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Abstract: The greater flow of containers in global supply chains requires ever-increasing productivity
at port terminals. The research found in the literature has focused on optimizing specific parts of
port operations but has ignored important features, such as the stack-wise organization of containers
in a container ship and port yard and the effects of interconnection among the operations in both
places. The objective of this paper is to show the importance of designing an integrated plan of the
container relocation problem at the port yard with the stowage planning problem for loading and
unloading a ship through ports. Both individual problems are NP-Complete, and exact approaches
for each problem are only able to find optimal or feasible solutions for small instances. We describe
a simulation-optimization methodology that combines simulation, a genetic algorithm, and a new
solution representation based on rules. The test results show that the solution from the integrated
plan is mutually beneficial for port yards and ship owners.

Keywords: port logistics; simulation-optimization; genetic algorithm; evolutionary strategies

1. Introduction

Recent container shortage and port congestion scenarios have shown us that maritime
port operations can no longer operate as separate fiefdoms but as part of an integrated
system. The ship sizes and the global maritime demands continue to increase, demanding
properly coordinated operations between ships and ports [1,2].

A port receives containers transported by trucks, trains, and ships. These cargoes are
usually temporarily stored in yards and then dispatched. When a ship arrives, there are
unloading and loading activities. Several factors influence the port and ship productivity,
such as the way the containers are stored in yards, the sequence in which they are removed
from stacks, the scheduling of vehicles to transport them to the loading area, the number
of quay cranes used, their operation to load the cargo into the vessel, and the way the
containers are positioned on the ship. Most of these steps require a complex decision
process, which is a common and accepted practice in port operations, and the related
literature to treat these tasks separately and sequentially.

In the maritime transport of containers, the ships usually have a circular route, spend-
ing a long time at ports [3]. The multi-port stowage planning problem (MPSP) consists of
determining how to stow a given set of containers of different types into a set of available
locations on a container ship [4,5]. The containers may have different port destinations.
The containers are stored in stacks so they can be removed only by the top. If a given
container must be unloaded in a port, but it is not on the top, then the containers above
it must be removed first. This movement is called reshuffling, and it must be minimized
to improve port efficiency. To avoid such inconvenience, it is necessary to elaborate on a
suitable stowage plan.
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Meanwhile, in the port yard, due to space constraints, yard containers are also or-
ganized in stacks. Given this, the container relocation problem (CRP) seeks an optimal
operation plan that leads into a retrieval sequence with the fewest relocations to save time
and money.

However, the multi-port stowage planning problem (MPSP) impacts the container
relocation problem (CRP) [6] for all port yards visited along a ship’s route, requiring an
integrated plan of both problems to achieve better quality solutions for the shipowner and
all the container terminals along the ship’s route [1,7].

Nevertheless, there are two alternatives to solve the integrated planning binary model:
a sequential resolution of mathematical models or solving one monolithic mathemati-
cal model [8,9]. Both approaches suffer from an increase in the number of binary vari-
ables and constraints that makes them impractical to obtain in an affordable time even
feasible solutions.

Therefore, an alternative to overcome such a difficulty is to apply heuristic approaches
to solve this integrated problem. The genetic algorithm has been one interesting technique
to solve combinatorial decision-making problems, because it obtains quality solutions with
a reasonable computation time. In particular, this paper adapts an approach used for the
joint problem of multi-port stowage planning and quay crane scheduling [9].

The paper’s contributions are the following:

1. We show the importance of developing an integrated plan for the MPSP and CRP
problems to provide a better solution than the one obtained by performing isolated or
simplified plans, as reported in the literature.

2. We extend the methodology employed for the MPSP in a manner that enables a fast
solution to the MPSP and CRP, thus avoiding the high computational burden required
by the exact approaches to solving such large-scale problems.

3. Our approach guarantees that the multi-port stowage plan obtained is executable by
the port terminal and the sequence of retrieved containers from the yard is also good
for the ship, thereby making the solution advantageous for all port terminals and the
shipping company by reducing the total number of container movements.

This paper is organized as follows. Section 1 gives a detailed description of the
problems. Section 2 presents the modeling of the integrated problem. Section 3 explains
the methodology used. Section 4 presents and discusses the results obtained, and Section 5
presents the conclusions and future work.

Related Works

When the ship comes to the port, initially the containers destined for the port are
unloaded, and then a set of containers at the yard is retrieved from the stacks and loaded
into the vessel through quay crane operations. These retrievals from the yard stacks con-
stitute a combinatorial problem [10]. The quay crane operation also must attend to some
specific operational constraints, such as quay crane non-crossing, non-overtaking, and
safety distance constraints [11]. These approaches consider each problem separately.

