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Abstract: In this study, three different models were developed to predict the compressive strength of
SCC, including the nonlinear relationship (NLR) model, multiregression model (MLR), and artificial
neural network. Thus, a set of 400 data were collected and analyzed to evaluate the effect of seven
variables that have a direct impact on the CS, such as water to cement ratio (w/c), cement content
(C, kg/m3), gravel content (G, kg/m3), sand content (S, kg/m3), fly ash content, (FA, kg/m3),
superplasticizer content (SP, kg/m3), and curing time (t, days) up to 365 days. Several statistical
assessment parameters, such as the coefficient of determination (R2), root mean squared error (RMSE),
mean absolute error (MAE), and scatter index (SI), were used to assess the performance of the
predicted models. Depending on the statistical analysis, the median percentage of superplasticizers
for the production of SCC was 1.33%. Furthermore, the percentage of fly ash inside all mixes ranged
from 0 to 100%, with 1 to 365 days of curing and sand content ranging from 845 to 1066 kg/m3. The
results indicated that ANN performed better than other models with the lowest SI values. Curing
time has the most impact on forecasts for the CS of SCC modified with FA.

Keywords: SCC; compressive strength; fly ash; statistical analysis; modeling

1. Introduction

Self-consolidating concrete or self-compacting concrete (SCC) is a concrete mix that
has low yield stress, high deformability, good segregation resistance (prevents separation
of particles in the mix), and moderate viscosity (necessary to ensure uniform suspension
of solid particles during transportation, placement (without external compaction), and
until the concrete sets). In everyday terms, when poured, SCC is an extremely fluid mix
with the following distinctive practical features: it flows very easily within and around the
formwork, can flow through obstructions and around corners (“passing ability”), is close
to self-leveling (although not self-leveling), does not require vibration or tamping after
pouring, and follows the shape and surface texture of a mold (or form) very closely once
set. As a result, pouring SCC is much less labor-intensive than standard concrete mixes.
Once poured, SCC is usually similar to standard concrete in terms of its setting and curing
time (gaining strength) and strength. SCC does not require a high proportion of water
to become fluid and SCC may contain less water than standard concretes. Instead, SCC
gains its fluid properties from an unusually high proportion of fine aggregate, such as sand
(typically 50%), combined with superplasticizers (additives that ensure particles disperse
and do not settle in the fluid mix) and viscosity-enhancing admixtures (VEAs) [1,2]. The
introduction of SCC represents a major technological advance, leading to a better quality
of concrete produced and a faster and more economical concrete construction process [3].
When there is a lot of reinforcement in the structure members, using an SCC is the perfect
choice for structural components. A superplasticizer and other mineral admixtures can
increase the SCC’s high flowability and stability [4].
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Fly ash (FA) is a siliceous or aluminosilicate particle that has been finely divided.
When moisture is present, it chemically combines with the calcium hydroxide generated
when Portland cement hydrates to create a compound with cementing properties [5]. As a
byproduct of burning pulverized coal, FA is a finely split residue produced in coal-fired
power plants. The coal is crushed and blown into the burning chamber, where it burns
right away to heat the boiler tubes. Regarding the influence of fly ash on self-compacting
concrete (SCC) properties, a study indicates that a high volume of fly ash can be used in
SCC to produce high-strength and low-shrinkage concrete. Subhan Ahmad et al. compared
hardened properties of normal concrete (NC) and self-compacting concrete (SCC) [6]. While
most of the impurities deposited in coal during its formation, such as clay, shale, quartz, and
feldspar, typically fuse and stay suspended in the flue gas, the volatile matter and carbon
are burned off. The importance of a low water–cement ratio for enhancing the durability of
concrete has long been accepted. Low water content leads to low workability of the fresh
concrete; if this concrete is not properly compacted, the durability of the structures will be
impaired. In the mid-1970s, superplasticizers were introduced to the market to produce
rhinoplastic concretes [7,8]. The flaming material is swiftly transferred to cooler regions,
where it is formed into sphere-shaped particles. Lighter ash particles (FA) stay suspended
in exhaust gases while heavier ash particles fall to the bottom of the burning chamber.
Mechanical separators, electrostatic precipitators, or bag filters are used to remove these FA
particles [9]. Previous research has shown that using mineral admixtures such as fly ash
in concrete mixes can improve the slump without increasing expense while lowering the
amount of superplasticizer needed to achieve equal slump flow when compared to concrete
prepared only with Portland cement, and the presence of the fly ash lessens the heat of
hydration and increases the durability [10]. Due to its finer and more rounded particles than
cement, fly ash can be used to replace cement in the creation of self-compacting concrete.
Fly ash could operate as a filler to cover the inter-particle spaces that cement is unable to
occupy by making use of these physical features [11].

