same model, the two-level stress classification
between high and low stresses had an accuracy of 94.27% or an accuracy of 92.43% for the
mid and low stresses. The three-level stress classification of the personalizing model had an
average accuracy of 90.77%, with a top individual player hitting 99.44%. The personalizing
model had higher accuracies than the generalizing model, because the instability of an
individual’s brain waves, in addition to differences between the individuals, leads to lower
accuracies in the classification with the generalizing model. Given that brain waves vary in
individuals, if we could employ algorithms to identify the causes of those variances and
eliminate them, we would be able to improve the accuracy of the classification with the
generalizing model.

We compared the schemes proposed by past studies and the present one based on the
number of subjects, channels, bands, features, stressors, classifier, and accuracy, as Table 7
shows.

Table 7. A comparison of this study and past studies.

Study
(Year) Subjects Channels Bands Features Stressors Classifier Accuracy

(Classes)

[16]
(2019) 24 2 4 4 SCWT CNN 87.5% (2)

[17]
(2019) 14 2 4 8 SCWT

MA SVM 77.9% (2)

[18]
(2018) 1 14 4 56 MA RF 96.0% (2)

[19]
(2017) 22 19 10 180 MA NB 94.6% (2)

[20]
(2017) 9 1 4 13 MA SVM 86.66% (2)

[21]
(2016) 10 14 3 52 SCWT

MA SVM 96% (2)
75% (3)

[22]
(2015) 9 14 3 10 SCWT SVM 85.17% (2)

75.22% (3)

This study 25 8 8 64 SCWT
MA XGBoost 94.27% (2)

86.49% (3)

We had the most subjects; yet, there were still under 30; it will be an option in the
future to increase the number of subjects to make samples more representative and more
powerful as evidence. For the classifier in this study, we adopted a relatively new algorithm
of machine learning, XGBoost, whilst, in most of the other studies, the SVM classifier was
used in the assessment. In this study, XGBoost always outperformed the SVM, whether with
the generalizing model or with the personalizing model. Last, the three-level classification
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of this study had an accuracy of 86.49%, which excelled compared to other studies by as far
as 11.27% in the three-level classification.

3.4. Key Feature of Stress Classification

From the first CART decision tree for classifying stresses with the GXBoost algorithm in
the generalizing model, we learned that the most important root node was O1_HighGamma
(as Figure 8); therefore, we examined the box plot for O1_HighGamma during the ex-
ploratory data analysis, as shown in Figure 9.
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The results in Figure 9 suggest that the X-axis is the stress levels, namely, high, mid,
and low, and the Y-axis is the density of the power frequency spectrum in µV/

√
Hz, where

the middle lines in the box are the medians, and the little triangles are the positions of
the means. It is clear that the ranking of the means is high stress > mid stress > low
stress. The means of the two types of O1_HighGamma attributes were compared using the
independent sample t-test [45], and the results of the statistical analysis were as shown in
Table 8.
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Table 8. Independent sample t-test on the O1_HighGamma features.

Compare
Categories

High Stress
Mean ± SD

(V/
√

Hz)

Mid Stress
Mean ± SD

(V/
√

Hz)

Low Stress
Mean ± SD

(V/
√

Hz)

t-Test
α = 0.05

High, Mid 2.36 ± 1.31 1.85 ± 0.95 - t = 12.16,
p < 0.001

Mid, Low - 1.85 ± 0.95 1.42 ± 0.76 t = 13.72,
p < 0.001

High, Low 2.36 ± 1.31 - 1.42 ± 0.76 t = 24.15,
p < 0.001

The results in Table 8 suggest that, in the data, the means of the high, mid, and low
stresses had significant differences between one another. That verifies the possibility of
causing different stress states by conducting the SCWT and MA.

Past studies suggested that Gamma waves are mainly associated with the extent to
which minds are concentrated and lead to anxiety and stress [46]. Emotions are connected
to Gamma waves [47–49], where the Gamma waves of negative emotions, in particular,
are stronger than those of positive emotions [50]. Reference [51] stated that prefrontal
lobe-corresponded Gamma power can serve as a biomarker for identifying stresses. The
findings hereof indicated that a higher value of High Gamma at the O1 electrode position
means higher stress, which is consistent with the literature and can serve as an important
key feature for stress classification.

4. Conclusions

In this study, the EEG of table tennis players was collected by using the SCWT and
MA and analyzed by algorithms of machine learning, namely, LR, SVM, C4.5, CART, RF,
and XGBoost; our experiment revealed XGBoost as the optimal model. The stress models
included the generalizing model and personalizing model, both providing the analytic
results of stresses on players. This study outperformed other studies by up to 11.27% in the
three-level classification. This study provided optimal classification results, which makes it
different from other studies.

The number of players in this study was limited, and it is hoped to expand the samples
of data in the future to at least 30 so that the samples will be more representative and more
powerful as evidence, while the stress models will be generalizing in a better way. As brain
waves vary from individual to individual, if we could utilize algorithms to identify the
causes of such variations, we will improve the accuracies of classification with generalizing
models. XGBoost has a good accuracy for low-dimensional feature data, but it is not
suitable for processing high-dimensional feature data. In the future, it can be combined
with deep learning, using deep learning to extract features and then using XGBoost for
classification as the two are combined into a new model. The chief key feature of stress
classification is High Gamma at the O1 electrode position, and this feature can serve as
an important key feature in future research on psychological stresses. Last, this study
employed the two different stressors of the SCWT and MA in the experiment, whereas the
data from the lab context were limited and differed from those of the competition context
that table tennis players face. It is possible in the future to collect data on brain waves
during training or games to build stress models in competition contexts and to compare
the differences thereof.
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