More recently, many models integrated some of these problems. For example, the
operation of a yard crane, the scheduling of yard vehicles, and loading operations executed
by a quay crane are modeled jointly in [12–14]. In [15,16], the issue of yard location
assignment problems is integrated with the interaction of a yard transport vehicle, while
ref. [17] integrated the yard location assignment with the dispatching of yard crane units.
Ref. [18] jointly treated the quay crane assignment problem with the problem of storage
space assignment. In [19], the problem of the yard transport vehicle routing was integrated
with quay crane and yard crane operations. Facing similar problems, ref. [20] integrated
two different railroad container terminals problems and emphasized the positive impact of
establishing decision support tools for solving interdependent problems in an integrated
manner. Simulation-based approaches were also present in [21] to solve the problem of
railway traffic flow.
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In the ship, the container assignment must take into account the locations for specific
container types and other requirements such as vessel stability, height, and weight limits.
The position of the container on the stacks must also consider its destination to avoid
reshuffle operations in future ports. This is also a combinatorial problem, and commonly,
a hierarchical approach is used, in which the liner shipper establishes a master plan, also
called the master bay planning problem (MBPP), and the port terminal determines a
sequence of cargo loading and the cargoes’ positions on the ship [22,23].

There are not many papers that investigate multi-port stowage planning. The first
model was proposed in [24], and after that, several papers were presented [3,5,25–31].
The methods adopted by these papers can be grouped into three classes: (1) a single
mathematical model, (2) hierarchical planning, and (3) heuristic models. In the class of
the single mathematical model, multi-port stowage planning is formulated as a unique
optimization problem [5,24]. Although mathematically elegant, these single models use a
simplified representation of the ship with a single bay and all containers being the same
size, creating difficulty in treating realistic size problems. To overcome these difficulties,
there are hierarchical models. They use decomposition in the master planning and container
allocation sub-problems [3,25,28–30]. Other models use only heuristics, as in [3,26,27].

Some papers, such as [31,32], have taken into account some characteristics of the
containers, such as the dimensions (e.g., standard, 45-footer, high-cube, or oversized),
weight class (light, medium, or heavy), type (reefer or open-top), load (dangerous or
perishable), and port of destination. Despite that, these papers focus on the export flow at
the one-port ship loading problem, ignoring the cargo arrangement in yard stacks. Here,
we integrate the entire flow of the containers between the port yards and the ship.

Ref. [27] presented two genetic algorithm (GA) approaches to multi-port stowage
planning. In the first one, the dimension of the chromosome was equal to the number of
cells of the ship. A realistic problem results in a very large vector, which makes the GA
search very inefficient. A second representation was proposed called compact encoding, in
which only the unloading and loading containers were represented. The representation of
the chromosome adopted in this paper has some similarity to the compact encoding, since
the unloading and loading containers are represented.

A GA was also used in [33] to study the CRP under multiple quay crane parallel
operations. Three strategies were presented to minimize the number of rehandles: the
nearest stack strategy, the lowest stack strategy, and the optimization strategy. The last one
consists of selecting the stack which does not contain the next loading container to relocate
the obstructing container. The GA was designed to apply these strategies. The container
classes were not considered, and the authors assumed that the containers were all the same
size within a bay. Instances of up to 980 containers were tested.

The next section details the modeling of the problem.

2. Modeling the Problem

In our problem, the journey of P ports of a ship is represented. In each port p = 1, . . .,
P− 1, where this ship docks, there is a yard with containers that must be loaded onto it. At
the first port, p = 1, the ship arrives empty and receives the loading of the containers that
were at the yard of this port, as illustrated in Figure 1.

At ports p = 2, . . ., P − 1, the ship first unloads the containers destined for port p,
where it currently is (see Figure 2), and then receives the loading of containers destined
for the following ports (see Figure 3). Finally, when the ship arrives at the last port of its
journey P, only the unloading is performed.

Observe that the numbers on the containers identify each container, and when at the
port yard, this represents the removal order, starting with the smallest number and ending
with the largest number contained in each yard. This order comes from a previous solution
of the stowage plan, as is the convention for the CRP. Regarding removal from the ship, a
dictionary contains the destination port of each container, and it must be consulted to find
out which containers should be unloaded at which ports.
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Figure 1. Loading flow at port 1.

In Figure 2, note that the ship arrives at the second port of its route, and it has to
unload the four highlighted containers (3, 6, 11, and 14), of which two of them are not at
the top of their stacks. For this reason, first, the blocking container (number 9) located
above containers 6 and 3 will be unloaded to a reserved area of the yard, which is not the
same area of the import containers nor the export containers, which are about to be loaded.
Next, it can be seen in Figure 3 that after all containers destined for this port are unloaded
from the ship, the container loading operation at the second port yard with the relocated
containers starts. The rules proposed follow this representation and are described in detail
in the following section.

Figure 2. Unloading flow at port 2.

The following assumptions have been made based on [24,34] for the sake of simplicity
without compromising the general application of the solutions:

• The container ship has a rectangular format and can be represented as a matrix, called
the ship’s occupation matrix (Shp), with rows (r = 1, 2, . . ., R), columns (c = 1, 2, . . ., C),
and bays (b = 1, 2, . . ., B) and a maximum capacity of R × C × B containers. Each
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space to store a container is a coordinate (r, c, b), where r ∈ R, c ∈ C, and b ∈ B.
An irregular format may be achieved by simply adding constraints that represent
imaginary containers that occupy the same spaces during the whole voyage [26].