SCC consists of similar components to conventionally vibrated concrete: cement,
aggregates, water, mineral, and chemical admixtures. The passing ability and segregation
resistance of SCC are achieved by the decrease in coarse aggregate content and increases in
the powder quantities. The superplasticizers (high-range water reducers) are responsible
for the high fluidity of the concrete mix, while the powder and viscosity-modifying agents
lead to better stability and cohesion, reducing bleeding and segregation of the mix.

Mineral admixtures are used as extra-fine material; the most used is the limestone
filler which represents a chemically inert by-product of limestone crushers. The addition of
limestone powder improves the particle packing by filling the small pores between cement
grains and augmenting the water retention of fresh mixes. The compressive strength is
calculated by the failure load divided by the cross-sectional area resisting the load and
reported megapascals (MPa). Concrete hardens and acquires strength as it hydrates. This
process occurs rapidly at first and slows down as time goes by; it continues over a long
period.. This study investigated the compressive strength at 28 days, an age considered
for design purposes when a substantial percentage of hydration has taken place. The cube
and cylinder strength of SCC and conventional vibrated concrete was determined at the
same w/c ratio and cement content [12,13]. To ascertain the compressive strength of SCC
modified with FA, several cylindrical or cubical specimens are currently produced and
tested over various curing times in the practice field. Generally speaking, work on the
construction site should not continue until the results of the compressive strength test
at a given age, particularly 28 days, are available. Due to this, testing takes longer than
expected and is more expensive [14]. Construction sites are also delayed as a result. Fly
ash can replace 40% of the cement in self-compacting concrete to increase its strength to
65 MPa [10]. The term “binder content” refers to the cement and any additional pozzolanic
elements that may be included in the mixture to enhance specific SCC characteristics. FA is
additionally one of the most reactive pozzolanic materials. With an increase in cement or
binder content, the compressive strength of SCC was typically noticeably enhanced [4,15].
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When the amount of cement was increased from 360 to 450 kg/m3 at the same water
content, the compressive strength of SCC increased from 48 and 52 MPa to roughly 52 and
60 MPa at 28 and 90 days, respectively [16–18].

The w/c or w/b ratio, similar to normal concrete, is one of the key factors affecting
the CS of SCC at different curing ages. Compared to regular concrete, SCC frequently
has a lower w/b ratio. When the w/b ratio is lower, a higher percentage of cement and
binder ingredients produces a higher CS and a more homogeneous matrix [4]. The w/c
or w/b ratio, similar to normal concrete, is one of the key factors affecting the CS of SCC
at different curing ages. Compared to normal concrete, SCC frequently has a lower w/b
ratio. When the w/b ratio is lower, a higher proportion of cement and binder ingredients
produces a higher CS and a more homogeneous matrix. When the w/b ratio was decreased
from 0.45 to 0.35 up to 56 days of curing, the CS of SCC was significantly improved at all
curing ages [19]. The w/b ratio affects the CS of regular concrete more so than it does the
CS of SCC [20].

One of the main advantages SCC has over other special concrete varieties is that it
does not need any special curing procedures. Similar to regular concrete, SCC is cured
using the same procedure. According to earlier studies [4,21], the most crucial factor
affecting the CS of SCC is the age of the concrete samples after the examination. Longer
curing times produced better compressive strength for the same mix proportions because
of the faster rate of hydration. The CS of SCC was increased from 13 MPa to 54 MPa
by extending the curing time from one day to 28 days, as demonstrated by Corinaldesi
and Moriconi [22]. According to Sahmaran et al. [23], the 7-day CS of SCC was 55.9 MPa.
However, when the curing age of SCC was raised to 180 days, this value increased to
71 MPa. SP’s high cement and binder contents make it impossible to make SCC without
it. The presence of SP improves workability. Although SP is added to SCC to enhance its
rheology, different dosages can also affect compressive strength. The CS of SCC increased by
30% after 28 days of curing as the SP dosage increased from 5.5 kg/m3 to 8.25 kg/m3 [24].
Aggregates comprise 60 and 70 percent of SCC’s volume, significantly impacting the
material’s rheological and hardened performance. Compared to conventional concrete,
SCC typically contains less coarse material [4]. According to earlier studies, the CS of SCC
was less affected by the fine aggregate content than the coarse aggregate content.

