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Abstract: In this paper, a multi-objective integrated trajectory planning method based on an improved
butterfly optimization algorithm (IBOA) is proposed, to improve the dynamic performance of the
Delta parallel pickup robot in high-speed pick-and-place processes. The main objective of the present
study is to improve dynamic positioning accuracy and running stability at high speeds and high
accelerations. On the one hand, the intention is to ensure smooth motions using the trajectory
planning method, and on the other hand to improve the picking efficiency. To this end, the pick-and-
place trajectory of the robot is constructed by using NURBS curves in Cartesian space. Taking the
time and jerk as the optimization objectives, a trajectory optimization method based on the improved
butterfly optimization algorithm (IBOA) is proposed. The IBOA is based on the butterfly optimization
algorithm (BOA); a circle chaotic sequence is introduced to replace the random initial population of
the original BOA, and the fractional differential is used to improve the convergence speed of the BOA.
Then, the problem of parallel segment deformation of the optimized trajectory is solved. Finally, a
three-degrees-of-freedom Delta robot is used to evaluate the performance of the prosed algorithm.
The obtained results show that, compared with other optimization algorithms, IBOA reduces the
optimization time by 16.2%, and the maximum jerk is reduced by 87.6%. The results are better than
the optimization results of other algorithms by 14.1% and 27.2%. The robot motion simulation results
show that IBOA can effectively reduce the vibration acceleration of the end platform.

Keywords: Delta parallel robot; IBOA algorithm; NURBS; time–jerk; trajectory planning

1. Introduction

High-speed parallel robots have superior characteristics such as large stiffness-to-mass
ratio, small cumulative error, and high movement speed. Accordingly, these devices have
been widely applied in diverse industries such as electronics, food, and pharmaceuticals.
Currently, robots are widely used to perform repetitive tasks such as high-speed sorting,
crating, and assembly [1–4]. For the high-speed parallel sorting robot, the higher running
speed often leads to poor performance. Trajectory optimization can not only effectively
improve the dynamic performance of the robot but also improve the operation efficiency
and prolong the operating life. Consequently, the trajectory planning of robots has become
a popular research topic in the past few years.

It is worth noting that the trajectory planning of robots is usually performed in Carte-
sian or joint space [5]. Trajectory planning in joint space involves mapping the path points
in Cartesian space into joint space based on the kinematic model, and then describing the
motion of the joint using functional correlations between the joint angle, angular velocity,
angular acceleration, and time. Studies show that this method has reasonable computa-
tional expenses and can be applied to realize motion smoothness [6]. However, trajectory
planning in joint space cannot ensure that the end effector of the robot follows the given
trajectory strictly. In order to resolve this problem, trajectory planning in Cartesian space is
usually used in practical applications. In this regard, the most commonly used methods are
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polynomial interpolation, B-spline interpolation, Lamé curves, and PH curves [7–10]. Com-
pared with other trajectory planning methods, the non-uniform rational B-spline (NURBS)
interpolation method has remarkable advantages such as local controllability. Moreover,
the high-order derivability of this method provides continuity of the jerk, which is a fa-
vorable feature for motions for complex continuous tasks [11]. Accordingly, the NURBS
method has been widely used in diverse applications.

To shorten the running time, reduce the jerk, and decrease the energy consumption
during robot operation, it is of significant importance to optimize the robot trajectory.
With the development of intelligent optimization algorithms in the past few decades,
numerous algorithms such as particle swarm algorithms [12], ant colony algorithms [13],
gray wolf algorithms [14], and convex optimization algorithms [15] have been proposed
to optimize the robot trajectory. Further investigations revealed that such algorithms
offer an effective scheme for solving the optimization problem of the objective function,
but the accuracy and efficiency of the solution often depend on the convergence rate
of the algorithm. For instance, conventional intelligent optimization algorithms have a
long searching time and are easily trapped in a local optimum [16]. Aiming at resolving
these difficulties, numerous modified methods have been proposed. In this regard, Rui
Yu et al. [17] used the 4-3-4 polynomial function to fit the running track and combined the
genetic algorithm and particle swarm optimization algorithms to optimize the running
time of the robot. Based on the fifth NURBS curve, Youdong Chen [18] proposed the
improved harmony search algorithm and obtained a smooth and time-optimal robot
running trajectory. Taking the running time of the trajectory as the constraint, a smooth
trajectory is obtained by optimizing the five-degree and three-degree B-spline trajectories,
respectively, using the HS algorithm. However, only the single-objective optimization of
running time is analyzed. Wenjie Wang et al. [19] applied the improved cuckoo search
algorithm to optimize the motion time of the trajectory fitted using the 3-5-3 polynomial
function. This paper mainly focuses on the research in joint space. The author analyzes the
performance of each joint of the UR robot and effectively reduces the running time through
optimization, but this method is not suitable for robots with relatively fixed trajectories.
Cheng Liu et al. [20] proposed an improved particle swarm algorithm. Jin Zhou et al. [21]
established a modified BFC algorithm based on the callback mechanism (CBM) and reduced
the energy consumption in the operation of high-speed milling robots. These optimization
algorithms show excellent performance in multi-objective optimization. In order to improve
the dynamic performance of the robot at high speed, the optimization algorithm is used to
carry out the optimization analysis for the minimum jerk.