• The yard can also be represented as a matrix called yardp, with rows (i = 1, . . ., H) and
stacks (j = 1, . . ., W). Each space to store a container is a coordinate (i, j), where i ∈ H
and j ∈W.

• All containers have the same size and weight and are accessible only from the top.
• All containers in the port yard will be loaded onto the ship.
• The container ship can always carry all the containers at each port p, and its capacity

will never be exceeded.
• In each yard, there must be at least H− 1 empty positions to guarantee the accessibility

of any container. Analogously, onboard the ship, there must be at least R− 1 empty
positions to guarantee the accessibility of any container.

• The unloaded containers are destined for a specific area of the port yard and are not
mixed with the containers that are going to be loaded nor with the relocated containers,
as illustrated in Figures 2 and 3.

Figure 3. Loading flow at port 2.

Note that the assumptions made about the containers’ weight and size are not a
limitation of the representation, since it enables a focused analysis on how ship and yard
container arrangements are affected by integrated planning.

Given these points, we can now introduce the constraints that the simulation optimiza-
tion must respect:

• Each position (i, j) in the yard and (r, c, b) on the ship must be occupied by at most
one container.

• No “holes” are allowed in the stacking area, meaning that if there is a container in
position (i, j + 1), then the lower position (i, j) must also be occupied. Likewise, if
there is a container is in position (r, c+ 1, b) on the ship, then the lower position (r, c, b)
must also be occupied.

• The last in, first out (LIFO) policy must be respected, meaning that if container n is
below container q, then container n must be moved before container q.

• No container can be relocated to a position in the same column.
• In the yard, a container in position (i, j) can only be moved if the position (i, j + 1)

above it is empty. Likewise, on the ship, a container in position (r, c, b) can only be
moved if the position (r, c + 1, b) above it is empty.

• The containers are removed from the yard one at a time and then loaded onto the ship.
• Container n, after being loaded onto the ship, does not change its position while the

ship is still stopped at the same port.
• When a container is unloaded and loaded back onto the ship, these operations are

counted as one relocation movement.
• The containers relocated outside the ship are always loaded back onto it before the

export containers at the port yard.
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Any readers interested in the mathematical formulation of these constraints can reefer
to [35]. In the next section, the methodology used here is described in detail.

3. Methodology

Our methodology deals with both the CRP and MPSP concomitantly, aiming to reduce
the total number of relocations for both the yards and the ship. This way, it is possible to
ensure an efficient operation between the ship and port.

The assumptions presented in the previous section were represented through the
simulation modeling that is detailed in Algorithm 1. To define how exactly the loading and
unloading would occur, rules representation was used. The rules are functions containing
logical commands that describe actions that result in the movement of containers. This
means that instead of creating binary variables and corresponding equations that control
the position of each container in the ship or the yard, we created generic procedures for
how to retrieve and reshuffle containers in the yard and unload and load containers out of
and onto the ship.

The rules that define the plan for the ship stowage operations and the port yard were
coded in one vector and passed to the simulation program as a parameter. This parameter
was an individual of the genetic algorithm (GA) and represented a possible solution to the
problem. After simulating the rules represented by a certain individual, we had the total
number of relocation movements performed, which was going to be used by the GA to
calculate the fitness value of this individual.

The mapping through rules representation was already successfully applied to isolated
or specific integrated port operations: the multi-port stowage planning problem [36], multi-
port stowage planning integrated with quay crane operation [9], or even multi-port stowage
planning with the container relocation problem [35].

The GA generated and selected various individuals in such a way that the total number
of relocations performed was minimized, which was the objective of our problem. In the
end, the GA would provide the combination of rules that solved each instance of the
problem with the least number of relocation movements.

The use of a method based on rules is justified since it is necessary to provide a
feasible solution in a small amount of time for the decision maker. This is not possible
even for solving the problems separately when using exact models, as can be seen in [35].
Additionally, our method always produces feasible occupation matrices, facilitating and
ensuring the achievement of feasible solutions by heuristic methods.

The main advantage of this methodology is that there is no limit to the number of
rules that can be incorporated. The rules can be simple, sophisticated, or even take into
account different operator practices or the prior knowledge of skilled personnel. Any rule
can be created, simulated, and have its solution evaluated by the genetic algorithm.

In the literature, there is a specific term for approaches that limit the search space in
terms of easy-to-implement low-level heuristics: hyper-heuristic methods [37,38].

Additionally, heuristics are general enough to be applied to several instances of the
same problem class, enabling uncertainty evaluation through the evaluation of multiple
scenarios [39].

It is important to stress that the literature considers hyper-heuristics as a heuristic to
select one combination of heuristics [37]. Since we employed a meta-heuristic, such as a
genetic algorithm, to select a good quality combination of rules, we classified our approach
as a meta-hyper-heuristic approach.

Taking this into account, first, we will individually explain each rule proposed to solve
the CRP, followed by the rules proposed for the MPSP. Then, we will explain the integration
of both problems by using the simulation program and the search for the best solution
using the genetic algorithm.
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3.1. Rules Representation for the CRP

To represent the flow of containers through a port yard, an occupation matrix yardp,
where p = 1, 2, . . ., P, was employed as illustrated in Figure 1. In each position (i,j), where
i ∈ H and j ∈W, there is an index representing a container. As stated, this index represents
the removal order of the containers; that is, container 1 is the first one to be retrieved,
followed by container 2, and so on until container Np.