Additionally, compared to coarse aggregates with a maximum size of 10 mm, those
with a maximum size of 20 mm had a higher CS of SCC [25]. Artificial neural networks have
been widely used in many studies, such as predicting the piezoelectric effect of the plate of
engineering structures in vibration and noise reduction. This study employed an artificial
neural network (ANN) model to explore the piezoelectric patch size and thickness’s effect
on a plate’s first-order natural frequency and displacement amplitude. With the finite
element method (FEM), a rectangular plate actuated by a piezoelectric patch was analyzed
with various patch sizes. The FEM data were later used to build an ANN model. The
dynamic response of the plate was predicted by the ANN model and validated with FEM
in terms of first-order natural frequency and displacement amplitude. Case studies showed
that the ANN model could accurately predict both natural frequency and displacement
amplitude with patch length, width, and thickness input. When the information of the
ANN model was simplified to patch size and thickness or the patch’s volume, the accuracy
worsened. The patch size and thickness’s influences on the first-order natural frequency
were coupled, and the maximal and minimal values were predicted based on the ANN
model. The purpose of this research is to develop and apply the artificial neural network
(ANN) with an extreme learning machine (ELM) to forecast the gross domestic product
(GDP) growth rate. The economic growth forecasting was analyzed based on the value
of agriculture, manufacturing, industry, and services added to GDP. The results were
compared with the ANN with the backpropagation (BP) learning approach since BP could
be considered a conventional learning methodology. The reliability of the computational
models was assessed based on simulation results and several statistical indicators. The
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results showed that the ANN with ELM learning methodology could be applied effectively
in applications of GDP forecasting [23–27].

Since compressive strength depends on various characteristics and mixture propor-
tions, more sophisticated methodologies should be used to lessen the need for laboratory
experiments and provide engineers with more convenient tools and numerical equations
for predicting experimental results. An excellent strategy is to use soft computing tech-
niques. The main benefit of using these techniques is the development of workarounds
and solutions for linear or nonlinear problems where mathematical models cannot readily
show the relationship between the pertinent factors in the problem [27–30]. A methodical
multiscale model was developed to calculate the CS of concrete made with significant
amounts of fly ash [28]. Four hundred fifty different experimental datasets were used to
create a model. M5P trees, linear, nonlinear, and multilogistic regression were developed
as five distinct qualification modeling methods. It was concluded that the ANN, M5P tree,
and multilogistic regression models could predict the CS of large-volume fly ash concrete
wells based on higher R2 and lower RMSE and MAE values [29].

Despite the wide use of FA in SCC mixes in the earlier studies, an accurate model
could not be identified for effective use by the construction industry. As a result, it was
attempted in this study to analyze and quantify the effects of a wide range of mixture
proportions, including FA content, cement content, w/b ratio, SP content, fine aggregate
content, and coarse aggregate content, on the CS of SCC up to 365 days of curing. Different
model approaches, such as nonlinear regression, multiregression, and ANN models, were
used to predict the CS of SCC modified by FA using 400 data samples from the literature.
The main goals are to (i) conduct statistical analysis and assess how mixture compositions
such as FA content, C content, G content, w/c ratio, SP content, and curing time affect the
CS of SCC; (ii) examine and design a reliable model for estimating the CS among all models
(NLR, MLR, and ANN models) using appropriate statistical measures; and (iii) reduce the
overall cost by designing mixes with any necessary specifications without the need for
trail mixes.

2. Materials and Methods

The collected data from various literature for this paper were 400; inserting all data
into an Excel sheet, they were sorted into two groups. The largest group comprised two-
thirds of the collected data and was named as the training dataset and used to develop the
models. The other group, one-third of the dataset, was used to test the proposed models.
As mentioned earlier, the main objective of this study is to design models to predict the
compressive strength of SCC. Table 1 includes the detailed ranges and information about
each variable studied in the paper, which was water to cement ratio (w/c), cement content
(C, kg/m3), gravel content (G, kg/m3), sand content (S, kg/m3), fly ash content, (FA,
kg/m3), superplasticizer content (SP, kg/m3), and curing time (t, days). All mentioned
independent parameters were used to evaluate and estimate the compressive strength and
compare the results with the measured strength. The procedure of the current study is
simply designed in Figure 1.

Table 1. Datasets used in the modeling process.

