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Abstract: We present GenoMus, a new model for artificial musical creativity based on a procedural
approach, able to represent compositional techniques behind a musical score. This model aims to
build a framework for automatic creativity, that is easily adaptable to other domains beyond music.
The core of GenoMus is a functional grammar designed to cover a wide range of styles, integrating
traditional and contemporary composing techniques. In its encoded form, both composing methods
and music scores are represented as one-dimensional arrays of normalized values. On the other
hand, the decoded form of GenoMus grammar is human-readable, allowing for manual editing
and the implementation of user-defined processes. Musical procedures (genotypes) are functional
trees, able to generate musical scores (phenotypes). Each subprocess uses the same generic functional
structure, regardless of the time scale, polyphonic structure, or traditional or algorithmic process
being employed. Some works produced with the algorithm have been already published. This highly
homogeneous and modular approach simplifies metaprogramming and maximizes search space. Its
abstract and compact representation of musical knowledge as pure numeric arrays is optimized for
the application of different machine learning paradigms.

Keywords: automatic musical composition; metaprogramming; procedural representation of music;
artificial creativity; GenoMus

1. Introduction
1.1. New Challenges for Modeling Musical Creativity

Music creation and perception are extremely complex phenomena, simultaneously
involving many time scales, cognitive layers, and social spheres. As an eminently creative
activity, music is an excellent field of research to model mechanisms that lead to artistic
production and to any human activity that requires creativity. This introduction summarizes
the conceptual issues addressed by the GenoMus framework, outlined after considering
many reviews of current research on automatic composition and artificial artistic creativity.

Despite the wide variety of existing systems, documented in metastudies and sur-
veys [1,2], and the development of new techniques in artificial intelligence in many domains,
the autonomous creation of music by computers is still clearly behind human skills. These
limited results may be due to overly specific approaches. Pearce et al. [3] strongly criticized
many investigations for narrowing their focus to processes too restricted to the idiosyncratic
style of a particular composer, or to systems too oriented to the modeling of well-known
historical styles. In particular, recent advances based on neural nets struggle to capture big
structures, as Nierhaus [4] has noted after comparing the current paradigms in automated
music generation.
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Boden [5] and Rowe et al. [6] propose the necessary conditions for the emergence
of artificial creativity, such as a flexible knowledge representation with a high degree of
ambiguity, capable of exploring, transforming, and expanding the search space. Multiple
possible representations of the same idea are also recommended. Papadopoulos and Wig-
gins [7], Crawford [8], and López de Mántaras [9] claim that more imaginative behavioral
models will arise from hybrid multiagent systems embedding a variety of functionalities.
These algorithms must devise musical patterns along with their expressive potentialities,
just as humans do.

1.2. Composing Composers

Composers’ interest in rethinking and reinventing musical language have pervaded
aesthetics and techniques since the 20th century. Transformation and the overcoming of
well-established methods inherited from Romanticism led to post-tonal music. Linguistic
structuralism applied to musical syntax stimulated a relativization and awareness of
compositional procedures. Reversing the logic of this analytic knowledge, the methods of
serial dodecaphonism laid the foundation stone for an inverse creative strategy: synthesize
new styles from the predefinition of new rules.

The availability of computers led to the thinking of music composition from a higher
level. Composers such as Stockhausen [10] and Xenakis, who designed composition tools to
work “towards a metamusic” [11], began to exploit the new ideas of generative grammars in
the sound domain. Computer-assisted composition enabled far more complex procedures
that were too tedious or unfeasible to explore by hand. Eventually, composers began to
use computers not only for analysis and the calculation of complex structures, but for
the automation of the creative processes themselves. That fact opened the door to a new
approach to composition: a metamusical level characterized by modeling the processes
within the minds of composers.

Research in artificial musical intelligence demands formalized grammars of musical
structures. Furthermore, a model of the creative mind is required to operate these ab-
stractions. Aesthetic criteria are extremely subjective. Furthermore, the implementation
of every model of automatic composition imposes, consciously or not, a limited search
space. Delimiting these boundaries and setting evaluation principles can be seen as meta-
composition, namely, modeling composers’ reasoning, often very obscure to themselves.
As Jacob [12] analyzed, automatic composition not only creates new styles, but also new
ways of perceiving and feeling the music. Beyond this, the very concept of authorship
becomes paradoxical. In general, “programming creativity” is an oxymoron that inevitably
leads to metaprogramming [13].