For all rules, if the target container is at the top of its stack, and it is retrieved from
the yard. Otherwise, an available position within the yard’s stacking area must be found
to relocate it and clear the access to the target container. To do so, the retrieval rules (Rre)
run a search through the yard in a fixed pattern, which is different for each rule. When the
available position is located, the first blocking container is relocated to this position. This
procedure is repeated for all blocking containers above the target container. This step is
completed when all containers from the yard are retrieved.

All the Rre rules necessary for this operation will now be described in detail. The
first four Rre rules are adaptations of the rules presented in [40]. Rules Rr5 and Rr6 are
unpublished in the literature. The last four rules were proposed in the literature and
properly adapted to be included in our solution method: the Rr7 rule was proposed in [34],
Rr8 in [41], and Rr9 and Rr10 in [33]:

• Rule Rr1: To locate an available position, this rule searches the yard’s occupancy
matrix in a fixed direction, starting from the last row H to the first row h = 1, row by
row, and from left to right; that is, the stacks are arranged such that w = (1, 2, . . ., W),
as illustrated in Figure 4a.

• Rule Rr2: To locate an available position, this rule searches the yard’s occupancy
matrix in a fixed direction, starting from the last row to the first row, stack by stack,
and from left to right, as illustrated in Figure 4b.

• Rule Rr3: This rule reverses the direction used in rule Rr1. To locate an available
position, it searches the yard’s occupancy matrix in a fixed direction, starting from
the last row to the first row, row by row, and from right to left; that is, the stacks are
arranged such that w = (W, W − 1, W − 2, . . ., 1), as illustrated in Figure 4c.

• Rule Rr4: This rule reverses the direction used in rule Rr2. To locate an available
position, it searches the yard’s occupancy matrix in a fixed direction, starting from the
last row to the first row, stack by stack, and from right to left as illustrated in Figure 4d.

• Rule Rr5: To locate an available position, this rule searches the yard’s occupancy
matrix in a fixed direction, starting from the last row to the first row, row by row, and
alternating the direction in each row; that is, the last row H goes from left to right, row
H − 1 goes from right to left, and so on until row h = 1, as illustrated in Figure 4e.

• Rule Rr6: This rule is the reverse of rule Rr5. To locate an available position, it searches
the yard’s occupancy matrix in a fixed direction, starting from the last row to the first
row, row by row, and alternating the direction in each row; that is, the last row H goes
from right to left, row H − 1 goes from left to right, and so on until row h = 1, as
illustrated in Figure 4f.

• Rule Rr7: To relocate the blocking containers, this rule performs a computation of a
stack score based on the removal priority of the containers at the yard. The goal is to
relocate the blocking container to a new position where there are no containers that
are going to be retrieved before it. If there is no such position available, then the stack
chosen is the one that has the latest future relocation. For more details, see [34].

• Rule Rr8: This rule is similar to rule Rr7, but it allows one “cleaning move” under
certain conditions when identifying eligible positions to relocate a blocking container.
This means that a container that is not in the same stack as the target container can be
moved to make room for a blocking container to avoid future relocation. In Figure 5,
note that when the highlighted container 1 will be retrieved, if container 2 had not
been first relocated to position (4, 1), at least two more relocations would have had to
be executed to retrieve all containers from the yard. For more details, see [41].
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• Rule Rr9: This rule chooses the lowest stack that has an available position to relocate
the blocking container. In the case of multiple stacks with the same lowest height, the
nearest one is chosen. For more details, see [33].

• Rule Rr10: This rule chooses the nearest stack that has an available position to relocate
the blocking containers. For more details, see [33].

(a) (b)

(c) (d)

(e) (f)

Figure 4. Yard relocation rules’ searching flows. (a) Rule Rr1. (b) Rule Rr2. (c) Rule Rr3. (d) Rule Rr4.
(e) Rule Rr5. (f) Rule Rr6.

1 5 1 2 1 2

2 6 4 2 6 3 2 6 3

3 7 3 3 7 4 3 7 4

4 8 2 1 4 8 5 1 4 8 5

1 2 3 1 2 3 1 2 3

H

W

H

W

H

W

Figure 5. Representation of the use of rule Rr8.

The next section describes the loading (Lrl) and unloading (Uru) rules for the stowage
planning problem.

3.2. Representation by Rules for the MPSP

The containers are loaded onto the ship one-by-one as they are being retrieved from
the yard, which means that it is the Rre rule that calls the Lrl rule each time one container
is retrieved from the yard. Thus, the Lrl rules aim to find a position on the ship to put the
container that is being loaded.

As illustrated in Figure 1, each position (r, c, b) of the ship matrix can store a container,
which is represented by an index. A dictionary contains the information of the destination
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port of each container, and it is used by some of the Lrl rules and for all Ura rules. Most of
the Lrl rules scan the ship matrix in a fixed direction, and when the first available position is
found, the container is loaded onto that position. This step is completed when all containers
from the yard have been loaded onto the ship.

