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Abstract: Multimodality has been widely used for sentiment analysis tasks, especially for speech
sentiment analysis. Compared with the emotion expression of most text languages, speech is more
intuitive for human emotion, as speech contains more and richer emotion features. Most of the current
studies mainly involve the extraction of speech features, but the accuracy and prediction rate of the
models still need to be improved. To improve the extraction and fusion of speech sentiment feature
information, we present a new framework. The framework adopts a hierarchical conformer model
and an attention-based GRU model to increase the accuracy of the model. The method has two main
parts: a local feature learning group and a global feature learning group. The local feature learning
group is mainly used to learn the spatio-temporal feature information of speech emotion features
through the conformer model, and a combination of convolution and transformer is used to be able
to enhance the extraction of long and short-term feature information. The global features are then
extracted by the AUGRU model, and the fusion of features is performed by the attention mechanism
to access the weights of feature information. Finally, the sentiment is identified by a fully connected
network layer, and then classified by a central loss function and a softmax function. Compared with
existing speech sentiment analysis models, we obtained better sentiment classification results on the
IEMOCAP and RAVDESS benchmark datasets.

Keywords: multimodal; conformer; attention; GRU

1. Introduction

Sentiment analysis is one of the important research tasks of natural language process-
ing, and speech sentiment analysis is a very important direction. The original sentiment
sub-task mainly focuses on text aspect-level sentiment research. As the times go by, the pop-
ularity of short video social media such as Douyin and BILIBILI, people began to express
their emotions through forms different from text. By extracting and learning features such
as intonation and timbre of speech, we can obtain richer emotional information than simply
analyzing text. Following the evolution of deep learning, Speech emotion analysis has been
a vital part of HCI [1,2]. Bhardwaj et al. [3] proved the importance of the speech sentiment
analysis task and also summarized the results of the current work and future trends.

In the last few years, sentiment analysis has been extensively adopted in different fields
and has provided various new approaches. Duan et al. [4] proposed a semi-supervised
generative sentiment-based model for sentiment analysis of stock investors. The approach
is able to leverage features from training and testing information, taking into account
information, sentiment and words. Considering the high computational cost of supervised
learning methods, Fares et al. [5] investigated an unsupervised word-level knowledge
mapping framework. Bibi et al. [6] presented a novel unsupervised learning framework
based on concept and hierarchical clustering. These methods experimentally demonstrate
that unsupervised learning resolves the computational cost problem while retaining the
same techniques as supervised learning. Abboud et al. [7] performed sentiment analysis on
musical compositions and constructed an algorithmic framework that can autonomously
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compose and express musical emotions. Sentiment analysis has been well applied and
broadened in the field of music. SUN et al. [8] studied the emotional polarity of specific
targets, both in terms and sentiment analysis. To catch the multiple interactions of goals
and aspects, they built a deep interactive memory network that also works well to form
specific memories for different goals.

Some early speech sentiment analysis models only paid more attention to sentiment
word information, ignoring the fine-grained feature information transmitted by speech [9].
Shaik et al. [10] presented a new frame to process the speech signal with short-term
features to obtain the medium-term features, which are put into the sentiment lexicon for
comparison to derive the sentiment lexicality. After the development of deep learning,
most research works have paid more attention to the fine-grained features of speech. These
models use Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN),
Long Short-Term Memory Networks (LSTM) or Deep Neural Networks (DNN). Most
previous researchers introduced different deep neural network models to analyze emotion
in speech modalities. For example, Kwon et al. [11] suggested a model that focuses more
on the sentiment information of the raw data, and they sampled from the raw data as the
input to the model. Jara-Vera et al. [12] instead used a specific representation of the audio
recording as input to the model. Following the extensive expansion of the deep learning
technology in the domain of speech sentiment analysis, researchers can extract higher-level
features from speech signals and can obtain better accuracy and recognition rates compared
to lower-level features [13].

Although deep learning models can better extract high-level features of sentiments,
the computational cost and training time of the models also increase [14]. For example,
convolution Neural Networks (CNN) have not significantly improved the accuracy and
reduced complexity cost of feature processing of speech signals. The Recurrent Neural
Network (RNN) solves this problem well, but the training cost is not effectively reduced
and the calculation is more complicated. Today, most researchers employ frame repre-
sentation and connectivity approaches for feature fusion, which only target specific tasks
and do not have good generality. The sparsity of the data is also a difficult problem for
feature extraction.