1.3. Features of a Procedural Oriented Composing-Aid System

Many modern approaches to artificial intelligence applied to the automatic composi-
tion of music are modeled using scores as their data source. The effectiveness of neural nets
favors this kind of experiments. We considered the study of McCormack [14] regarding the
difficulties of tuning evolutionary algorithms, as well as the comprehensive surveys that
study a large number of similar projects. In the usual taxonomy of AI methods applied to
music composition, GenoMus can be classified in the domain of evolutionary algorithms
applied to grammars. Fernández and Vico’s exhaustive survey [1] concludes with some
remarks regarding the important topic of encoding data to work with evo-devo systems.
After identifying the problem of scalability, due to the enormous amount of information
that a musical work can contain, they consider that many systems have addressed this
bottleneck using “indirect encodings” that compress musical information by encapsulating
the “list of instructions” needed to recreate a piece, but these encoding methods need to
be highly improved and optimized. Otherwise, a good toy model can become intractable
when scaled to handle and produce real pieces of music.

GenoMus’ design is devoted to this issue, and looks for strategies to compress and
simplify as much as possible the procedural information while maintaining an interchange-
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able readable counterpart of this information. We conceive this indirect encoding of music
as the core of the GenoMus framework: what must be learned by an AI engine is precisely
this abstract representation of the composition techniques used in the creative process.
With this in mind, we outlined the main characteristics of our model:

Modularity: based on a very simple syntax.
Compactness: the maximal compression of procedural information.
Extensibility: subsets and supersets of the grammar that can be easily handled.
Readability: both abstract and human-readable formats are safely interchangeable.
Repeatibility: the same initial conditions always generate the same output.
Self-referenceable: support for compression and iterative processes based on internal

references.
Extensibility: easily adaptable to other contexts and domains.

The closest proposal to GenoMus is the language and environment designed by
Hofmann [15], sharing also commonalities with the projects by de la Puente et al. [16] and
Ariza [17]. However, GenoMus is not only oriented to manual edition, but primarily to the
encoding and compression of procedural information.

1.4. Knowledge Representation Optimized for Machine Learning by Design

After studying many different approaches, we decided to create GenoMus as a new
model of the procedural representation of music optimized to be handled with different
machine learning techniques. Its key feature is an identical encoded representation of
both compositional procedures and musical results as one-dimensional arrays. Functional
expressions and their output are both encoded as sequences of normalized floats. Some
systems, such as Jive [18], have explored this conversion of pure numeric sequences into
some kind of intermediate computable expression. Our system opens this formalism to be
arbitrarily extensible.

The GenoMus grammar is designed to favor the broadest diversity of combinations
and transformations. Genetic algorithms are suitable for the automation of incremental
exploration and selection in multiple ways. Burton and Vladimirova [19] have studied
several genetic methods applied to the generation of musical sequences; Dostál [20] also
published a survey of techniques of evolutionary composition. GenoMus design favors
genetic search processes in a very flexible manner, since data structures have no determined
length and are one-dimensional. The evolution of musical ideas without constraints and
based on serendipity is easily implemented and complemented.

On the other hand, approaches based on neural networks need a very controlled
format of data and big training datasets. GenoMus’ format represents any piece of music
as a simple one-dimensional sequence of normalized floats, which can be profitable for
techniques such as recurrent neural networks, which are capable of learning patterns from
sequential streams of data. Both procedural and declarative information (composition
techniques and music scores) share the same data format. This correspondence inevitably
resonates with other Gödelian approaches to bioinspired generative projects based on
genetic algorithms [21].

The rest of the manuscript is organized as follows: Section 2 provides a formal view of
the framework, Section 3 describes a practical implementation suitable for interactive exper-
iments, Section 4 presents an example of a procedural representation and the recreation of a
complete piece of music, and Section 5 discuss the possibilities opened by the characteristics
of the model to enhance artificial musical creativity, as well as several possible strategies to
address the evaluation and evolution of results.

2. Conceptual Framework

The artistic results of every algorithm designed for automated composition are strongly
constrained by their representation of musical data. GenoMus is a framework for the
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exploration of artificial musical creativity based on a generative grammar focused on the
abstraction of creative processes as a metalevel of compositional tasks.

We define musical genotypes as functional nested expressions, and phenotypes as the
pieces created by evaluating these computable expressions. GenoMus’ grammar is designed
to ease the combination of fundamental procedures behind very different styles, ranging
from basic to complex contemporary techniques, particularly those that are able to produce
rich outputs from very simple recursive algorithms. At the same time, maximal modularity
is provided to simplify metaprogramming routines to generate, assess, transform, and
categorize the selected musical excerpts. The system is conceived to maintain a long-
term interrelation with different users, developing their individual musical styles. This
proposed grammar can also be an analytic tool, from the point of view of composition as
computation, considering that the best analysis of a piece is the shortest accurate description
of the methods behind it.

2.1. Definitions and Analogies

Although its target is not only genetic algorithms but a variety of machine learning
techniques, our framework uses the evolutionary analogy, similarly to many other au-
tomatic composition systems [22,23]. The Darwinian metaphor can be confusing, since
each system has its particular application of the same terms, sometimes denoting even
opposite concepts.