Further investigations reveal that the jerk is an essential motion performance parame-
ter in the high-speed motions of robots. More specifically, the jerk originating from high
speeds and accelerations may reduce the accuracy, the stability, and even the service life of
the robot. Zhiqiang Wang et al. [22] utilized an improved bacterial foraging optimization
algorithm (IBFOA) to improve the computational efficiency and obtain a smooth trajec-
tory. An improved tau method with higher-order intrinsic guided motion is used to avoid
non-zero initial and final jerks. Shaotian Lu et al. [23] applied the augmented Lagrange
constrained particle swarm optimization (ALCPSO) algorithm and realized time–jerk opti-
mal trajectory planning for seven-DOF series robots. In This paper, the best value obtained
from the previous generation is used to pass on to the next generation in an iterative search
process to accelerate the convergence speed. The optimization results show that the jerk is
not continuous, but it is an important condition for the continuous jerk of high-speed paral-
lel robots. Wang et al. [24] developed an improved whale optimization algorithm (IWOA)
to obtain the time–jerk optimal trajectory and improved the grinding quality and efficiency
of the robot. Moreover, SujinBureerat et al. [25] considered the amount of movement time
and jerk and proposed the multi-objective real-code population-based incremental learning
hybridized with differential evolution (MRPBIL-DE) algorithm. Huang et al. [26] used
the non-dominated ranking genetic (NSGA-II) algorithm to optimize the motion time and
average acceleration of the whole trajectory. Furthermore, Chen et al. [27] designed an
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improved immune clone selection algorithm (IICSA) to optimize total motion time, energy
consumed during motion, and actuator jerk and obtained fifth-order B-sample trajectories.
Shubin Yin et al. [28] obtained the time–energy optimal trajectory using the robot learning
method. In view of this, although these optimization methods can solve the multi-objective
time–jerk optimization problem in a certain range for the high-speed parallel robot, its
trajectory planning problem not only requires that jerk is reduced through optimization
methods but also that that the trajectory planning model of the robot is high-order deriv-
able, which plays an important role in ensuring the trajectory smoothness of the robot in
high-speed operation.

In the above trajectory optimization methods, there is less research on high-order
continuous derivable trajectories. For high-speed parallel robots, in order to ensure the
stability of motion, high-order derivability is a necessary condition. In terms of optimization
algorithms, optimization methods usually expand the global search ability and improve
accuracy. The algorithm does not have the memory of an iterative process. To improve the
movement efficiency of parallel robots while ensuring the motion stability and solving the
optimal time–jerk trajectory planning of parallel robots, an improved butterfly optimization
algorithm (IBOA) is adopted in the present study. IBOA adopts the super-spiral method
combined with the fractional differential method, which not only expands the search space
of the algorithm but also increases the iteration memory, which is helpful to improve the
convergence speed and accuracy.

The rest of the article is organized as follows: The kinematics of the Delta parallel
robot are described in Section 2. The time–jerk optimization problem is described in
Section 3. Then, the pickup trajectory of the Delta robot and the NURBS curves are
introduced in Section 4. In Section 5, the BOA and IBOA algorithms are described in detail.
In Section 6, the performance of the IBOA algorithm is evaluated for the Delta high-speed
parallel robot pickup motion and the obtained results are compared with those of other
optimization algorithms. The main objective of the present study is to analyze and improve
the trajectories based on the optimization results. Finally, the main achievements and
conclusions are summarized in Section 7.

2. Delta Parallel Robot

Figure 1a shows the configuration of a three-degrees-of-freedom Delta robot. The Delta
robot consists of a static platform, a moving platform, and three chains. The mobile platform
is attached to the static platform by three symmetric chains, each of which includes a
rotationally active proximal link and a spatial unactuated parallelogram composed of a
spherical joint and link. The two ends of the telescopic rod in the middle are connected to
the static platform and dynamic platform of the robot through u hinges. With this design,
the movement can be delivered to the mobile platform through three chains.

The parallelogram of the parallel branch chain of the Delta parallel robot is simplified
to a joint with two degrees of freedom along and perpendicular to the axis of the driving
arm. According to the Delta parallel robot structure in Figure 1b. The coordinate system
O − XYZ is established, with the center of the static platform as the coordinate origin.
The inverse kinematic rotation angle of each drive arm can be obtained as shown in
Equation (1):

pi = 2 arctan

−Ni −
√

N2
i + M2

i − P2
i

Pi + Mi

 (1)

where
Mi =2L1((Tx + rt cos βi − r cos βi) cos βi+(

Ty + rt sin βi − r sin βi
)

sin βi
)

Ni =2L1Tz

Pi =(Tx + rt cos βi − r cos βi)
2+(

Ty + rt sin βi − r sin βi
)2

+ T2
z + L2

1 − L2
2
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where pj is the angular displacement of the driver arm and βi represents the included angle
between the robot static platform coordinate system and the driving arm. The radius of the
static platform is recorded as r. The radius of the end moving platform is denoted rt. L1
is the length of each drive arm. L2 is the length of the parallel branch chain of the Delta
parallel robot. Tx, Ty, and Tz are the spatial coordinates of the center of the end moving
platform of the parallel robot.