Ref. Fly Ash,
FA (%)

Cement
(kg/m3)

Water/Cement
Ratio
(%)

Curing
Time (Days)

Superplasticizer
Content (%)

Fine Aggregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Slump Flow
Diameter

(mm)

Compressive
Strength

(MPa)

[1] 0–40 365–468 0.4–0.6 14, 28, 56 2.2 803–918 778–879 652–772 35.7–69

[3] 35–90 183–317 0.38–0.72 7, 28, 90 0.2–1 476–1066 837 555–790 6.2–74.2

[5] 15–35 355–465 0.41–0.44 7, 28, 356 1.8–2 910 590 603–673 22.7–61.2

[28] 0–60 161–326 0.35–0.5 1, 7, 28 0.5–1.9 650–866 155–251 570–650 6.1–48.3

[31] 0–30 420–600 0.33–0.46 7, 28, 90 2 900 750 650–720 65.6–85.3

[32] 0–30 315–480 0.4, 0.45 7, 28 1.5–2.8 890 810 650–695 39–52
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Table 1. Cont.

Ref. Fly Ash,
FA (%)

Cement
(kg/m3)

Water/Cement
Ratio
(%)

Curing
Time (Days)

Superplasticizer
Content (%)

Fine Aggregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Slump Flow
Diameter

(mm)

Compressive
Strength

(MPa)

[33] 0–60 180–550 0.33, 0.44 7, 28, 91 1 640–890 780–924 600–806 9.6–77.5

[34] 0–55 225–500 0.35 3, 7, 28 1.5,1.6 908–967 652–694 630–700 40–78

[35] 50–70 221–369 0.29 7, 28, 90 2–3.33 579 703 650–780 10.4–27

[36] - 160–280 0.33–0.42 1, 7, 28 0.1–0.6 808–1066 900 570–770 5–52

[37] 0–70 150–500 0.28–0.35 7–365 1.33 902–967 597–639 665–775 14.9–75.6

[38] 0–60 180–550 0.32, 0.44 28, 90 0.78–3 686–826 829–935 670–730 30–91.1

[39] 15–75 355–465 0.41–0.62 28–365 1.2–2 640–910 590 590–690 18–59.4

[40] - 375 0.47 28 1 779–825 700–746 - 22.8–31.46

[41] 0–60 161–336 0.35–0.50 1, 7, 28 0.4–3.8 739–866 843–1118 570–650 4.9–48.3

[42] 60 180,450 0.37 1, 7, 28, 90 0.1–0.48 827–850 827–850 561 2.67–70.8

[43] 0–75 142–570 0.33 28 - 765–835 765–835 - 30–66

[44] 0–80 100–500 0.36 1, 7, 28, 56 0.7 751–874 876 657–712 4.55–84

[45] - 310–622 0.38 28 0.56–1 780 720 - 38–59

[46] 0–100 115–539 0.33–0.72 7, 28, 90, 120 0.65–1.1 743 924 700–730 16–84.1

Remarks
Ranged

from
0–100%

Ranged from
100–620 kg/m3

Varied from
0.28–0.72

Varied from
1–365 days

Ranged from
0.1–3.33%

Varied from
476–1024 kg/m3

Ranged from
590–1118 kg/m3

Varied from
561–806 mm

Ranged from
2.67–91.1 MPa
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3. Statistical Evaluation

This part of the paper is about the statistical analysis of the dependent and independent
variables separately to determine whether a strong relationship exists between each variable
and the compressive strength of SCC modified with FA or not (Figure 2). Thus, the plot of
all considered parameters, including water to cementitious material ratio, cement content,
gravel content, sand content, fly ash content, superplasticizer content, and curing time with
compressive strength, was prepared and analyzed (Figures 2–4). The detail of the analysis
results for each variable is explained as follows.
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Figure 3. The self-compacting concrete’s compressive strength histogram after being modified with
fly ash.
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Figure 4. Boxplot for model input parameters.

3.1. Water/Cement Ratio

The w/c ratio of SCC mixtures ranged from 0.28 to 0.72, with a median of 0.42,
according to the total amount of data gathered. According to the statistical analysis, the
other variables had the following values: 0.0075 for variance, 0.088 for standard deviation,
0.59 for skewness, and 0.24 for kurtosis. Figure 2 illustrates the connection between
compressive strength and w/c ratio using the w/c ratio histogram (a) (Table 2).

Table 2. The statistical analysis of the collected datasets.