In our functional approach, the key idea is considering any piece of music as the
product of a program that encloses compositional procedures. Thereupon, the bioinspired
terms in the context of the GenoMus framework are defined in the following glossary:

Genotype function: Minimal computable unit representing a musical procedure, designed
in a modular way to enable taking other genotype functions as arguments.

Genotype: Computable tree of genotype functions.
Encoded genotype: Genotype coded as an array of floats ∈ [0, 1].
Decoded genotype: Genotype coded as a human-readable evaluable string.
Leaf: Single numeric value or list of values at the end of a genotype branch.
Phenotype: Music generated by a genotype.
Encoded phenotype: Phenotype coded as an array of floats ∈ [0, 1].
Decoded phenotype: Phenotype converted to a format suitable for third-party music

software.

The genotype, in its decoded format, is a computable expression. Consequently, the au-
tomatic writing and manipulation of genotypes can be seen as a metaprogramming process.
This central idea of parsing languages (including musical language) to extract an essential
abstract functional tree has been suggested by Bod [24]. Additionally, the construction of
genotypes requires two previous elements:

Germinal vector: An array of floats ∈ [0, 1] used as an initial decision tree to build a
genotype.

Germinal conditions: Minimal data required to deterministically construct a genotype, con-
sisting of a germinal vector and several constraints to handle the generative process.

The phenotype, as the product of the evaluation of the functional expression content
in a genotype, is a sequence of music events declared in a format designed to encode music
according to a hierarchical structure, made by combining three formal categories:

Event: Simplest musical element. An event is a wrapper for the parameters (leaves) that
characterize it.

Voice: Line (or layer) of music. A voice is a wrapper for a sequence of one or more events,
or a wrapper for one or more voices sequentially concatenated, without overlapping.

Score: Piece (or excerpt) of music. A score can be a wrapper for one or more voices, or a
wrapper for one or more scores together. Scores can be concatenated sequentially
(one after another) or simultaneously (sounding together).
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Depending on the final desired output of the generative process, different parametric
structures will be expected for each event. Hence, to allow diverse formats for decoded
phenotypes, two more concepts arise:

Species: A specific configuration of the internal parametric structure that constitutes
an event.

Specimen: A genotype/phenotype pair belonging to a species, that produces a piece of
music. Data characterizing a specimen are stored in a dictionary containing the
germinal conditions, along with metadata and additional analytical information.

Extending our biological analogy, a species can be alternatively defined as the group of
specimens that share the same parameter structure of their musical events. The piano species
used in the examples requires four attributes for each event: duration, pitch, articulation,
and intensity.

A parameter required by an event can be a single value or an array of values (a
multiparameter). For instance, in the piano species, an event can contain more than one
pitch, to work with chords.

Events built with many parameters can be set. For instance, a species for a very specific
electroacoustic setup could need events defined by dozens of features. A preliminary test
of a species for complex sound synthesis and spatialization with many parameters was
demonstrated with the composition of the piece Microcontrapunctus [25].

Events specification can also be extended to other domains beyond music, such as
visuals, lighting, etc., along with musical events, or standalone. Ultimately, this framework
can be applied to generate any output describable as sequences of actions.

2.2. Formal Definition of the GenoMus Framework

A GenoMus framework for a species is defined as the 5-tuple:

spec = (Types,~t, Maps, Funcs, Coders), (1)

where:

Types is the set of parameter types integrating a genotype functional tree,
~t = (t1, t2, ..., tn) is the vector of parameter types ∈ Types that constitutes an event
data structure,
Maps is the set of conversion functions mapping human-readable specific formats of
each parameter type ∈ Types into numbers ∈ [0, 1], and their correspondent inverse
functions,
Funcs is the set of genotype functions defined and indexed in a specific library, which
take and return data structures ∈ Types, and
Coders = {tran, dec, enc, eval, conv} is the set of functions covering all required trans-
formations to compute phenotypes from germinal conditions.

For the construction of a functional tree from a germinal vector, several auxiliary
parameters or restrictions are needed, collected in the 5-tuple:

R = (EligFuncs, type, depth, maxl, seed), (2)

where:

EligFuncs ⊆ Funcs is the subset of eligible functions encoded indices,
type ∈ Types is the output type of the genotype function tree,
depth ∈ N>0 is a depth limit to the branching of the genotype function tree,
maxl ∈ N>0 is the maximal length for lists of parameters, and
seed ∈ N is a seed state used to produce deterministic results with random processes
inside a genotype.