(a) (b)

Figure 1. Delta parallel robot. (a) Prototype of Delta parallel robot; (b) Sketch of Delta parallel robot.

3. Optimal Time–Jerk Problem Description

A high-speed robot is expected to move quickly while performing pick-and-place tasks.
However, increasing the frequency of pick and place unavoidably increases acceleration
and jerk, thereby affecting the stability and position accuracy of the robot motion. Trajectory
optimization is an effective scheme for reducing the robot jerk. An optimization process can
be reviewed according to the following two aspects: firstly, finding the shortest movement
time, and secondly, the motion stability during operation. Since the motion stability is
mainly reflected in the acceleration, it is necessary to minimize the peak acceleration of the
robot during the process.

Jerk is defined as the first derivative of acceleration with respect to time, which reflects
the change rate of acceleration and is an important indicator for evaluating the smoothness
of the robot motion. More specifically, the greater the jerkiness, the faster the acceleration
change. According to Newton’s second law, acceleration affects the applied force on the
robot driving joint. Accordingly, when the acceleration changes frequently, the motor that
drives the joint should constantly change the output torque to control the robot movement,
thereby leading to the chattering phenomenon in the motor and affecting the motion
accuracy of the robot.

Therefore, it is essential to consider the variations in acceleration on the dynamic
performance of the robot. This is especially the case for high-speed pick-and-place tasks.
The larger the jerk, the lower the smoothness of the robot motion. In this paper, the average
cumulative effect of trajectory mutation is defined as an index to evaluate the smoothness of
the trajectory. To consider the total running time and the robot trajectory, the optimization
objective can be mathematically expressed as follows:


κ1 =

n−1

∑
i=1

hi

κ2 =
N

∑
j=1

√
1
t f

∫ t f

0

(...
p j(t)

)2dt

(2)
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where κ1 and κ2 are the objective functions for the motion time and the robot stability,
respectively. Moreover, t f and pj denote the total movement time and the angular displace-
ment of the driver arm, respectively. Equation (2) is subject to the following kinematic
constraints: ∣∣ ṗj

∣∣ ≤ vmax∣∣ p̈j
∣∣ ≤ accmax∣∣...p j
∣∣ ≤ jerkmax

(3)

where vmax , accmax, and jerkmax are the maximum values of the velocity, acceleration,
and jerk, respectively.

The NURBS curve lies within the merging set of individual convex packages formed by
the control vertices [29]. Consequently, this curve can be applied to convert the kinematic
constraints to constraints on individual control vertices. The converted constraints can be
expressed in the form below: 

∣∣∣d1
j

∣∣∣ ≤ vmax∣∣∣d2
j

∣∣∣ ≤ accmax∣∣∣d3
j

∣∣∣ ≤ jerkmax

(4)

However, the time and jerk are a set of conflicting objectives. On the on hand, as the
running time reduces, the corresponding jerk fluctuations increase, which is not conducive
to smoothing the trajectory. On the other hand, as the motion jerk reduces, the total motion
time increases, which affects the efficiency of the operation. Accordingly, weighting factors
are usually used in multi-objective optimization problems to optimize the running time
and meet the acceleration requirements. According to the weight selection of the two
optimization objectives, the optimization objective function is defined as follows:

f =
∑n

i=1
(
w
[

κ1 κ2
]
− σmin

)
(σmax − σmin)

(5)

where w represents the weight factor and σmax and σmin are the boundary maximum and
minimum of the objective function, respectively.

4. Trajectory Planning in Operation Space
4.1. Trajectory Description

Figure 2a shows the configuration of a high-speed parallel robot consisting of a static
platform, three sets of driving arms, and a moving platform. A servo-motor and reducer
are installed on the static platform. Moreover, each group of driving arms is composed of a
driving arm and a slave arm, which are connected through spherical joints. The moving
platform, which is connected to three groups of slave arms, can realize the translational
movement of the robot along the x-, y-, and z-directions. Figure 2b shows the door-type
trajectory, which is a typical trajectory in the operation space. During each grasping
movement, the moving platform of the robot passes through the lift-off points p1–p3 in
turn, and then passes through the set-down points p4–p6. The height and span of the robot
are 0.1 m and 0.6 m, respectively.
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(a)

(b)

Figure 2. Configuration of the Delta parallel robot and motion trajectory in the operating space.
(a) Schematic configuration of the parallel robot and its motion trajectory. (b) NURBS curve in the
operating space.