Variable St. Dev Variance Minimum Median Maximum Skewness Kurtosis

w/c 0.088 0.00775 0.28 0.42 0.72 0.59 −0.24

C, (kg/m3) 108.76 11,828.96 100 258 622 0.66 −0.35

G, (kg/m3) 196.06 38,441.25 590 837 1118 −1.20 2.21

S, (kg/m3) 106.3 11,298.6 476 845 1066 −0.93 1.18

FA, (kg/m3) 189.98 36,092 0 160 905 2.00 4.16

SP, (kg/m3) 1.461 2.1346 0 1.33 12.5 2.76 13.07

t, (days) 86.74 7524.2 1 28 365 2.69 6.73

CS, (MPa) 18.61 346.6 2.67 34.9 91.1 0.48 −0.38

3.2. Cement Content

According to the data gathered, the cement content of SCC mixtures ranged from
100 to 622 kg/m3, with a median value of 258 kg/m3. Based on the statistical analysis, the
other variables had the following values: variance of 11,828.96, the standard deviation of
108.76, skewness of 0.66, and kurtosis of −0.35 (Figure 2b) (Table 2).
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3.3. Gravel Content

Based on the total collected data, the SCC mixtures’ gravel content ranged from 590 to
1118, with an average of 837. The other variables’ values were as follows: variance of
38,441 standard deviation of 196.06.34, and skewness and kurtosis of −1.20 and −2.21,
respectively. The relationship between compressive strength and gravel content with the
histogram of gravel content is reported in Figure 2c (Table 2).

3.4. Sand Content

Sand content varied from 476 to 1066 kg/m3, with an average value of 845 kg/m3.
According to the statistical analysis, the other variables had the following values: a variance
of 11,298 a standard deviation of 106.3, and skewness and kurtosis values of −0.93 and
1.18, respectively (d) (Table 2).

3.5. FA Content

The FA content of SCC mixtures ranged from 0 to 905 kg/m3, with a median of
160 kg/m3, according to the complete dataset. According to the statistical analysis, the
other variables had the following values: variance of 36,092 standard deviation of 189.98,
skewness of 2, and kurtosis of 4.16. Figure 2 reports the relationship between compressive
strength and FA content (e) (Table 2).

3.6. SP Content

The SP contents ranged from 0 to 12.5 kg/m3, with a median value of 1.33 kg/m3.
According to the statistical analysis, the other variables had the following values: variance
of 2.134, standard deviation of 1.46, skewness of 2.76, and kurtosis of 13.07 (Figure 2f)
(Table 2).

3.7. Curing Time

The median curing time in the data was 28 days, and the curing time ranged from
1 to 365 days. The statistical analysis revealed the following values for the other variables:
variance of 7524 the standard deviation of 86.74, skewness, and kurtosis values of 2.69 and
6.73, respectively (Figure 2g) (Table 2).

3.8. Compressive Strength

The compressive strength of SCC mix modified with FA ranged from 2.67 to 91.1 MPa,
with a median of 34.9 MPa, according to the total amount of data gathered. According to
the statistical analysis, the other variables had the following values: variance of 346.64, the
standard deviation of 18.61, skewness of 0.48, and kurtosis of −0.38. Figure 3 displays the
SCC compressive strength histogram.

4. Modeling

From the results of the analyzed data in Section 3, no direct relationship was obtained
according to the correlation matrix (Figure 5). Therefore, three models were predicted to
evaluate each parameter’s influence on the strength of self-compacting concrete modified
with FA. All models were assessed using several standard evaluation criteria to compare
all models and select the most accurate ones, such as highest R2, lower MAE, RMSI, and SI
values. The models proposed in this study are used to predict the compressive strength of
FA-self-compacted concrete and select the best model, which gives a better estimation of
compressive strength than the measured compressive strength from the experimental data.
The collected datasets were randomly split into training, testing, and validating [34]. The
training dataset was used to train the LR, NLR, and MLR models and obtain the optimal
weights and biases, while the testing dataset was used to confirm the fulfillment of the
proposed models. The comparison among model predictions was made based on the
following assessment criteria: the model should be scientifically valid, and it should give
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less error between the measured and predicted data, a lower RMSE, OBJ, and SI, and a
higher R2 value.
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4.1. Nonlinear Model (LR)

This study is focused on developing a model that assesses the impact of the greatest
number of parameters on the compressive strength of SCC modified with FA, as was previ-
ously mentioned. This study’s general technique for assessing compressive strength [47–49]
is nonlinear regression.