Finally, the germinal conditions needed to deterministically generate a specimen are
contained in the couple (~x, R), where ~x is a germinal vector.
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2.3. From Germinal Vectors to Musical Outputs

The three main abstract data structures of the GenoMus framework—germinal condi-
tions, encoded genotypes, and encoded phenotypes—contain a vector of the same form: a
simple one-dimensional array of n numbers ∈ [0, 1]. Due to limits for the representation of
reals, but mainly to enable some crucial numeric transformations as pointers to functions
(explained in Section 3.3.4), these arrays only include values with a six-digit mantissa. More
formally, the only elements these vectors include are those members of the set

V = {x ∈ Q | 0 ≤ x ≤ 1, x · 106 ∈ N}. (3)

Data structures handled below are encoded as vectors ~x = (x1, x2, ..., xn) of any length
n, belonging to a finite n-dimensional vector space

Vn = {~x | xn ∈ V, n ∈ N>0}. (4)

The complete search space needed to contain all possible encoded representations can
be defined as the vector space

S =
n⋃

i=1

Vi, (5)

a superset that contains all vectors of any length ≥ 1 up to n, where the upper limit of n
depends on the practical limitations of computation and memory.

For a given set of restrictions R, any arbitrarily long vector ∈ S is a germinal vector ~x.
So, let

Gcond = {(~x, R) |~x ∈ S} (6)

be the set of all possible germinal conditions.
Let Egen be the set of all possible encoded genotypes ~y = (y1, y2, ..., ym) with the same

restrictions R. Every germinal condition ∈ Gcond corresponds to a valid encoded genotype
∈ Egen capable of generating a valid functional expression representing a music score.
Unlike Gcond, which accepts as germinal vector any member ∈ S, Egen includes only vectors
decodable as computable functional expressions.

The surjective map tran : Gcond � Egen transcribes any germinal conditions into an
encoded genotype. Hence, the set Egen can be defined as:

Egen = {(~y, R) |~y ∈ S, ∃ (~y, R) = tran(~x, R)}. (7)

The application tran involves several subprocesses covered next in detail, in such a
way that the germinal conditions ((x1, x2, ..., xn), R) generate a deterministic decision tree
leading to the construction of a unique genotype ((y1, y2, ..., ym), R), mapping the values xn
to ym one-by-one according to restrictions R. Since the number of choices m needed to build
a valid encoded genotype rarely matches the length n of a germinal vector ~x, truncation
and loops are employed:

• If ~x has more items than needed, they are ignored, effectively acting as a truncation of
the remaining unused part of ~x.

• If tran needs more elements than those supplied by~x, tran reads~x elements repeatedly
from the beginning as a circular array, until reaching a closure, to complete a valid
vector ~y. That implies that germinal vectors with even a single value are valid inputs
to be transformed into functional expressions.

• To avoid infinite recursion when loops occur while applying tran(~x, R), the restric-
tions R introduce some limits to the depth of functional trees and the length of
parameter lists.

Let Dgen be the set of all possible decoded genotypes. Members in this set are all
possible text strings representing well-formed function trees, plus a seed value, necessary
when random processes are involved. Another surjective map, dec : Egen � Dgen, takes
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an encoded genotype and produces its corresponding decoded genotype, presented as a
human-readable evaluable expression. This is also a surjection, since different but equiva-
lent encoded genotypes can generate the same executable function tree as a text output.

Similarly, the map eval : Dgen � Ephen evaluates deterministically decoded genotypes
to produce encoded phenotypes; this is a surjective map too, because the same output can
be obtained as the result of different music composition processes. Again, this encoded
form is a sequence of values ∈ S representing a musical score. Now, we can define the set
of all encoded phenotypes that can be produced from decoded genotypes ∈ Dgen as:

Ephen = {~z ∈ S | ∃~z = eval ◦ dec ◦ tran(~x, R)}. (8)

It is noteworthy to note that the length of the vector ~z does not correlate with the
lengths of their corresponding vectors in germinal conditions and encoded genotype.
Indeed, simple expressions can generate long music scores, while a single chord or melodic
motif can be the result of complex manipulations.

Finally, let Dphen be the set of decoded phenotypes generated at the end of the process.
Creating decoded phenotypes implies a further map conv : Ephen → Dphen to convert this
data to another standard or custom musical format, either to generate symbolic information
such as sheet music, or to directly synthesize sound. This is a last trivial transformation,
once it is known how a score is encoded.

2.4. Retrotranscription of Decoded Genotypes as Germinal Vectors

Sometimes, we start from a manually programmed decoded genotype to build a
precise musical composition procedure, and we need to find corresponding germinal
conditions capable of generating it. This is a fundamental step in obtaining abstract
vectorial representations of manually edited expressions so that they could be integrated
into a hypothetical training dataset.

Reciprocally to dec, the function enc : Dgen � Egen is a map that takes as input a
couple consisting of a valid expression α and an auxiliary value seed (for repeatability
dealing with random processes), and returns a corresponding encoded genotype. This
transformation of α is a simple conversion from text tokens to numbers ∈ V; enc is an
injective map since it returns only one encoded genotype from a text expression. Restrictions
R for the obtained encoded genotype are derived directly from the features of the original
functional expression.