4.2. Trajectory Construction by Means of Fifth-Order NURBS Curve

The trajectory of an industrial robot is defined based on the sequential motion of a
series of key points, which can be described using a polynomial function. In the present
study, the NURBS curve is used to describe the trajectory of the end effector in the operation
space. The NURBS curve can be obtained from the following expression:

p(u) =
n

∑
i=0

di Ni,k(u) (6)

where di indicates the control vertex and Ni,k is the basis function of the k-times NURBS.
To describe the k-times NURBS curve, the domain node vector U should be defined in the
form below:

U = [u0, u1, · · · , uk, uk+1, · · · , un, un+1, · · · , un+k+1] (7)

where n is the number of key points. Adopting the cumulative chord length method,
the time vector t can be normalized to the knot vector u. This process can be mathematically
expressed as follows:

u0 = u1 = · · · = uk = 0
un = un+1 = · · · = un+k+1 = 1
ui = ui−1 +

|ti−k−ti−k−1|
∑n−1

j=0 |tj+1−tj| , i = k + 1, · · · , n− 1
(8)
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The k-times NURBS basis functions Ni,k are obtained using the de Boor–Cox recurrence
expression: 

Ni,0(u) =
{

1 ui < u < ui+1
0 otherwise

Ni,k(u) =
u−ui

ui+1−ui
Ni,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u)

make 0
0 = 0

(9)

The k-times NURBS curve equation of n + 1 interpolated key points pi is substituted
into the nodes in [uk, un+k] to obtain n + 1 equations that meet the interpolation conditions.

p(ui+k) =
i+k

∑
j=i

djNj,k(ui+k) = pi, ui+k ∈ [uk, un+k]

i = 0, 1, · · · , n

(10)

Then, the r-order derivative of p(ui+k) can be obtained as follows:

pr(u) =
i

∑
m=i−k+r

dr
j Nj,k−r(u), u ∈ [ui, ui+1]

m = i− k, i− k + 1, · · · , i

(11)

ds
j =

 dj , s = 0

(k + 1− s)
ds−1

j −ds−1
j−1

uj+k!−s−uj
, s = 1, 2, · · · , r

(12)

The control vertices are deducted, and the equation is shown as

ANd = p (13)

where AN is the coefficient matrix and p is the motion parameter matrix.
For k-times NURBS curves, n + k boundary conditions require n + k control points.

However, only n + 1 points satisfy equations; the other k− 1 points satisfy the interpolation
condition and can be obtained by tangent vector boundary conditions. Since the repetition
of both end nodes is k + 1, the first and last control vertices of the k-times B-sample
curves can be used as data points of the constraint conditions. Accordingly, the boundary
conditions can be obtained as follows:

p′0 = p′(uk) = d1
1 = k d1−d0

uk+1−u1

p′n = p′(un+k) = d1
n+k−1 = k dn+k−1−dn+k−2

dn+2k−1−dn+k−1

p′′0 = p′′(uk) = d2
2

p′′n = p′′(un+k) = d2
n+k+2

p′′′0 = p′′′(un) = d3
3

p′′′n = p′′′(un+k) = d3
n+k−1

(14)

5. Improved Butterfly Optimization Algorithm
5.1. Butterfly Optimization Algorithm

In the butterfly optimization algorithm, each butterfly in the population is considered
an independent search individual that releases a certain intensity of fragrance. Accordingly,
the motion fitness changes when a single butterfly moves from one location to a new loca-
tion during the searching process, and the fragrance spreads during the movement. Each
butterfly perceives the fragrance of other butterflies, but the fragrance decays gradually
with distance, and the butterfly moves to the location with the strongest fragrance. This is
the main difference between the butterfly algorithm and other metaheuristics.
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In the BOA, the value of the scent concentration f can be determined with respect
to three parameters: the sensory modality (c), the stimulus intensity (I), and the power
index (a) [30]. The perceptual morphology is the butterfly’s perception of the fragrance,
which is an initialization constant of the algorithm and is usually used as an optimization
parameter. The stimulus intensity (I) can be derived from the fitness function. Moreover,
the parameter power index (a) is a constant, which varies in the range (0, 1). The basic
form of the BOA can be expressed as follows:

f = cIa (15)

The main stages of BOA can be summarized as follows:
(a) Initialization stage, where the objective function is established according to the

time–jerk requirements of the trajectory planning. Then, the trajectory is optimized by ad-
justing the control points of the NURBS. To this end, it is necessary to predefine the sensory
modality, power index, switching probability, and initial population, and to calculate the
corresponding fitness value.

(b) Iteration stage, where the position of butterflies in the solution space is redis-
tributed, and therefore the fitness value and fragrance of each butterfly should be recalcu-
lated. At this stage, it is necessary to conduct either a global or a local search. In the global
search, the butterfly moves towards the butterfly g∗ with the largest fragrance value. This
process can be mathematically expressed as follows:

xt+1
i = xt

i + (r2 × g∗ − xt
i )× fi (16)

where xt+1
i and xt

i are the solutions for the i-th butterfly in iteration t + 1 and t, and r is
a random number within the range [0, 1]. In the present study, the global search of the
JADE-GL tuned butterfly algorithm [29] is applied to perform a larger global search. Based
on this algorithm, the potential solution can be expressed as follows:

xt+1
i = xt

i + (r(g∗i − xt
i ) + (1− r)(xt

r1 − xt
r2))× fi (17)

where r1, r2 are random numbers between 1 and the population size n, xt
i denotes the

solution corresponding to the i-th butterfly in the t-th iteration, g∗ denotes the optimal
solution for the current iteration, fi denotes the fragrance emitted by the i-th butterfly, and
r is a random number in the range (0, 1).