To increase the accuracy of speech emotion feature extraction and reduce the compu-
tational cost, we introduce a new architecture for speech sentiment analysis using speech
sequences in this paper. As shown in Figure 1, the architecture of the framework has two
main parts: a local feature learning module and a global feature learning module. First, the
raw speech signal data are input into the local feature extraction module, and the spatial fea-
tures of emotion are extracted by convolution through the conformer, and then the spatial
and temporal features of emotion are learned through a hierarchical strategy. Second, the
global feature extraction module adaptively adjusts the associated global feature weights
based on the relevance of the input features. At last, sentiment classification is performed
through the central loss function and the softmax function. The main innovations of our
approach include the following:

(1) We present a framework for speech sentiment recognition using hierarchical conformer
networks and an attention-based GRU model.

(2) The conformer model learns and extracts the spatio-temporal features of speech signals
and the semantic associations of the sentiment information. The Gated Recursive Unit
(GRU) of the attention-based network layer adaptively adjusts the weights of the
computed global features. The weights of the global features are adjusted according to
the local features and the global features.

(3) The conformer model can more accurately select the deep-level features of speech
signals without increasing the computational cost. It solves the computational cost
issues of traditional models and improves the accuracy significantly.
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Figure 1. The overall model architecture proposed in this paper.

The other parts of this article work are as follows: Section 2 describes relevant re-
cent work on sentiment analysis; Section 3 introduces our proposed model framework and
methodology; Section 4 presents experimental evaluation and discussion; Section 5 reports ex-
perimental results and analysis; Section 6 summarizes the work and the future perspectives.

2. Related Works

Most of the recent research work has applied deep learning models for speech sen-
timent analysis tasks, such as CNNs, RNNs, LSTMs, and DNNs. Deep learning models
can indeed learn deeper features in speech signals better than traditional machine learning
models, and retain the original low-level features. For example, Kwon et al. [15] presented
an AI-aided Deep Stochastic Convolutional Neural Network (DSCNN) architecture. The
architecture uses a shared network approach to learn distinguished and discriminable
features in the spectral map of the speech signal. The architecture has been enhanced
for better implementation. Chernykh et al. [16] proposed a new algorithm for speech
sentiment recognition. The algorithm uses the Deep Recurrent Neural Network (DSRNN)
and a connectionist time-based classification method. The network is trained on a set of
acoustic features computed by small speech intervals. The algorithm can take into account
the non-emotional parts contained in emotional words and phrases, and can predict the
emotional order of sentences. Kwon et al. [17] presented a unique AI-aided system archi-
tecture for Speech Emotion Analysis (SER). The architecture learns local characteristics of
each layer by fusing convolution and long short-term memory networks, and then uses
folded Gated Recursive Units (GRUs) to learn global features and adjust the weights. For
model training, robustness and selection of important features is also one of the important
challenges for speech sentiment analysis. In this era of deep learning, researchers have
proposed and used various models and methods to improve and solve the difficult task
of speech sentiment analysis. Koduru et al. [18] proposed a feature extraction algorithm.
This algorithm mainly extracts the acoustic features of the speech signal such as pitch,
energy, over-zero rate, Mel frequency cepstral coefficients and discrete wavelet transform
to analyze the signal [19]. Chatziagapi et al. [20] used Generative Adversarial Network
(GAN)-based data enhancement methods to improve recognition accuracy.