The key point is that starting from a well-formed functional expression α, an encoded
genotype (~y, R) = enc(α, seed) is at the same time one of its many possible germinal vectors:

enc(α, seed) = (~y, R) = tran(~y, R). (9)

The tran function is built in such a way that a decoded genotype (~y, R) ∈ Egen
generated from any germinal vector is one of its reciprocal germinal vectors itself. In other
words,~y simultaneously represents a symbolic functional expression and the decision chain
that leads to the algorithmic writing of the very same functional expression.

Hence, Egen ⊂ Gcond, and the map tran acts as an identity function when applied to
decoded genotypes. This feature enables the repeatability and consistency of encoded
genotypes regardless of changes in the function library Funcs, because the numeric pointers
to eligible functions EligFuncs are preserved, while at the same time, the couple (~y, R) can
be directly introduced back in the pool of germinal conditions without additional transfor-
mations.

Figure 1 illustrates this chain of surjective mappings and the retrotranscription to
germinal vectors. Remarkably, a conversion from phenotype to genotype is far from trivial,
as it is a reverse engineering process: the construction of a procedural generator of music
can be seen as an analytical problem with many alternative solutions, since the same musical
pattern can be obtained by applying a combination of very different logical relations. This
last step can be provided by a variety of machine learning algorithms. Facilitating this type



Appl. Sci. 2022, 12, 8322 8 of 25

of abstract analysis, based on the learning of relationships between pure one-dimensional
arrays, is the essence that determines the entire design of the GenoMus paradigm, and the
field of research where the potential of this framework lies.

Gconds

germinal
conditions

Egen

encoded

Dgen

decoded

genotypes

Ephen

encoded

Dphen

decoded

phenotypes

tran

id

dec

enc

eval

AI algorithms

conv

conv−1

procedural information musical outputs

Figure 1. Mappings from germinal conditions to musical outputs. Double-ended blue arrows
illustrate the retrotranscription feature of the tran conversion: any encoded genotype vector ~y ∈ Egen

belongs to the germinal vectors set Gconds as well, as it autogenerates itself. Orange arrows show
how the encoding of a decoded genotype ∈ Dgen generates a unique numerical representation,
although different encoded genotypes may correspond to the same decoded expression, due to the
readjustment of parameters needed to fit into valid ranges.

3. Implementation
3.1. Model Overview

A prototype of the GenoMus framework (which is an open-source project freely
available at https://github.com/lopezmontes/GenoMus accessed on 15 August 2022),
has been implemented by using JavaScript runtime Node.js® for the core code, connected
with Cycling’74 Max 8 to interact in real-time with the results of generative processes.
The computer-aided composition package bach for Max, by Agostini, and Ghisi [26], allows
a simple and responsive visualization of experimental results as interactive music scores,
which can also send data to synthesizers or music editors using MIDI, OSC, or any custom
format. The data structure of the GenoMus phenotypes is close to the hierarchical structure
of music employed by bach package [27], based on scores, voices, events, and event
multiparameters. Genotypes’ functional expressions are displayed in an embedded text
editor, similar to the system created by Burton [28], also based on bioinspired music
patterns evolution.

From the Max patch, organized as shown in Figure 2, it is possible to control the
generative and evolutive processes in many ways through these actions:

• Display the generated music as an editable and interactive score, whose data can be
converted to sound inside Max, or sent to external software via MIDI, OSC, or custom
formats.

• Mutate the current specimen changing stochastically only leaf values of the functional
tree, applying new seeds for random processes, replacing complete branches, etc.

• Display decoded genotypes as editable text, so they can be manually edited from
scratch.

• Set constraints to the generated specimens, limiting the length, polyphony, depth of
the functional tree, forcing the inclusion of a function, etc.

• Define conditions and limitations for the search process.
• Edit germinal conditions, including the graphical edition of the germinal vector.

https://github.com/lopezmontes/GenoMus
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• Save and load specimens and germinal conditions.
• Export specimens as colored barcodes, according to the rules explained in Section 3.5.

GenoMus
JavaScript core code

genotype functions libraries

germinal vector
graphical editor

text
editor

bach
interactive score

current specimen data specimen files

third-party music software and hardware

manual control
over specimens

generation
and evolution

germ
inal vecto

r

de
co

de
d

ge
no

ty
pe

decoded
phenotype

save/load

de
co

de
d

ge
no

ty
pe

m
an

ua
l

ed
it

io
n

ge
rm

in
al

ve
ct

or
m

an
ua

l
ed

it
io

n

GenoMus Max patch
interface Node.js — Max

Figure 2. Overview of the environment designed to interact with the GenoMus generative algorithm.

3.2. Anatomy of a Genotype Function

The algorithmic writing of functional trees is similar to the one proposed by Laine and
Kuskankaare [29], also focused on bioinspired algorithmic composition. A useful and more
formal study of the algorithmic generation of trees was published by Drewes et al. [30].
A simpler but comparable project, also based on the automatic writing of executable
programs, was presented by Spector and Alpern [31].