When a butterfly cannot sense the fragrance emitted by any other butterflies, it will take
a random walk. At this time, corresponding to local search, the BOA can be expressed as

xt+1
i = xt

i +
(

r2 × xt
j − xt

k

)
× fi (18)

where xt
i and xt

k denote the solutions corresponding to the j-th and k-th butterflies in the
t-th iteration, respectively. Moreover, r is a random number in the range [0, 1]. A switch
probability p is used to switch between global and local searches in the BOA.

(c) Termination stage, where the optimal solution is obtained. This condition is
achieved when the obtained solution can satisfy the requirements, or the number of itera-
tions reaches a certain value.

5.2. IBOA

Combining chaotic mapping and a fractional order with the standard butterfly opti-
mization algorithm, an improved BOA (IBOA) is proposed to improve the solution accuracy
and global optimization performance of the BOA.

5.2.1. Chaotic Mapping

Chaotic mappings refer to multivariate nonlinear functions that can be used for
nonlinear deterministic prediction of time series data to enhance the diversity of the initial
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population, thereby improving the global search capability of the BOA. In the present study,
circle chaotic mapping [31] is used in the BOA algorithm to optimize the initial population.

The circle map can be expressed as follows:

xk+1 = xk + b− (P− 2π) sin(2πxk) mod (1) (19)

where b = 0.2, and P = 0.5 is the control parameter. Equation (18) yields a chaotic mapping
distribution in the range (0, 1).

5.2.2. Fractional Derivative

Aiming at preventing the BOA from falling into a local optimum, fractional derivatives
are often used to improve the memory capacity and convergence of the BOA, enhance the
memorability and search ability of iterative processes, and improve the accuracy of the
solution. In this regard, Grunwald–Letnikov fractional differentiation is used in the present
study to optimize BOA. The integral of integer order (G-L) is extended from integer order
to fractional order using the gamma function. The α-order fractional differential can be
expressed in the form below:

αDα
t · η(t) = limh→0 h−α ∑

((t−α)/h)
m=0 (−1)m

Γ(α+1)
Γ(m+1)Γ(α−m+1)η(t−mh)

(20)

where D and α denote the fractional derivative and the order of the fractional derivative,
respectively. When α > 0, G− L denotes differentiation, while α > 0 refers to the integration.
The fractional derivative combined with the BOA can be expressed as:

αDα
t · x(t) = lim

h→0
h−α∑(t−α)/h)

m=0 (−1)m

Γ(α + 1)
Γ(m + 1)Γ(α−m + 1)

x(t−mh)
(21)

In order to combine with the discrete time-period in the trajectory planning, Equa-
tion (21) can be simplified to the form below:

Dv
t · x(t) =T−v

c

∑
m=0

(−1)m

Γ(v + 1)
Γ(m + 1)Γ(v−m + 1)

x(t−mT)

(22)

where T and ζ are the sampling period and the truncation order, respectively. Based on
Equation (18), the global search can be rewritten in the form below:

xt+1
i − xt

i =
(
r
(

g∗i − xt
i
)
+ (1− r)

(
xt

r1 − xt
r2
))
× fi (23)

Assuming v = T = 1, Equation (22) can be re-expressed as

Dv
t ·
[

xt+1
i

]
=
(
r
(

g∗i − xt
i
)
+ (1− r)

(
xt

r1 − xt
r2
))
× fi (24)

The first four terms of Equation (24) are

xt+1
i =vxt

i +
1
2

v(1− v)xt−1
i − 1

6
v(1− v)(2− v)xt−2

i +

1
24

v(1− v)(2− v)(3− v)xt−3
i +

(
r
(

g∗i − xt
i
)
+

(1− r)
(
xt

r1 − xt
r2
))
× fi

(25)
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Moreover, a solution is randomly selected as an individual in the current solution.
Then, a secondary local search is performed using this solution and its inverse solution.
The quasi-Newton algorithm is used to implement a local search. The new position can be
derived from the following expression:

xt+1
id = lb + (ub− lb)× xk+1 (26)

where lb and ub are the upper and lower limits of the NURBS curve control point adjust-
ment, respectively, and xt+1

id is the solution for the id-th butterfly in iteration t + 1 in the
second search.

The main steps of the IBOA can be summarized as follows:
Step 1: Determine the number of butterflies n, the perceptual constant c, the stimulus

factor I, and the switching probability parameter p. Initialize the population using circle
chaos mapping;

Step 2: Solve the objective function.
Step 3: Derive the current optimal solution. To this end, use the global search in

Equation (17) if rand < p , and use the local search in Equation (18) otherwise.
Step 4: Randomly select an individual from the current solution. A secondary lo-

cal search is performed using this solution and its inverse solution. The quasi-Newton
algorithm is used to implement a local search.

Step 5: Update the solution. The current optimal solution is obtained and compared
with the best solution of the previous generation. Then, the optimal solution should be
updated if the current optimal solution is better than the previous solution.