As we all know, audio segment processing in speech sentiment analysis task is a
sequential task. There are not only complex spatial features in the audio signal, but also
rich temporal features. The order of the audio signal is very important for the model to
analyze its sentiment features. Since the development of deep learning, most researchers
consider the Long Short-Term Memory (LSTM) network [21] as the perfect model to
handle sequential modeling tasks. Considering the acoustic model and the effectiveness of
feature extraction, Zhang et al. [22] proposed a novel heterogeneous parallel convolutional
Bi-LSTM model. The model takes advantage of heterogeneous parallelism to learn spatio-
temporal feature information, which can extract features more effectively. Further, the
model can be trained by extracting features at the sentence level or frame level, thus
reducing the computational cost. Atila et al. [23] suggested a novel deep architecture based
on attention-integrated 3D CNN-LSTM. This architecture transforms the speech signal as
MFCC into a speech spectrogram, and then processes the speech spectrogram into 3D data
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as input by stacking multiple consecutive frames. The issues of missing low-dimensional
features and weak spatio-temporal correlation are effectively solved, and the accuracy of
sentiment analysis is improved. Senthilkumar et al. [24] combine a deep belief network
and a bidirectional LSTM, and the suggested architecture aims to improve the realization
of the affective status of speech by using sequence selection.

Although LSTM and its variants have advanced the process of sentiment analysis
tasks, researchers soon found several drawbacks: there are disadvantages in parallel
processing, the gradient problem of LSTM for RNNs is only somewhat alleviated, and
LSTM is very time-consuming when computing deep networks with large periods. To
resolve these problems, Parmar et al. [25] presented a new model transformer for image
processing. First, the transformer uses the attention mechanism to effectively solve the
long-term dependency problem. Second, it is not a sequential structure such as RNN, so it
has good parallelism. Lian et al. [26] proposed the Conversational Transform Network (CT
Net), which uses a transformer-based architecture to simulate both intramodal and cross-
modal interactions between multimodal features. Multi-headed attention networks help to
build context-sensitive and speaker-sensitive dependency models, and to better capture
temporal information in discourse. In the task of speech emotion analysis, processing
images to obtain local features is very important. The transformer performs generally
well in learning local features, so the framework proposed in this paper uses a model
conformer [27], which is a fusion of convolution neural network with transformer. The
conformer is a parallel two-body network structure, where the CNN branch uses the
ResNet [28] structure and the transformer branch uses the ViT [29] structure. Conformer
is the first parallel hybrid CNN and transformer network in which the local and global
features of each phase will interact with each other through the proposed Feature Coupling
Unit (FCU), thus giving conformer the advantages of both. Narayanan et al. [30] proposed a
cross-attention conformer architecture designed to enhance contextual modeling of speech
signals. O’Malley et al. [31] proposed a conformer-based front-end for speech sentiment
recognition and improve its robustness with modules for noise reduction, echo cancellation,
and speech enhancement. Li et al. [32] proposed an end-to-end streaming speech sentiment
analysis model that employs a conformer layer to improve the problem that delay can
lead to quality degradation. In classification, high accuracy can be achieved with smaller
parameters and computation, and substantial improvements can be consistently achieved
in target and instance segmentation. Thus, conformer has a strong ability to capture local
and global information.

3. Methods

In this part, we detail the suggested speech sentiment analysis framework and its
important parts, such as the conformer, the local feature learning group and the global
feature learning group. Unlike most previous researchers using transformers for feature
extraction, we use convolutionally enhanced transformers for feature extraction. This can
not only obtain more and more advanced features, but also effectively avoid the problems of
excessive training time and computational complexity of the traditional transformer model.

3.1. Preprocessing

Preprocessing is a method of processing speech samples before the extraction of char-
acteristics of the speech signal [33]. We used four signal processing methods to transform
the entered speech signal into an image input. Spectrogram, mid-frequency spectrum,
cochleogram and windowed fractal dimension methods were used to transform the entered
speech signal into a speech image. Figure 2 shows an example of our extracted MFCC fea-
tures. Compared to the traditional use of a Convolutional Neural Network (CNN) to extract
audio signal features, we use the Open SMILE toolkit [34] to extract MFCC features from
the audio signal. To reduce the effect of the low Signal-to-Noise Ratio (SNR), we also use a
specific window to sample the audio frames. We also use adaptive threshold preprocessing
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to denoise and remove the silent part of the input audio. In general, MFCC is an accurate
representation of the original audio and is widely used for automatic speech recognition.

Figure 2. Example of extracting MFCC features from audio signals.