A decoded genotype is a procedural representation of a music score written as a nested
functional expression under the common syntax:

f uncName(argument1, argument2, ..., argumentN), (10)

where each genotype function takes other functions as arguments until it reaches the limit
imposed by the germinal condition depth.

All genotype functions share the same modular structure, to ease the algorithmic
metaprogramming of genotypes. The output of every genotype function is an object that
includes the properties listed in Table 1.
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Table 1. Properties returned by a genotype function after evaluation, using as an example the
expression ’lm(60,62)’, which represents a list of two MIDI pitches.

Property Name Description Example

funcType

output type of the function,
a property used to create a

pool of expressions that can be
referenced as an argument for

other functions

’lmidipitchF’

encGen encoded genotype [1,0.506578,0.53,0.404723,
0.53,0.458756,0]

decGen

decoded genotype; that is,
the expression of the

evaluated function that
returns itself

’lm(60,62)’

encPhen encoded phenotype [0.404723,0.458756]

(other optional properties)

specific properties generated
after evaluation, containing
useful information for the

parent function

(not returned by function lm)

This data structure is what each genotype function expects for every argument,
and what is passed to the next one. A crucial item is the property decGen, where a
function returns its own code as a string. It allows reevaluations of its code in execu-
tion time, which is essential to enable generative procedures involving iteration, recursion,
or stochastic processes.

3.3. Encoding and Decoding Strategies for Data Normalization and Retrotranscription

To represent different components of the functional tree as normalized values in
the range [0, 1] ∈ V, several strategies and conversions are employed, depending on the
token type and the handled numeric ranges. All these mappings have been designed to
cover a very wide spectrum of possible results, while also creating encodings with clear
numerical contrasts that allow any analysis algorithm to easily capture the differences
between vectors.

3.3.1. Leaf Type Identifiers

Identification of the next parameter type is needed to handle the right conversions,
since a function is often fed with arguments of a different type. All leaf types are tagged
with numbers ≥ 0.5 for a reason: this number, besides being an identifier, is also used after
the retrotranscription as a threshold value to decide whether a new value should be added
to the list of parameters. Since the threshold imposed by germinal condition maxl is always
≤0.5, this ensures that all values in the list are correctly encoded until a flag value 0 closes
the list and ends the function.

3.3.2. Leaf Values

To maintain the readability of decoded genotypes, each parameter type uses common
values (for example, pitch is represented with standard MIDI numbers). These convenient
numeric ranges are converted to normalized values following these criteria:

• A wide range of values is covered (for instance, for parameters regarding rhythm and
articulation, very short and long durations are available).

• For each parameter type, a central value of 0.5 is assigned to a midpoint among the
typical values, interval [0.2, 0.8] covers the usual range, and values < 0.2 and > 0.8
are reserved for extreme values rarely used in common music scores.
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• To favor the predominance of ordinary values, a previous conversion similar to the
lognormal function is applied to each encoded parameter value x supplied by a
germinal vector:

f (x) =
1
2
+

1
14

ln
(
− 1

1− x

)
. (11)

As an example, Figure 3 illustrates the equivalence among encoded and decoded
values for pitch. The curve combines a simple linear map and the lognormal-alike function
shown in Equation (11).
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Figure 3. Conversion of normalized values ∈ [0, 1] to human-readable midipitch values ∈ [0, 127].

So, by randomly generating germinal vectors, uniformly distributed values ∈ [0, 1]
are remapped to a Gaussian distribution, introducing a desired bias to produce musical
scores with common characteristics, without limiting the possibilities to the generation of
specimens exhibiting more extreme features.

3.3.3. Expression Structure Flags

The encoded genotypes simply use 1 and 0 to indicate the opening and closing of a
genotype function. The original values from the germinal vector are simply ignored and
overwritten.

3.3.4. Genotype Function Indices

Encoded genotypes must refer unequivocally to the available functions ∈ E f unc con-
tained in any functional tree. So, as a first requirement, any genotype function must be
pointed by a unique index ∈ V. All functions keep their indices unchanged, to ensure that
an encoded genotype will always be decoded as the same functional expression, regardless
of changes in set Funcs after adding new functions to the library. At the same time, these
indices must be as separated and uniformly distributed as possible in the interval [0, 1]
to obtain distinct vectors that are easily distinguishable for machine learning algorithms.
Finally, we must assign indices to new genotype functions without knowing how many
new ones will be added in the future.

To deal with all these requirements, a special conversion has been implemented. We
call this the golden encoded value (or simply the golden value) to a float ∈ V obtained after
applying a bijective map based on the well-known properties of the golden angle (an
angular version of the golden section), combined with modular arithmetics.

Taking ϕ = 1
2 (1 +

√
5) as the golden ratio and r as a function, and reducing to 6 digits

the mantissa of a real number, the function

g(n) = r(nϕ mod 1) | n ∈ N>0, n < maxn, (12)

where mod is a modulus operator that works with floating-point numbers, and maxn, the
first integer producing a repeated value, returns the golden value corresponding to the
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integer n. The limited quantity maxn of integers able to generate unique values g(n) until
reaching a repeated golden value is >105, so that there are far more different indices than
are needed.