Step 6: Check the number of iterations. If the number of iterations reaches a certain
value, the calculation ends. Check whether the termination condition is satisfied. If it is not
satisfied, return to step 3.

Figure 3 shows the flowchart of the improved butterfly optimization algorithm.

Figure 3. Flowchart of the improved butterfly optimization algorithm for time–impact optimized
trajectory planning.
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6. Simulation Test and Results Analysis
6.1. Experimental Test of IBOA
6.1.1. Test of IBOA Population

In order to evaluate the performance of the IBOA, experiments were carried out, and
the results are analyzed in this section. The population distribution and the convergence
speed of the IBOA are analyzed.

Figure 4 reveals, with the help of the circle chaotic map, that the population distribution
of the butterfly optimization algorithm is more uniform than a random distribution.

(a)

(b)

Figure 4. Population distribution comparison map. (a) Cirlce mapping population distribution;
(b) Random population distribution.

6.1.2. Results for Benchmark Test Functions

In order to show the effectiveness of the IBOA, the commonly used test functions of
CEC217 were used in the experiments. The results are compared with those obtained from
WOA, GA, BOA, and HPSOBOA optimization algorithms.

For each test function shown in Tables 1–3, each optimization algorithm was run
30 times, starting from randomly generated populations. Figure 5 shows the competitive-
ness of different algorithms for three test functions.
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Table 1. Unimodal benchmark test functions.

Formula of Function Dim Range fmin

F1(x) = ∑N
i=1 x2

i 30 [−100, 100] 0
F2(x) = ∑N

i=1|xi |+ ∏N
i=1|xi | 30 [−10, 10] 0

F3(x) = ∑N
i=1

(
∑i

j−1 xi

)2
30 [−100, 100] 0

F4(x) = maxi{|xi |, 1 ≤ i ≤ N} 30 [−100, 100] 0
F5(x) = ∑N−1

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F6(x) = ∑N−1
i=1 (|xi + 0.5|)2 30 [−100, 100] 0

F7(x) = ∑N−1
i=1 ix4

i + random[0, 1] 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark test functions.

Formula of Function Dim Range fmin

F8(x) = ∑N
i=1−xi sin

(√
|xi |
)

30 [−500, 500] −2094.9

F9(x) = ∑N
i=1
[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

F10(x) = −20 exp
(
−0.2

√
1
N ∑N

i=1 x2
i

)
−

exp
(

1
N ∑N

i=1 cos(2πxi)
)
+ 20 + e

30 [−32, 32] 0

F11(x) = 1
4000 ∑N

i=1 x2
i −∏N

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) = π
N {10 sin(πy1)+

∑N−1
i=1 (yi − 1)2

[
1 + 10 sin(πyi+1) + (yn + 1)2

]}
yN−1

i = 1 + xi+1
4

u(xi , 10, 100, 4) k(xi − a)m xi > a
0 −a < xi < a
k(xi − a)m xi < −a

30 [−50, 50] 0

F13(x) =0.1
{

10 sin2(3πy1)+

N

∑
i=1

(yi − 1)2
[
1 + sin2(3πy1 + 1)

]
+

(yn + 1)2
[
1 + sin2(2πyn)

]}
N−1

∑
i=1

u(xi , 5, 100, 4)

30 [−50, 50] 0

Table 3. Multimodal benchmark test functions.

Formula of Function Dim Range fmin

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
2 [−65, 65] 1

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos1 +10 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2

+6x1x2 + 3x2
2
)]
×
[
30 + (2x1 − 3x2)

2 × (18−
32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)]

2 [−2, 2] 3

F19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij
(
xj − pij

)2
)

3 [1, 3] −3.86

F20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij
(
xj − pij

)2
)

6 [0, 1] −3.32

F21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 1] −10.1532

F22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F23(x) = −∑1
i=1 0

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.536
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F1 F3

F5 F7

F8 F11

F12 F13

F14 F16

F18 F22
Figure 5. Comparison of convergence curves of IBOA and other algorithms obtained in some of the
benchmark problems.
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The comparison of the convergence curves of different algorithms reveals that the
IBOA is very competitive compared with other metaheuristic techniques for solving opti-
mization problems.

6.1.3. Non-Parametric Test

In order to better test the performance of the algorithm, a series of test methods
were used to evaluate the advantages and disadvantages of the algorithm. Among them,
the statistical method is considered to be an effective method, including a parametric
test and a non-parametric test. For the comparison of various algorithms, the hypothesis
estimation method is not considered to be conducive to the evaluation of the advantages and
disadvantages of the algorithm. The newly developed algorithm’s statistical performance
was verified by employing a non-parametric statistical test.

In this non-parametric test, each algorithm is executed for 30 independent runs, with
20 populations, for 50 iterations. A non-parametric Wilcoxon test was used to evaluate the
differences between paired samples.The p-values achieved in the test are shown in Table 4,
indicating that the IBOA algorithm is mathematically significantly superior.

Table 4. Trajectory point sequence.