3.2. Local Feature Learning Groups

In the speech emotion analysis task, the order of speech segments is very important
for analyzing the emotion of speech. There is a strong correlation between successive
audio segments and therefore a great similarity in the sentiment present in them. The
framework proposed in this paper also captures the correlations between consecutive
audio segments by processing them and using them in the sequence prediction process
to identify and analyze their expressed sentiments. As shown in Figure 3, we employ a
local feature learning group that contains four identical local feature learning blocks. To
sustain spatial and temporal trails, for instance, spatio-temporal information in sequential
speech pieces, the conformer structure is used in this framework. Convolution operations
are applied to transform input-to-state and state-to-state transitions within the conformer.
Conformer catches spatio-temporal trails while convolution is in operation to better explore
the correlation between speech segments. If xi is used to denote the i-th input of the
conformer layer, the output yi is:

x̃i = xi +
1
2

FFN(xi) (1)

x
′
i = x̃i + MHSA(x̃i) (2)

x
′′
i = x

′
i + CONV(x

′
i) (3)

yi = Layernorm(x
′′
i +

1
2

FFN(x
′′
i ) (4)

Here, FFN, MHSA and Conv represent the feed forward network, multi-headed
self-attentive network and convolution operation, respectively.
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Figure 3. Framework diagram of local feature learning group.

For the calculation of MHSA, we may set Q ∈ RL×D, K ∈ RS×D, V ∈ RS×D, K = V,
dK = D, The self-attention formula is:

SA(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

MHSA firstly performs linear dimension-raising operations on Q , K and V (that is, full
connection operation, parameters are not shared), output, Q̃ ∈ RL×D̃×H , K̃ ∈ RS×D̃×H ,
Ṽ ∈ RS×D̃×H , K̃ = Ṽ, dK̃ = D̃× H, then press “head” to do H times and the final result
is spliced.

Headi = SA(Q̃i, K̃i, Ṽi) (6)

O = Concat(Head1, Head2, ..., HeadH) (7)

Among them Q̃i = RL×D̃, K̃i = RS×D̃, Ṽi = RS×D̃, ConcatH
i=1Q̃i = Q̃, ConcatH

i=1k̃i = k̃,
ConcatH

i=1ṽi = ṽ.

3.3. Global Feature Learning Group

Within the proposed sentiment recognition framework, we use and improve the global
feature learning group, as shown in Figure 4. We employ GRU with the Attentional Update
Gate (AUGRU) to learn global trails in features and identify long-term contextual depen-
dencies, as shown in Figure 5. GRU acts the same as LSTM in capturing long sequences of
semantic association information, which can effectively suppress gradient disappearance
or explosion. Both outperform traditional RNNs and have lower computational complexity
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compared to LSTM, and GRU networks are frequently applied to time sequence data [35];
however, GRU still cannot completely solve the gradient disappearance problem, while its
role as a variant of RNN has a major drawback of RNN structure itself, i.e., it is not parallel
computable. AUGRU retains the original dimensional information of the GRU update
gate, which determines the importance of each dimension. Based on the differentiation
information, it uses the attention score to measure all dimensions of the update gate, with
the result that the less the degree of emotion-independent features, the less the impact on
the hidden state. AUGRU is more effective in avoiding the interference of useless parts in
speech images and increasing the accuracy of feature extraction.

Figure 4. Global feature learning group framework diagram.

Figure 5. A schematic diagram of AUGRU structure.

The attention mechanism in the global feature learning module can be expressed as:

at =
exp(ytW)

∑t
i=1 exp(yiW)

(8)

AUGRU calculates global features can be expressed as:

rt = σ(Wryt + Urht−1 + br) (9)



Appl. Sci. 2022, 12, 8076 8 of 16

ut = σ(Wuyt + Uuht−1 + bu) (10)

h̃t = tanh(Whyt + rt ◦Uhht−1 + bh) (11)

ht = (1− ut) ◦ ht−1 + ut ◦ h̃t
′

(12)

ũt
′
= at × u

′
t (13)

h
′
t = (1− ũt

′
) ◦ h

′
t−1 + ũt

′ ◦ h̃t
′

(14)

where u
′
t is the original update gate of AUGRU, σ is the sigmoid activation function, ũt

′

is the attentional update gate. h
′
t, ◦ is element-wise product, h̃t

′
and h

′
t−1 are the hidden

states. yt is the input of the global feature learning module and ht is the t-th hidden state.