Next, all the Lrl rules are described in detail. The rules were initially proposed in [36,42]
and have been adapted for the loading operation described:

• Rule Lr1: To locate an available position for the container that is being loaded, this
rule searches the ship’s occupancy matrix in a fixed direction, starting from the last
row R to the first row r = 1, row by row, and from left to right; that is, the stacks are
arranged such that c = (1, 2, . . ., C) for each bay at a time, starting from bay b = 1 to
bay b = B, as illustrated in Figure 6a.

• Rule Lr2: To locate an available position, this rule searches the ship’s occupancy matrix
in a fixed direction, starting from the last row R to the first row r = 1, stack by stack,
from left to right, and from bay b = 1 to bay b = B, as illustrated in Figure 6b.

• Rule Lr3: This rule reverses the direction used in Lr1. It searches the ship’s occupancy
matrix starting from the last row R to the first row r = 1, row by row, and from right
to left; that is, the stacks are arranged such that c = (C, C− 1, C− 2, . . ., 1) from bay
b = 1 to bay b = B, as illustrated in Figure 6c.

• Rule Lr4: This rule reverses the direction used in Lr2. It searches the ship’s occupancy
matrix starting from the last row R to the first row R = 1, stack by stack, and from
right to left; that is, the stacks are arranged such that c = (C, C− 1, C− 2, . . ., 1) from
bay b = 1 to bay b = B, as illustrated in Figure 6d.

• Rule Lr5: To locate an available position for the container that is being loaded, this
rule searches the ship’s occupancy matrix in a fixed direction, starting from the first
row r = 1 to row R and filling up the ship by row but interleaving the bays (i.e., from
bay b = 1 to b = B), as illustrated in Figure 7a.

• Rule Lr6: To locate an available position for the container that is being loaded, this
rule searches the ship’s occupancy matrix in a fixed direction, starting from the first
row r = 1 and interleaving the bays (i.e., from bay b = 1 to b = B, filling up by stack,
and starting from stack c = 1 to stack c = C), as illustrated in Figure 7b.

• Rule Lr7: This rule reverses the direction used in Lr5. It searches the ship’s occupancy
matrix starting from the last row R to row r = 1, filling up the ship by row but
interleaving the bays (i.e., from bay b = 1 to b = B), as illustrated in Figure 7c.

• Rule Lr8: This rule reverses the direction used in Lr6. It searches the ship’s occupancy
matrix starting from the last row R to the first row r = 1, filling up the ship by stack
but interleaving the bays (i.e., from bay b = 1 to b = B), as illustrated in Figure 7d.

• Rule Lr9: This rule fills the ship by bay from bay b = 1 to bay b = B, and at each bay,
it uses a stack score based on the removal priority of the containers in the yard to
choose a position to allocate the incoming container, similar to what was performed to
choose a position for a blocking container in rule Rr7. It seeks to put in the same stack
containers that are going to be unloaded at the same or previous port, putting at the
bottom the containers with the furthest destination port. If a container is being loaded,
and all stacks already have containers that are going to be unloaded before it, the rule
chooses the stacks that lead to the most distant relocation. For example, if there are
three stacks available, and the first container to be unloaded at each stack is for port 3,
port 4, and port 5, then the rule will choose the port 5 stack.

• Rule Lr10: This rule is the same as rule Lr9, with the difference that when there is no
stack to allocate a container where it will not cause any further relocation, it chooses
the stack with the nearest relocation. For example, if there are three stacks available,
and the first container to be unloaded at each stack is for port 3, port 4, and port 5,
then the rule will choose the port 3 stack.

• Rule Lr11: This rule fills the ship by bay from bay b = 1 to bay b = B, choosing the
smallest stack to relocate a container. If there are multiple columns with the same
height, then it chooses the leftmost stack (i.e., from stack c = 1 to c = C).
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(a) (b)

(c) (d)

Figure 6. Ship loading rules’ searching flows. (a) Rule Lr1. (b) Rule Lr2. (c) Rule Lr3. (d) Rule Lr4.

(a) (b)

(c) (d)

Figure 7. Ship loading rules’ searching flows. (a) Rule Lr5. (b) Rule Lr6. (c) Rule Lr7. (d) Rule Lr8.

Finally, to unload the containers from the ship, the unloading rules Ura are used. This
step is completed when all containers from the ship destined for port p have been unloaded:

• Rule Ur1: At any port p, this rule will only remove the containers whose destination
is port p and all the ones that are blocking the stacks.

• Rule Ur2: This rule states that all containers on the ship must be unloaded when
arriving at a specific port p to allow for a complete rearrangement of every stack.

• Rule Ur3: This rule was adapted from [43] and allows a blocking container to be
internally relocated by repositioning it from one position in the ship bay b to another
position in the same ship bay b if there is space to relocate it in this bay b and when it
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does not cause a future relocation; that is, in this stack, there are no containers that are
going to be unloaded before the relocated container. Otherwise, it is unloaded from
the ship.