Fuctions IBOA vs. BOA IBOA vs. HPSOBOA IBOA vs. GA IBOA vs. WOA

F1 3.36 × 10−34 1.56 × 10−34 2.56 × 10−34 2.56 × 10−34

F3 2.56 × 10−34 2.33 × 10−34 2.56 × 10−34 2.58 × 10−34

F5 2.56 × 10−34 2.56 × 10−34 2.56 × 10−34 2.56 × 10−34

F7 4.56 × 10−34 2.56 × 10−34 2.60 × 10−34 2.96 × 10−34

F8 2.56 × 10−34 2.56 × 10−34 2.56 × 10−34 2.56 × 10−34

F11 2.03 × 10−33 1.56 × 10−34 1.86 × 10−30 2.16 × 10−32

F12 5.02 × 10−33 4.89 × 10−33 2.56 × 10−34 2.13 × 10−33

F13 1.88 × 10−32 1.01 × 10−9 2.56 × 10−34 1.91 × 10−30

F14 8.74 × 10−32 6.68 × 10−34 5.65 × 10−33 8.24 × 10−28

F16 3.78 × 10−8 2.86 × 10−34 6.30 × 10−35 6.30 × 10−35

F18 2.56 × 10−34 2.56 × 10−34 2.56 × 10−34 2.56 × 10−34

F22 2.56 × 10−34 1.96 × 10−34 3.71 × 10−34 2.96 × 10−34

Unlike the Wilcoxon rank test, the Friedman test is used to obtain a ranking for
multiple algorithms. For the above test functions, IBOA’s performance was better than the
other algorithms. This non-parametric test is used to rank the algorithms. According to the
box diagram shown in Figure 6, the test results show that the mean rank for IBOA is the
minimum among all the algorithms.

Figure 6. Box-plot comparison of results of IBOA with the basic methods using CEC17 functions.

6.2. Trajectory Planning for Delta High-Speed Parallel Robots

It should be indicated that all calculations were carried out in the MATLAB environ-
ment. Six key points of the door-type trajectory were preset, and then optimal time–jerk
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trajectory planning was performed in the Cartesian space, considering kinematic con-
straints. The values of the trajectory key points are listed in Table 5, and the kinematic
constraints of the robot are shown in Table 6.

Table 5. Trajectory point sequence.

The Key Points X (m) Y (m) Z (m)

p1 −0.02 0.30 −1.25
p2 −0.02 0.30 −1.20
p3 −0.02 0.12 −1.15
p4 −0.02 −0.12 −1.15
p5 −0.02 −0.30 −1.20
p6 −0.02 −0.30 −1.25

Table 6. Kinematic limits of a Delta robot.

Joint
Velocity
(deg/s)

Acceleration
(deg/s2)

Jerk
(deg/s3)

1 600 2000 15,000
2 600 2000 15,000
3 600 2000 15,000

In all calculations, the quintic NURBS curve interpolation was used to obtain the
trajectory in Cartesian space. The corresponding displacement, velocity, acceleration,
and jerk curves of the three drive arms in the joint space derived from the kinematic inverse
solution are depicted in Figure 7.

(a) (b)

(c) (d)

Figure 7. NURBS curve motion parameters. (a) The drive arm angular displacement; (b) The drive
arm angular velocity; (c) The drive arm angular acceleration; (d) The drive arm angular jerk.

6.3. Verification of the IBOA Trajectory Optimization

Taking the evaluation indices of two optimization objectives as the test standard,
the obtained results from IBOA, WOA, GA, HPSOBOS, and BOA were compared. In all
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simulations, the population size and the maximum number of iterations were set to 50.
The weight factors of the selected time and impact were set to 0 and 1, respectively. The sim-
ulation results are shown in Figure 8.

Figure 8. Distribution of convergence rates for different algorithms.

Figure 8 reveals that WOA converges to 0.06 after 26 iterations, but the convergence is
premature. Moreover, GA and HPSOBOA converge at the 6th generation, while the original
BOA converges at the 12th generation, but they simply fall into the local convergence, so
that their optimization results do not meet the requirements. The lowest optimization
results were achieved from the IBOA, indicating the high optimization accuracy of this
algorithm. More specifically, the IBOA reaches an optimized value of 0.03 after 32 steps,
indicating that IBOA can achieve reasonable optimization results.

Table 7 shows the optimization results of different algorithms for the motion time. It
was found that the IBOA reduces the motion time by 16.2%, while WOA, GA, HPSOBOA,
and BOA reduce the robot motion time by 14.1%, 15.5%, 12.7%, and 12.7%, respectively.
The optimization results for the second optimization objective are shown in Table 8. It can
be observed that the best optimization effect on the jerk was 87.6%, which was achieved
using the IBOA. The obtained results demonstrate that the IBOA algorithm outperformed
the other algorithms in terms of the time–jerk trajectory planning of the robot.

Table 7. Results for time objectives before and after optimization.

Method No Optimization Optimization of the Algorithm

WOA 0.28 0.2404
GA 0.28 0.2365

BOA 0.28 0.2442
HPSOBOA 0.28 0.2442

IBOA 0.28 0.2327

Table 8. Results for jerk objectives before and after optimization.