3.4. Loss Function

The loss function widely used in sentiment classification tasks is the softmax function [36];
however, we adopt a combination of a central loss function [37] for computing depth features
and a softmax function for sentiment classification to enhance the performed of the model
and obtain a higher accuracy. The central loss function learns and discovers the centers of the
feature vectors of each class, and defines the distances of between features as well as their
consistent class centers. We utilize the mean “λ” setting to compute and adjust the update loss
function for inter/intra-class distances. We measure the minimum distance between classes
with the central loss function and measure the maximum distance between classes with the
softmax loss function, which can be expressed as:

Ls = −
m

∑
i=1

log
eWt

yi
·xi+byi

∑n
j=1 eWt

yi
·xi+byi

(15)

Lc =
1
2

m

∑
i=1
||xi − cyi ||

2
2 (16)

We use ”n” and ”m” to denote the number of classes and the minimum batch size to the
classifier, and cyi denotes the center of the class yi in the i-th sample. We use the “λ” notation
for central loss to compute the minimum distance required to avoid misclassification in the
real-time case. The global loss we use in our model is:

L = LS + λLC (17)

Here ”λ” is used as a hyperparameter. Experiments demonstrate that combining the central
loss function gives better results.

4. Experimental Assessment

In this subsection, we implement the speech emotion analysis task by converting
speech signals into image feature sequences, thereby demonstrating the effectiveness of
our proposed speech emotion recognition architecture.

4.1. Datasets

We evaluate our proposed method on different benchmarks such as weighted and
unweighted accuracy, precision, recall and F1_score using two commonly used datasets,
IEMOCAP [38] and RAVDESS [39] speech corpora. The proposed sentiment recognition
framework’s capabilities are compared with most advanced models, and the model perfor-
mance, training, validation accuracy and loss plots for both datasets are shown in Figure 6.
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Figure 6. Experimental results on two datasets.

IEMOCAP: Interactive Emotion Binary Motion Capture dataset was proposed in 2008
and widely used in speech sentiment analysis tasks. It is collected by professional actors
through hours of dialogue and conversation in different scenes. It consists of five parts
and lasts up to 12 h. A total of nine emotions are included in the dataset: anger, happiness,
excitement, sadness, depression, fear, surprise, other and neutral states. Table 1 shows the
percentage of unused sentiment in the dataset. Each conversation is evaluated by three
or more evaluators and when more than half of the evaluators agree, the conversation is
marked with the corresponding label. When the evaluators disagree, the conversation is
marked “Other”. It is more natural to acquire data this way.

RAVDESS: The RAVDESS dataset consists of two parts: the emotional speech part
and the song data part. In the speech sentiment analysis task, we mainly focus on the
emotional speech part. The emotional voice part is collected by 12 professional male actors
and 12 professional actresses performing dialogue performances, with a total of 1440 di-
alogues. There are eight emotions: calm, happy, sad, angry, fearful, surprised, disgusted
and neutral. Table 2 shows the percentage of unused sentiment in the dataset. During
data collection, actors were asked to speak two fixed sentences with different sentiment
categories; therefore, the balance of the RAVDESS dataset is good, but the naturalness is
relatively poor. In this paper, the RAVDESS dataset is used as an auxiliary dataset.

Table 1. The distribution of different emotions in the dataset IEMOCAP.

Class Utterances Participation (%)

Anger 1103 19.9
Happiness 1636 29.6

Sad 1084 19.6
Neutral 1708 30.9



Appl. Sci. 2022, 12, 8076 10 of 16

Table 2. Distribution of different emotions in the dataset RAVDESS.

Class Utterances Participation (%)

Anger 192 13.3
Happiness 192 13.3

Sad 192 13.3
Neutral 96 6.9

Calm 192 13.3
Disgust 192 13.3

Fear 192 13.3
Surprise 192 13.3

4.2. Metrics

The following are the evaluation metrics we use: Precision, Recall, F1_score (F1) and
Accuracy(Acc.).