CS = a ∗
(w

c

)b
∗ (C)c ∗ (G)d ∗ (S)e ∗ (FA)f ∗ (SP)g ∗ (t)h + i ∗

(w
c

)j
∗ (C)k ∗ (G)l ∗ (S)m ∗ (SP)n ∗ (t)o + p (1)

where w/c denotes the water to cement ratio (percent), C is the cement content (kg/m3),
G represents the gravel content (kg/m3), S is the sand content (kg/m3), SP is the superplas-
ticizer content (kg/m3), FA is the fly ash content (kg/m3), t is the curing time (days), and a
to p are model inputs.

4.2. Multimodel (MLR)

MLR is used when the criterion variable has more than two phases. Since it may reveal
the relationship between a nominal dependent variable and two or more independent
variables (Equation (2)), MLR is comparable to multiple linear regression [50].

CS = a ∗ (w
c
)

b
(C)cGdSeFAfSPgth (2)

A limitation of Equation (2) is that it cannot be used to predict the compressive strength
of SCC in the absence of FA. In this model, the FA content ought to be greater than 0 (the
constraint of Equation (2) is FA content larger than 0 percent). The (a, b, c, d, e, f, g, and h)
are model parameters.

4.3. Artificial Neural Network (ANN)

A feed-forward neural network (FNN) is the opposite of an ANN [51–53]. Its input,
output, and hidden layers are displayed in Figure 6. The input layer receives the signal
to be evaluated. The input layer predicts and sort’s output. Data travel from input to
output, much like an ANN’s feed-forward network. Trial and error iterations assisted in
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determining the model’s optimal number of hidden layers to lower error and boost R2. In
order to obtain the lowest RMSE, MAE, and R2 values, a single hidden layer with six neural
networks was selected through trial and error due to the complexity of the equation for
multiple hidden layers.

βn = an(w/c) + bn(C) + cn(G) + dn(S) + en(FA) + fn(SP) + gn(t) + in (3)

CS =
Node1

1 + e−β1 +
Node2

1 + e−β2 + · · ·+ Noden

1 + e−βn + Threshold (4)
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5. Assessment Criteria for the Developed Models

The coefficient of determination (R2), root mean squared error (RMSE), mean absolute
error (MAE), and scatter index (SI) was used to assess the accuracy and efficacy of the
proposed models. Their equations are:

R2 =

 ∑
p
p=1
(
tp − t′

)
(yp − y′)√[

∑
p
p=1
(
tp − t′

)2
][

∑
p
p=1

(
yp − y′

)2
]


2

, (5)

RMSE =

√√√√∑
p
p=1

(
yp − tp

)2

p
, (6)

MAE =
∑

p
p=1

∣∣∣(yp − tp)
∣∣∣

p
, (7)
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SI =
RMSE

t′
. (8)

The predicted and measured path pattern values are denoted by yp and tp, respectively,
and the average value of the measured and predicted values is denoted by y′ and t′. The
terms tr and tst, which stand for training and testing datasets, denote the number of
patterns (collected data) in each set. When evaluating any equation or model, one is the
ideal value for R2, but the lowest value is preferable for other parameters (MAE and RMSE),
and zero is the ideal SI value. However, the SI parameter has several limitations, and when
it is greater than 0.3, it indicates that the models are performing poorly.

6. Analysis and Output
Slump Flow Diameter

The test that is most frequently used to gauge SCC flow performance is the slump flow
test. During this test, the slump flow diameter of the SCC mix is measured. When using
the EFNARC SCC criterion, the slump flow diameter should meet one of the classifications
listed in the standard. A slump flow diameter of 550 to 650 mm is considered in slump flow
class 1, 650 to 750 mm is considered in slump flow class 2, and 750 to 850 mm is considered
to be in slump flow class 3 [54]. Any slump flow diameter that is both less than 550 mm
and more than 850 mm cannot be classified as SCC, according to EFNARC guidelines.
With a median slump flow diameter of 672 mm and minimum and maximum slump flow
diameters of 550 mm and 850 mm, respectively, all of the mixes can be regarded as SCC,
per 401 data (Table 1) from prior studies. Figure 7 depicts the relationship between the
slump flow diameter and the CS of self-compacted concrete [4].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 23 
 

The predicted and measured path pattern values are denoted by yp and tp, respec-

tively, and the average value of the measured and predicted values is denoted by y′ and 

t′. The terms tr and tst, which stand for training and testing datasets, denote the number 

of patterns (collected data) in each set. When evaluating any equation or model, one is the 

ideal value for R2, but the lowest value is preferable for other parameters (MAE and 

RMSE), and zero is the ideal SI value. However, the SI parameter has several limitations, 

and when it is greater than 0.3, it indicates that the models are performing poorly. 