All containers that were unloaded from the ship at a port that was not their destination
are loaded back after the unloading operation is finished by using the Rre and Lrl rules that
were at the gene applied to that port.

Now, we will show how these ship and yard rules may be integrated for use in the
simulation program.

3.3. Integrating the Rules for the MPSP and CRP

For the rules to be used by the simulation program, they needed to be combined into
a set of decision rules called Rej.

Therefore, we had 10 rules for yard retrieval of containers (Rr1, Rr2, Rr3, Rr4, Rr5,
Rr6, Rr7, Rr8, Rr9, and Rr10), 7 rules for loading the ship (Lr1, Lr2, Lr3, Lr4, Lr5, Lr6, and
Lr7), and 3 rules for unloading it (Ur1, Ur2, and Ur3) which, when combined, generated
210 decision rules Rek. Figure 8 illustrates the creation of the first four of the Rek rules.

Figure 8. Rules produced by combining retrieval, loading, and unloading rules.

Each decision rule Rek was a gene of an individual in the genetic algorithm (GA),
which is explained in the next section.

3.4. A Genetic Algorithm

The GA ensured that the sequence of port rules with the best results (i.e., that mini-
mized the number of movements) was chosen.

3.4.1. Initialization

The GA initializes by randomly generating a population of b individuals. Each indi-
vidual, which is a possible solution to the problem, has a genetic code, called a chromosome.
The coding used to represent the chromosome is made by a vector S.

The chromosome of each individual is composed of genes, called sj. Each gene was
equal to j and indicated a possible solution for each port p along the ship’s route (i.e.,
the decision to apply rule Rej at port p). For example, in Figure 9, the gene is in position
A4,1 = 3, which means that rule Re3 was used at port 4 for individual 1.

Thus, the population needed to be composed of individuals with P− 1 genes. The
last port was not included because only the unloading operation was performed for all the
remaining containers on board the ship; no relocation was performed, and therefore, there
was no impact on the objective function.

Therefore, a population with b individuals (solutions) may be stored in a matrix A,
A ∈ (P− 1)× b, and each element Ai,s of matrix A is the decision to apply rule Rej at port
p for individual s. Note in Figure 9 that a population of six individuals was generated for a
problem with 5 ports.
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Figure 9. Representation of the b best solutions in a population of six individuals within a matrix.

This encoding solution is compact, always provides feasible solutions, and avoids the
necessity of complicated crossover and mutation operators.

3.4.2. Evaluation: The Simulation Process

The simulation always started in port 1 with the number of relocations equal to zero,
and then it ran until the ship arrived at the last port.

The first step of the simulation was to extract the Rej rule of the first gene from the
first individual S contained in A. This function translated the Rej rule into the Rre, Lrl , and
Ura rules, as shown in Figure 8.

Once the rules were defined, the port where the ship was docked at the time was
checked. If it was at the first port, no unloading operation was performed because the ship
arrived empty. Therefore, the yard containers destined for that ship were removed and
loaded onto the ship (see Figure 1).

After all the first port operations were finished, the Rej rule was extracted from the
second gene of the same individual S, which was used to perform the operations for the
second port.

From the second port to the P− 1 port, the sequence of operations was as follows:
unload the ship (see Figure 2), locate and retrieve the yard containers destined for that
particular ship, and load them onto it (see Figure 3). The containers that were unloaded
were only those destined for that port, the transshipment containers, and the blocking
containers. The latter group was being relocated and would be loaded back onto the same
container ship in a new position. The import, export, and relocation containers had their
reserved areas in the port yard.

In the last port, no operation was performed since it did not impact our objective function.
After each operation, the number of relocations performed was given. The total

number of relocations performed throughout the entire ship’s journey, considering the
retrieval, loading, and unloading operations, is called fk (fitness function of the k individual).
Algorithm 1 expresses the simulation program scheme just described.
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Algorithm 1 Simulation scheme
1: p← 1, nmov← 0
2: initialize (yardp, Shp, PortIndex)
3: while p < P do
4: [Rre, Lrl , Ura] = ExtractRules (sp)
5: if p = 1 then
6: [aux, Shp] = load (Rre, Lrl , Shp, yardp)
7: nmov← nmov + aux
8: end if
9: if 1 < p < P then

10: [aux, Shp] = unload (Ura, Shp, yardp, PortIndex)
11: nmov← nmov + aux
12: [aux, Shp] = load (Rre, Lrl , Shp, yardp)
13: nmov← nmov + aux
14: end if
15: if p = P then
16: [aux, Shp] = unload (Ura, Shp, yardp, PortIndex)
17: nmov← nmov + aux
18: end if
19: p← p + 1
20: return nmov
21: end while

The symbols and functions used in Algorithm 1 are as follows:

p ∈ P: a counter variable which indicates the current port simulation;
yardp: a cell array of a size P× 1, where each cell contains the yard’s matrix for port p;
Shp: the ship’s matrix, indicating the positions of all containers in the ship at each port p.
S: the ship’s matrix,indicating the positions of all containers in the ship at each port p;
ExtractRules: the function that defines the correspondence between the k rule, contained
in s(p) with the rules of unloading, loading, and retrieval to be stored in variables Ura, Rre,
and Rre, respectively;
nmov: the total number of relocations performed.
Load: the function that applies the ship’s loading operations through the concomitant
execution of Rre and Rre rules. It returns the number of relocations made and the updated
Shp matrix.
Unload: the function that defines the ship’s unloading operation through the execution of
the Ura rule. It returns the number of relocations made and the updated Shp matrix.