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 =
2× Precision× Recall

Precision + Recall
(20)

ACC =
TP + FN

TP + FP + TN + FN
(21)

Among them, TP, FP, TN and FN are true positive, true negative, false positive and false
negative, respectively.

4.3. Details

Our suggested model is implemented on the python-based Keras deep learning library.
We extract acoustic features using the openSMILE toolbox. We train our model on a machine
with a GeForce RTX 2080Ti and optimize it using Adam [40] with an initial learning rate of
0.0001. The batch size is set to 100 and the epochs to 128. For the testing and evaluation of
the framework model introduced in this paper, we use 75% of the dataset for training and
25% for testing and validation. For the generalization of the model, we adopt the k-fold
cross-validation method [41] to study the reliability and significance of the model. In the
k-fold cross-validation technique, we train the model by splitting the database into five
folds using an automated technique.

4.4. Baselines

To demonstrate the performance of our proposed model framework, we compare with
the following speech sentiment analysis baselines.

CNN+BiLSTM: Kwon et al. [11] proposed a CNN+BiLSTM framework model, and the
key contribution lies in the use of normalization techniques to enhance the use of features.

K-Mean+DBN: Senthilkumar et al. [24] proposed a method combining deep belief net-
works with K-Mean clustering to improve the efficiency of speech emotion recognition tasks.

DCNN: Issa et al. [42] introduced a novel framework that extracts some acoustic
features from speech signals as input for emotion recognition and compared to previous
work, it takes raw audio samples and does not convert to visual features.

DSCNN: Kwon et al. [15] proposed an AI-assisted Deep Convolution Neural Network
(DSCNN) architecture that use a common network approach to learn outstanding and
discriminative features from the spectrogram of the voice signal, which are enforced in the
previous steps and thus behave better.

Bag-SVM: Bhavan et al. [43] proposed a bagged ensemble consisting of support
vector machines and Gaussian kernels, from which a combination of spectral features was
extracted, further processed and reduced to the desired feature set.
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ConvLSTM+GRUs: Kwon et al. [17] proposed the ConvLSTM model, which performs
local feature learning by layering, and combines GRU for global feature learning to improve
the accuracy of the model.

HA-ACNN: Xu et al. [44] proposed a multi-head attention-based convolution neural
network model, and in order to improve the model accuracy, the authors also studied the
impact of noise intensity and time-shift effects on the accuracy.

LSTM-Transformer: Andayani et al. [45] proposed a hybrid model architecture of
a hybrid long short-term memory network and transformer encoder, which is able to
preserve hidden states and learn long- and short-term dependencies using a multi-head
attention mechanism.

5. Results and Analysis

The experimental results of our suggested model framework on two datasets are
shown in Figure 6, our introduced method achieves 80% (Accuracy) and 81% (Accuracy)
on datasets IEMOCAP and RAVDESS, respectively.

Table 3 presents the experimental results of various benchmark models on the dataset
IEMOCAP, including evaluation metrics such as weighted, unweighted, etc., to show the
strength of the proposed method. From the experimental point of view, our proposed
method produces relatively good results. In particular, our method is significantly more
accurate than [17]. This shows that the transformer structure is more suitable than the LSTM
model for processing speech sentiment analysis tasks, and the attention-based GRUs are
also better than the stacked GRUs for processing features. Comparing with method [15], it
can be demonstrated that the combination of convolution and transformer can significantly
enhance the extraction of feature information and can reduce its time complexity. In
addition, we also compared the methods with and without attention in the model. The
experimental results show that the attention mechanism plays a very important role in the
deep learning model. To demonstrate the strength of our model, we also classify different
emotions on the dataset IEMOCAP, as shown in Figure 7. According to the experimental
results, it can be seen that our model is not as effective for the “happy” emotion as other
types of emotion. In this regard, by comparing the effects of other methods and models, we
conclude that a possible reason is that such emotions are underrepresented in the dataset.

Table 3. Accuracy summary obtained by various models using the IEMOCAP database. WA is the
weighted accuracy and UA is the unweighted accuracy.