6. Analysis and Output 

Slump Flow Diameter 

The test that is most frequently used to gauge SCC flow performance is the slump 

flow test. During this test, the slump flow diameter of the SCC mix is measured. When 

using the EFNARC SCC criterion, the slump flow diameter should meet one of the classi-

fications listed in the standard. A slump flow diameter of 550 to 650 mm is considered in 

slump flow class 1, 650 to 750 mm is considered in slump flow class 2, and 750 to 850 mm 

is considered to be in slump flow class 3 [54]. Any slump flow diameter that is both less 

than 550 mm and more than 850 mm cannot be classified as SCC, according to EFNARC 

guidelines. With a median slump flow diameter of 672 mm and minimum and maximum 

slump flow diameters of 550 mm and 850 mm, respectively, all of the mixes can be re-

garded as SCC, per 401 data (Table 1) from prior studies. Figure 7 depicts the relationship 

between the slump flow diameter and the CS of self-compacted concrete [4]. 

 

Figure 7. The relationship between the SCC mixture’s compressive strength and slump flow diam-

eter. 

7. Nonlinear Regression Model 

Figure 8 depicts the relationship between SCC’s measured and anticipated compres-

sive strength modified with FA for training and the testing dataset. The sum of error 

squares and the least square method was optimized to determine the value of each pa-

rameter in the existing model. The outcome of every experiment is represented by Equa-

tion (9). 

Figure 7. The relationship between the SCC mixture’s compressive strength and slump flow diameter.

7. Nonlinear Regression Model

Figure 8 depicts the relationship between SCC’s measured and anticipated compressive
strength modified with FA for training and the testing dataset. The sum of error squares
and the least square method was optimized to determine the value of each parameter in
the existing model. The outcome of every experiment is represented by Equation (9).
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CS = 0.11
(w

b

)−1.196
(C)0.109 (G)0.628 (S)0.068 (FA)−0.007 (SP)0.006 (t)0.104 − 41.608

(w
b

)−1.682
(C)−0.239 (G)0.79 (S)−0.812 (t)−0.015 + 0.0001. (9)
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According to the equation above, S has the least impact on the compressive strength
of SCC modified with FA, while W has the greatest. As shown in Figure 9, the SI values for
the developed model are 0.158 and 0.175 for the training and testing datasets, respectively.
The values for assessment parameters such as R2, RMSE, and MAE are 0.90, 5.39 MPa, and
4.35 MPa for the testing dataset.
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8. Multiregression Model (MLR)

Figure 8 uses training and testing datasets for SCC modified with FA to compare the
predicted compressive strength to the actual compressive strength. Following this model,
the w/c ratio and sand content concentration are the most important factors affecting the
compressive strength of SCC. Equation (10) can be used to represent the multi regression
model with various variable parameters (Figure 10):

CS = 4.56 ∗ 10−6
(w

b

)−0.642
(C)−0.487 (G)0.624 (S)1.146 (FA + 0.0001)−0.011(SP)0.008 (t)0.224. (10)
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9. Artificial Neural Network (ANN)

The network was fed both training and test data to predict the compressive strength
values for the appropriate input parameters (Figure 10). An ANN model was created
iteratively (such as the number of hidden layer neurons, learning rate, momentum, and
iteration). Nineteen neural nets were used in this study’s hidden layer system. The training
period is 50,000 s, the learning rate is 0.1, and the momentum is 0.1. The quantity of epochs
is a hyperparameter that controls how frequently the learning algorithm may process the
training dataset. The higher the R2, the lower the RMSE and, the lower the MAE is as
the error is reduced, the more epochs there are. Figure 10 illustrates the basic idea of
producing data using an ANN model by plotting the projected compressive strength vs.
the actual value.
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w/b

−0.516 −2.554 −5.391 −4.137 −5.155 0.837 −3.108 −3.38946 C β1

−2.950 −2.648 −2.776 −3.033 −9.037 −1.516 −0.625 −5.86885 G β2

30.737 −11.951 −10.236 −19.384 −13.954 32.126 2.856 47.38619 × S = β3

−0.507 0.047 −7.706 −5.574 −5.971 5.024 2.979 8.12332 FA β4

61.384 −198.964 183.340 104.406 804.041 67.087 −278.128 570.3129 SP β5

0.730 −0.299 −1.200 −0.649 −0.729 0.452 32.931 34.86496 t β6

1

CS =
−1.112

1 + e−β1
+

0.601
1 + e−β2

− 0.222
1 + e−β3

+
0.529

1 + e−β4
− 0.179

1 + e−β5

1.801
1 + e−β6

− 2.071 (11)

The R2, RMSE, and MAE values for this model are, respectively, 0.95, 4.03 MPa, and
3.04 MPa.