For each individual from the population, it was necessary to perform the simulation
scheme described in Algorithm 1 to acquire its evaluation.

The second step of the evaluation method is to use the fitness measurement of each
solution that was generated by the simulator and ensure that the best solutions were
maintained in the population by the selection method.

This was accomplished by the following procedure. The best individual of all genera-
tions until the current one was kept for the next generations.

3.4.3. Selection

During the formation of the new population, some individuals from generation t
were submitted to a transformation process by genetic operators to choose new rules.
These transformations included unitary operators mi (mutation), which allowed the use
of other rules by small changes in the individual attributes (mi : Ai → Ai), and superior
order transformations cj (crossover), which produced new individuals by combining two
individuals (ck : Ai × Aj → Ak).

At the crossover, the single-point crossover method was applied. It consisted of
randomly selecting a point in two parents’ chromosomes and swapping the two parent
chromosomes to obtain new individuals.

At the mutation, every gene had a mi probability of being mutated. This was per-
formed by randomly generating a value between 0 and 1. If it was lower than mi, then a
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new value was generated for this gene within the set of permissible values, which in our
case was any integer between 1 and 210.

This process was carried out until a previously specified maximum number of genera-
tions was reached [44,45]. It is important to remember that the notation proposed in this
paper always generates feasible individuals, even after the selection operators are applied.

The next section describes the test instances used to validate the proposed method
and the results obtained for these instances. Figure 10 illustrates how the described
method works.

Figure 10. Representation of the proposed method.

4. Results

Hereafter, we present the randomly generated test instances used to validate the
method proposed and the results obtained with it.

As in [40], three types of instances were used, based on [24]: mixed-distance, short-
distance, and long-distance instances. In the long-distance instances, all the containers
traveled through many ports before being unloaded, staying onboard the ship for a rel-
atively long period of time. In contrast, in the short-distance instances, the containers
traveled through few ports before being unloaded and were, on average, onboard for a
short period of time. In the mixed-distance instances, some containers traveled through
several ports, and other containers traveled through few ports before being unloaded.

Another measure that could affect our problem was the occupancy rate (OR) of the
yards. The more containers in the yard, the less space is available for performing relocation
movements, which can make it more difficult to solve the problem.

Given this, Table 1 presents the computational results for the small- and medium-sized
instances, and Table 2 presents the computational results for the large-sized instances. For
both tables, column I indicates the instance number, and M indicates the instance type: 1
for mixed-distance, 2 for short-distance, and 3 for long-distance shipping. The OR column
gives the yard occupancy rate, and H and W indicate the number of rows and columns
of the yard, respectively. Columns R, C, and B indicate the number of rows, columns,
and bays of the ship, respectively. N shows the total number of containers which the ship
dealt with throughout the entire problem. Finally, the objective function value (OF) is
presented in terms of the number of relocations performed throughout the entire problem,
and the Time column provides the time in seconds that the proposed method took to solve
the instance. In addition, the number of ports in the ship’s route was equal to five for
all instances.

After many experiments, the chosen stopping criterion was the maximum number of
15 generations without any improvement to the objective function or when the maximum
computational time of 1 h was reached. After these criteria, there was usually very little or
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no improvement in the objective function. Therefore, after reaching one of the conditions,
the optimization problem was stopped, and the best solution obtained thus far was reported.
Additionally, the population used had 10 individuals. The crossover operator was set to
cj = 0.8 and the mutation operator to mi = 0.3. The implementation was performed in
Python 3.8 and executed on a computer with an Intel Core™ i5-4210U (1.70 GHz) with
8 GB of RAM and using 4 threads.

Table 1. Computational results for small- and medium-sized instances for a problem with five ports.

I M
Yard Ship

N
Results

OR H W R C B OF Time (s)

1 1 30% 4 5 2 3 3 24 1 0.38
2 60% 2 4 3 48 3 0.76
3 85% 3 5 3 68 12 1.40

4 2 30% 4 5 2 3 3 24 1 0.37
5 60% 2 4 3 48 5 0.83
6 85% 3 5 3 68 5 1.16

7 3 30% 4 5 2 4 3 24 3 0.59
8 60% 3 5 3 48 7 0.75
9 85% 3 6 3 68 8 1.56

10 1 30% 6 25 5 9 3 180 15 7.02
11 60% 6 12 3 360 47 22.05
12 85% 4 7 4 512 60 30.81

13 2 30% 6 25 4 7 3 180 14 4.44
14 60% 6 10 3 360 44 17.45
15 85% 6 12 3 512 82 22.28

16 3 30% 6 25 6 10 3 180 14 10.46
17 60% 6 11 4 360 39 15.86
18 85% 6 13 5 512 87 68.86

Table 2. Computational results for large-sized instances for a problem with five ports.