Method Year WA (%) UA (%) Acc. (%)

CNN+BiLSTM 2020 74 72 72.5
BiLSTM+DBN 2021 - - 72.3

DCNN 2020 - - 64.3
DSCNN 2019 76 72 73.8

HA-ACNN 2021 76.2 76.4 -
ConvLSTM+GRUs 2020 77 75 78

Conformer+AUGRUs (ours) 2022 80 78 80
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Figure 7. Recognition of different emotions by the proposed method.

Now, the RAVDESS [33] dataset is frequently used in sentiment speech and song
recognition systems to test its meaning and effectiveness. Table 4 presents the experimen-
tal results of various benchmark models on the dataset RAVDESS, including weighted,
unweighted, etc., evaluation metrics to show the strength of the proposed method. From
the experimental data, it can be seen that our proposed method significantly outperforms
other benchmark models in various metrics. Figure 8 shows the recognition accuracy of our
proposed model for different emotions on the dataset RAVDESS. In particular, our method
achieves F1_scores of 91% and 90% on the angry and calm emotion classification tasks. The
poor performance on the neutral emotion classification task may be due to the fact that the
sample rate of this type of emotion in the dataset is too small and under-represented.

Table 4. Accuracy summary of various models obtained using RAVDESS database. WA is the
weighted accuracy and UA is the unweighted accuracy.

Method Year WA (%) UA (%) Acc. (%)

CNN+BiLSTM 2020 81 77 77
BiLSTM+DBN 2021 - - 77

DCNN 2020 - - 77.6
DSCNN 2019 68 61 70

HA-ACNN 2021 77.8 77.4 -
ConvLSTM+GRUs 2020 81 80 80

Bag-SVM 2020 - - 75.7
LSTM-Transformer 2020 77.3 75.6 -

Conformer+AUGRUs (ours) 2022 82.5 80.3 81
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Figure 8. Recognition of different emotions by the proposed method.

Through experiments, a comparison with the method of [43] shows that there is a large
gap between models of deep learning and machine learning models in terms of extraction
of feature information and accuracy of analysis results. The development of deep models
such as CNN and transformer is more favorable to promote the development of sentiment
analysis tasks. In contrast to methods [15,42,44], etc., the experimental results show that
convolutional operations and attentional mechanisms can produce significant results on
sentiment analysis tasks and have great potential for development. We compare with the
method proposed in [45]. Experiments show that the long short-term memory network can
perform feature extraction with the transformer, but there is still a problem of insufficient
feature information. So far as we know, the combination of convolutions and transformers
is state-of-the-art for speech sentiment analysis tasks. Experiments also prove that the
combination of convolution for local feature extraction and the transformer can better
enhance the robustness of the model and reduce the time complexity of model training.

6. Conclusions and Future Direction

In this article, we introduce a new method that aims at a more accurate extraction of
local and global features of speech signals. We use a combination of convolution and a
transformer to better obtain the spatio-temporal features as well as the long and short-term
dependencies of the speech signal. In this approach, we construct corresponding learning
groups for local features and global features, respectively. The local feature learning group
contains four learning blocks combined by convolution and transformer to learn the spatial
contextual relevance of sentiments, using surplus learning strategies in a hierarchical
manner. We used these blocks to extract the most salient emotional features. Then, we
input these derived features into a GRU network with a fused attention mechanism to
recalibrate the global weights using these learned features. We use the fully connected
network to further process the feature information after fusion by the attention mechanism,
and finally analyze the results by softmax and central loss function. We performed a wide
range of experiments on the datasets IEMOCAP and RAVDESS speech libraries to examine
and appraise the effectiveness and importance of the suggested model relative to most
advanced models. Our suggested system shows excellent results, with IEMOCAP and
REVDESS obtaining 80% and 81% recognition accuracy, respectively, clearly showing the
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reliability of the model. The experiments demonstrate that the model is effective on various
existing systems in terms of sentiment analysis and sentiment classification.

In future work, we plan to implement sentiment analysis tasks in terms of multimodal-
ity. We use this relatively novel convolutional and transformer architecture to better analyze
the spatio-temporal features of different modalities. Then, we will perform the fusion of
different modal features by deep learning methods to achieve the sentiment classification
task under multimodality. The method introduced in this paper can also be applied to more
speech-like sentiment analysis tasks to further achieve more effective speech sentiment
analysis tasks by finding the interconnections between different modalities.
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