10. Comparison between Developed Models

As mentioned in earlier sections, the effectiveness of the suggested new models was
evaluated using four statistical parameters (R2, MAE, RMSE, and SI). Compared to the NLR
and MLR models, the ANN model had the lowest RMSE and MAE values and the highest
R2 values. The coefficient of determination for all models using training and test sets is
shown in Figure 9. Figure 9 demonstrates that the ANN model’s predicted and measured
compressive strength values are much more comparable, demonstrating the ANN model’s
superior performance to other models.

The SI assessment parameter values for the proposed models during the training and
testing phases are shown in Figure 9. The SI values for all models and phases (training
and testing), as displayed in Figure 9, were less than 0.2, indicating excellent performance
for all models. Additionally, the SI values for the ANN model and the other performance
parameters are lower compared to other models. The ANN model has smaller SI value
values across all phases compared to the NLR model, for instance, 208 percent lower in
training and 68 percent lower in testing datasets.

11. Sensitivity Investigation

The most important factor affecting the CS of SCC combinations was identified and
evaluated using a model sensitivity test. As a quick method, the ANN model was used
to examine sensitivity. Sensitivity analysis was performed, with each training dataset
having only one input variable extracted. Each training dataset’s evaluation criteria, such
as R2, RMSE, and MAE, were developed separately. According to the data, the curing
time, cement content, and the proportion of water to cement are the factors most strongly
influencing SCC compressive strength. The CS was thus greatly improved by lengthening
the curing time and cement content. Figure 11 depicts the effect of mixed proportions on the
CS of SCC. The capacity of models to predict the compression strength of SCC with FA for
the training and test dataset was thoroughly evaluated by the following metrics: coefficient
of determination (R2), root mean square error (RMSE), scatter index (SI), and mean absolute
error (MAE). However, the R2 value, also known as the coefficient of determination, has
been observed to be the best for model assessment [4]. R2 values from 0.70 to 0.80 indicate
satisfactory results, values from 0.80 to 0.95 indicate good model prediction, and values
above 0.95 indicate excellent prediction, while values below 0.60 indicate unsatisfactory
results [4,13]. In addition, sensitivity analysis was also carried out. The results of these
analyses are presented in detail in the text (Figure 12).
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Figure 12. Sensitivity analysis to investigate the effect of input variables on the CS of CSS using the
ANN model.

12. Conclusions

Based on the analysis and simulation of data from earlier studies to forecast the
compressive strength of SCC for 400 different mix proportions, the following conclusions
were made:

1. Based on data collected from the literature, the fly ash enhanced the compressive
strength of normal concrete as a partial replacement for cement. Depending on the
statistical analysis, the median percentage of superplasticizers for the production
of SCC was 1.33%. Furthermore, the percentage of fly ash inside all mixes ranged
from 0 to 100%, with 1 to 365 days of curing and sand content ranging from 845 to
1066 kg/m3.

2. This study developed the NLR, MLR, and ANN models to predict the compressive
strength of SCC mixes. The ANN model outperformed other models in the training
and testing datasets, with higher R2 values, and lower RMSE, MAE, and SI values.

3. The SI values for all models and phases (training and testing) were less than 0.2,
indicating good performance. Furthermore, compared to the NLR model, the ANN
model has smaller SI values in all phases, for example, 60% lower in training and 35%
lower in the testing dataset.
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4. Using several evaluation criteria, including the root mean square error (RMSE), the
coefficient of determination (R2), the SI, and the mean absolute error (MAE). The
sequence of ANN models was the best model provided in this research based on data
acquired from the literature and produced a higher R2 and lower MAE and RMSE.

5. The sensitivity analysis test was performed in order to check the most effective
dependent variables on independent variables’ output performance. The results
indicated that the most effective parameters causing the output result were curing
time and fly ash content.

6. The box plot for the proposed models indicated that the ANN model had better
centered mean square error and standard deviation performance.

7. The NLR model as a reliable mathematical model can predict the compressive strength
of self-compacted concrete with a high coefficient of determination value.

8. The overall findings and analysis showed that it was possible to effectively modify
SCC’s strength and other properties by producing replacement SCC with cement
containing 35% fly ash. However, percentages more than 35% might be detrimental to
SCC’s performance.

9. The sensitivity analysis showed that the curing time is the key input parameter that
influences the improvement rate and forecasts the compressive strength of SCC.
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