I M
Yard Ship

N
Results

OR H W R C B OF Time (s)

19 1 30% 10 100 6 13 9 1200 137 123.93
20 60% 6 13 17 2400 374 436.46
21 85% 6 13 23 3400 701 804.09

22 2 30% 10 100 6 13 6 1200 124 89.57
23 60% 6 13 12 2400 350 300.79
24 85% 6 13 17 3400 687 662.38

25 3 30% 10 100 6 13 13 1200 126 108.24
26 60% 6 13 23 2400 364 474.69
27 85% 6 13 32 3400 680 668.10

28 1 30% 20 200 6 13 34 4800 734 2598.54
29 60% 6 13 66 9600 2183 3959.52
30 85% 6 13 95 13,600 4352 3649.01

31 2 30% 20 200 6 13 24 4800 726 1418.72
32 60% 6 13 47 9600 2202 3696.73
33 85% 6 13 67 13,600 4226 3969.72

34 3 30% 20 200 6 13 44 4800 730 2472.07
35 60% 6 13 87 9600 2296 3609.84
36 85% 6 13 124 13,600 4972 4022.46
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From the results presented in Tables 1 and 2, it can be seen that our solution was able
to find good-quality feasible solutions for all instances within a reasonable computational
time, especially when we consider the large number of rules that was evaluated by the
method. From Table 1, one can see that all small- and medium-sized instances were solved
in between a few seconds and six minutes. Meanwhile, most of the large-sized instances
from Table 2 reached the maximum computational time of 1 h. It is worth remembering
that instances of sizes of up to 500 containers are prohibitive for exact approaches since
this generates an exorbitant number of variables, but they can be successfully solved by a
personal computer when using the proposed approach.

In other approaches from the literature, such as [34,41], the biggest instances tested
were of up to 10,000 containers and for a single CRP. In [10], the heuristic approach proposed
was tested in instances of up to 700 containers, and the authors of [46] solved a single CRP
with 45 containers.

Figures 11 and 12 illustrate the evolution of the objective function of each instance (i.e.,
the total number of relocation movements of the best individual at each generation). Note
that in a few instances, the GA could not improve the best solution of the first generation,
but most instances had great improvements in the first generations. Nevertheless, the most
important point is that good-quality solutions were obtained for the large-sized instances
in low computational times, showing that the proposed approach can be applied in real
case scenarios or even have commercial applications.

Figure 11. Evolution of the objective function of small- and medium-sized instances.

Figure 12. Evolution of the objective function of large-sized instances.

Note that in all instances, as the occupation of the yards increased, the computational
time required to solve the problem also increased. When comparing the three types of
transportation matrices, observe that the size required for the ship also depended on
the type of matrix. When the containers stayed on the ship for more ports before being
unloaded, more space was required to carry all the containers. When the containers stayed



Appl. Sci. 2022, 12, 8191 17 of 19

on the ship for only a few ports before being unloaded, less space was required. Due to
these types of differences in the test instances, it is important to have a good variety of rules
to be simulated, as we proposed.

Additionally, note that for the short-distance instances (type M = 2), less time was
required to finish the optimization, and fewer relocations were performed in most cases.
Meanwhile, the long- and mixed-distance instances (types M = 3 and M = 1, respectively)
took more computational time and relocations per instance.

These results show that the integration of the CRP with the ship MPSP must be
considered to avoid a misleading analysis and unexpected extra relocation movements.

5. Conclusions and Future Works

This paper presented an extension of a methodology based on rules representation to
solve the integration of the MPSP and the CRP at port yards.

As a contribution, the entire methodology was revised to provide a simpler represen-
tation of the problem. Some unpublished rules were presented, and a three-dimensional
container ship was included. We were able to provide a faster evaluation of the possible
actions via rules representation, whose associated binary model would not be feasible for a
container yard with dimensions compatible with large ports.

As a result, good sequences of feasible movements were obtained within a short
computational time. Moreover, we have demonstrated in detail that the container relocation
problem should be considered when solving the multi-port stowage planning problem to
ensure an efficient operation between the ship and port and prevent any loss of money.

For future works, we hope to extend the entire problem, including the scheduling
of quay cranes, yard cranes, and vehicles, using a simulation and its respective rules.
Another possible development is to couple the berth allocation problem and include the
management of more than one ship in the simulation process. Finally, this simulation
scheme also enables the consideration of uncertainty in processing times and the arrival of
all equipment and structures related to the problem.

What-if scenarios varying the flow of containers at certain ports could be another
interesting approach to effectively support the decision-making process.

Another objective function could also be considered, such as the distance traveled by the
containers or total time to perform the operations. To solve a problem considering multiple
objectives, multi-objective evolutionary algorithms such as NSGA or SPEA variants could also
be implemented and have their results compared to the genetic algorithm proposed.

Finally, to improve performance, the problem could be employ a heuristic that con-
siders groups of containers, and parallel processing could be implemented to provide
faster evaluation of individuals through simulation. Furthermore, a comparison with other
meta-heuristics in terms of computational performance could be carried out.
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