Method No Optimization Optimization of the Algorithm

WOA 2.5 1.4472
GA 2.5 2.4435

BOA 2.5 1.8683
HPSOBOA 2.5 1.8245

IBOA 2.5 0.3089

The motion parameters of the drive arm optimized by IBOA are shown in Figure 9. It
can be observed that the optimized motion time for IBOA decreases from 0.28 s to 0.2346 s.
Moreover, the maximum jerk values of the driving arm before and after optimization were
2.5× 103 deg/s3 and 0.3089× 103 deg/s3, respectively.

It is found that the displacement curve changes after optimization. Due to the change
in the position of the control point, the trajectories before and after optimization are
different, and therefore the displacement curve changes.
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(a) (b)

(c) (d)

Figure 9. IBOA-optimized motion parameters. (a) The drive arm angular displacement with the
trajectory planning based on IBOA. (b) The drive arm angular velocity with the trajectory planning
based on IBOA. (c) The drive arm angular acceleration with the trajectory planning based on IBOA.
(d) The drive arm angular jerk with the trajectory planning based on IBOA.

The optimized trajectory profile in Figure 10 indicates that after IBOA optimization,
the trajectory produces deformation along the Z-axis direction. This may be attributed
to the deviations of the regenerated curve from the control point after changing the key
point position for the high-order NURBS curve, which deform the generated trajectory. It is
worth noting that this phenomenon is not conducive to robot motion.

(a) (b)

Figure 10. Optimized trajectory curve using IBOA. (a) The trajectory curve in operating space;
(b) YOZ view of trajectory curve.

The boundary constraint of the control point is added to the optimization process,
and the adjustment range of the key point is between 0.05. The optimized trajectory is
shown in Figure 11. Comparing the running trajectory before and after the optimization
in the operation space reveals that the optimization result after setting the boundary
conditions effectively reduces the deformation. In the optimized trajectory, the jerk value
reduces by 76.3%, which shows the effectiveness of the optimization method.
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(a) (b)

Figure 11. The motion trajectory with optimization using IBOA. (a) The trajectory curve in operating
space after optimization. (b) YOZ view of trajectory curve after optimization.

6.4. Simulation Experiments for Trajectory Optimization

In this section, the planning optimization methods designed above are verified via
experiments. Figure 12 shows the Delta parallel robot prototype, including the frame,
the robot, and its control system. This part is based on the robot as an example, and the driv-
ing parameters optimized by the IBOA algorithm are used to control the robot pickup motion.

Figure 12. Delta robot.

The driving speed parameters optimized by the IBOA algorithm and the non-optimized
driving speed parameters were used as inputs, respectively, to carry out the picking motion
test of the robot and to monitor the actual motor speed. The actual motor speed for the
IBOA is shown in Figure 13.
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(a)

(b)

(c)

Figure 13. Actual angular velocity of each drive arm. (a) Actual angular velocity of R1 drive arm;
(b) Actual angular velocity of R2 drive arm; (c) Actual angular velocity of R3 drive arm.

The vibration accelerations of the mobile platform at the end of the robot corresponding
to two groups of different speed parameters are shown in Figures 14 and 15, respectively.
The simulation results show that the driving parameters optimized by the IBOA can
effectively reduce the vibration acceleration of the Delta parallel robot in high-speed
motion. The results show that the optimization method is effective.
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Figure 14. Non-optimized vibration acceleration of robot platform.

Figure 15. Vibration acceleration of robot platform after IBOA optimization.

7. Conclusions

In this paper, an improved butterfly optimization algorithm was proposed to solve
the trajectory optimization problem for the Delta high-speed parallel robot. By optimizing
the trajectory, the picking efficiency was improved and the residual vibration of the robot
was reduced. The main contributions are as follows.

1. The trajectory planning was carried out in Cartesian space, and the NURBS curve
was used to generate the trajectory. The picking trajectory was designed according to the
actual robot picking span, and the displacement, velocity, acceleration, and jerk curve of
each driving arm were obtained through velocity, acceleration, and jerk constraints.

2. In order to improve the dynamic performance of the robot, BOA was used for opti-
mization. Aiming at resolving the problems of the standard BOA, such as low convergence
speed and ease of falling into a local optimum in multi-objective optimizations, chaotic
mapping and fractional differentiation were used to improve the butterfly optimization
algorithm. This not only expanded the search scope of the algorithm but also increased the
iteration memory, which helped to improve the convergence speed and accuracy. Then, nu-
merous simulation tests were carried out. The obtained results showed that the improved
algorithm had more significant competitiveness and could reduce the jerk in multi-objective
optimizations by 87.6%.

3. The vibration accelerations of the robot terminal platform before and after opti-
mization were compared numerically. The simulation results showed that the optimized
trajectory effectively reduced the vibration acceleration of the terminal platform.

The proposed trajectory optimization method can also be applied to other paral-
lel robots to improve their dynamic characteristics. This paper has mainly focused on
the analysis of the kinematics of the robot and on improving the dynamic performance
based on the dynamic analysis. However, the motion span of the end platform may af-
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fect the performance of the robot. To ensure efficient and effective improvement of the
dynamic performance of the robot, the dexterous workspace within 600 mm of the robot
can be analyzed.
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