This conversion has a very convenient feature: despite ignoring how many values
will be needed to be stored, the distribution across the interval [0, 1] is stochastically well
balanced. Figure 4 shows how the distribution of indices uniformly covers the range
of normalized values. This kind of mapping based on the modulation of golden-angle
properties to obtain the balanced distributions of an unknown quantity of indices is not
common, although some methods have been recently proposed [32] to obtain simple
algorithms to deal with similar optimization problems in other domains.
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Figure 4. First 125 golden encoded values across interval [0, 1]. Every value is projected horizontally
to visualize the balanced accumulative distribution.

Once this bijection is defined, each new genotype function is assigned an integer
index converted to its reciprocal encoded golden value. The transformation tran then
takes each number in a germinal vector that represents a call for a genotype function and
substitutes it with the closest available index of the output type required by its parent
function, as illustrated in Figure 5.

g(1)g(2) g(3)g(4)0 10.
37
2

Figure 5. For this example, we assume that only genotype functions with the decoded indices 1, 2, 3,
and 4 are eligible for a given output type. Consequently, the value provided by the germinal vector is
substituted by its closest number among the available golden values g(1), g(2), g(3), and g(4); 0.372
is replaced by g(4) = 0.472136, a permanent pointer to a function. This transformation ensures the
rendering of the exact same specimen, regardless of working with an extended function library in
the future.

Golden values are also useful for encoding integers in other contexts, both in genotypes
and phenotypes, as shown in Figures 6 and 7. Some genotype functions accept integers
without a defined range as arguments, which involve this map again. For phenotype
encoding, golden values are indispensable for specifying discrete features such as the
number of voices per score, events per voice, and items inside a multiparameter.
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1start [0, 1] [0.5, 1) [0, 1] 0

new function
flag

function
encoded index

leaf
identifier

leaf
value

function end
flag

germinal value
ignored

approximated from
germinal value

germinal value
ignored, but for lists it

determines if a new item
will be added

germinal value
unchanged

germinal value
ignored

if a leaf
is added

if current
function is
completed if parent

function is
completed

if current function is completed and a new
function must be added in the parent level

if leaf is part of a list
and a new item is

added

if current function has no leaves

if a new function is added
inside a parent function

Figure 6. Numerical transformations applied by the map trans to create encoded genotypes from
germinal vectors. Black and gray values work as flags and identifiers that replace the original
numbers of a germinal vector. Orange indicates that a golden value conversion is needed to create an
exact reference to a genotype function. Values in cyan nodes are not changed, since they correspond
to leaf parameters fed as numeric arguments to terminal functions.

[0, 1]start [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] ... [0, 1]

enc. number
of voices

enc. number
of events

encoded
delta time

enc. number of
multiparameter

items

multiparam.
enc. item

encoded
parameter

last encoded
parameter

else

if items in multiparameter
are incompleted

if there are events in voice left to complete

if there are voices in score left to complete

Figure 7. Structure of encoded phenotypes vectors. As in Figure 6, orange indicates a golden value
conversion. Encoded phenotypes use golden values to indicate the total number of voices, total
events within a voice, and total items within an event multiparameter.

3.4. Encoding Genotypes and Phenotypes Vectors

Using this variety of conversions, the encoded representation of any functional ex-
pression is reduced to a numeric array. The encoding process can be schematized as the
automaton in Figure 6.

To encode a string containing a correct and evaluable functional expression into a
numerical array, the information supplied by the germinal conditions detailed in Section 2.2
is essential. On the other hand, these constraints are not used to decode back the encoded
vectors of genotypes and phenotypes: such arrays constitute self-contained output infor-
mation that do not need further information to be converted into evaluable expressions
and music scores.

Phenotypes encoding is a simpler process, as Figure 7 shows. The decoding of Geno-
Mus encoded phenotypes into standard formats for any musical application (which is a
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decoded phenotype) can be seen as an external and trivial operation, not directly concerned
with this formal specification.

3.5. Minimal Examples Visualized

Below, we present several simple examples to illustrate the described framework.
To help understand the encoding process, we visualize float arrays as colored barcodes.
The length of each bar maps directly the value. Colors are assigned with different meanings,
as detailed in Table 2. Colors in each category are not allocated linearly: small differences
in values map to very different tonalities, and so bars that appear to be the same length
will show contrasting hue values.

Table 2. Color code for vector visualization.

Value Meaning Colors

1 new function black
0 end of function black

0.5, 0.51, 0.52, ... function type identifier gray tones
g(1), g(2), g(3), ... encoded golden value red–orange–yellow

rest of values leaf value green–blue–purple

The example in Figure 8 shows a specimen consisting of the minimal element: a
leaf value. Starting from a set of germinal conditions where the output type is midipitch,
different transformations are applied until a minimal music token is produced.

germinal vector

~x = (0.577743, 0.214386, 0.092987, 0.404723,
0.242378, 0.855182, 0.742378)

encoded genotype

tran(~x, R) = (~y, R)
~y = (1, 0.326238, 0.53, 0.404723, 0)

decoded genotype dec(~y, R) = (“ m(60)”, R)

encoded phenotype eval(dec(~y, R)) = (~z, R)
~z = (0.404723)

decoded phenotype

Figure 8. Minimal example with a midipitch parameter representing middle C. Each value in germinal
vector ~x is mapped to corresponding values in encoded genotype ~y following the rules described in
Figure 6. Note that the last two values of ~x are ignored because they are not necessary.

In Figure 9, the specimen output type is score for the species piano, whose events have
four parameters: duration, pitch, articulation, and intensity.
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germinal vector

~x = (0.46426, 0.427314, 0.845, 0.85692
0.051631, 0.087376, 0.899418)

encoded genotype ~y = (1, 0.472136, 1, 0.854102, 1, 0.185365
1, 0.590537, 0, 1, 0.826604, 0, 1
0.8266, 0, 1, 0.8266, 0, 1, 0.0626, 0,
1, 0.18034, 0.56, 0.802184, 0, 0, 0, 0)

decoded genotype s(v(e3Pitches(nRnd(),mRnd(),mRnd(),mRnd(),aRnd(),i(60))))

encoded phenotype
~z = (0.618034, 0.618034, 0.128306

0.854102, 0.280617, 0.313709,
0.972517, 0.880103, 0.802184)

decoded phenotype

Figure 9. Minimal example of a complete score specimen. This score has only one voice, and the voice
includes only one event. However, the event type function e3Pitches generates a chord with three
pitches (randomly produced with the function mRnd). Note that red-orange bars represent golden
encoded values: in the genotype referring to function indices; in the phenotype indicating one voice
in the score, one event in the voice, and three pitches in the event.

The germinal vector in the specimen in Figure 9 again has seven values, but it is now
read multiple times as a circular array until the encoded genotype is completed. Since
part of the values provided by the germinal vector are ignored in this process, we can
consider that only some changes in this vector are relevant. Figure 10 explicitly shows
the positions that affect the musical result (about half of the total numbers). The search
space when applying machine learning algorithms is then less than apparent. Finally,
Figure 11 compares several equivalent germinal vectors corresponding to the encoded
genotype of the minimal specimen seen in Figure 8. The genotype can be included back in
the pool of germinal vectors, because it is self-generating. As described in Section 2.4, we
call this desired feature retrotranscription. It is noteworthy that this transformation also
exists in genomics through the reverse transcriptase enzyme, which transcribes DNA from
RNA, reversing the usual flow of genetic information. In GenoMus, this feature enables an
efficient way to find a germinal vector from a functional expression created by hand.
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Figure 10. Germinal vector used as a circular array to originate a longer encoded genotype vector.
Solid lines relate to numbers transposed without alterations (the color does not change). These values
correspond to the leaves of the functional tree expression. Dashed lines denote changes in the original
value: they are function indices encoded as golden values (red-orange colors), pointing to the chosen
functions to build the decoded genotype. Note that the lengths of such related values are similar since
the algorithm explained in Figure 5 makes this choice by looking for the closest available function
index of the required type.

retrotranscription

truncated truncated truncated
germinal vectors

encoded genotype

Figure 11. Equivalent germinal vectors representing the midipitch parameter, middle C. As the red and
blue arrows show, in this example, only two important values are determining the chosen function m
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and the parameter value 60. The retrotranscription of the encoded genotype vector is indicated
by the blue arrow: the generated vector can be returned to the pool of its corresponding germinal
vectors, as long as this vector generates itself. Colors help to easily identify germinal vectors created
by retrotranscription.

4. Results
4.1. Clapping Music as a GenoMus Specimen

Based on the previous description, this system can be seen as a pure generative
grammar. Our abstractions are focused on capturing and compressing the information
contained in real music. As López de Mántaras [9] states, “in general the rules don’t make
the music, it is the music that makes the rules”. In this section, we follow this advice in a
pretty literal way.

To illustrate how GenoMus represents and encodes a piece of music using basic
procedures in an abstract format, we model Clapping Music, a famous piece composed by
Steve Reich in 1972. Like many of his works, it begins with a minimal motif that undergoes
simple transformations with big consequences in the overall form. Two performers start
the piece by repeating a clapped pattern. One of the performers removes the first note of
the pattern after each cycle of eight repetitions, creating a phase shift among both rhythmic
lines. The work is finished when both players are in phase again. Figure 12 shows the score
and one of the possible analytical deconstructions in patterns.

A B 
C D 
E

F 
G 
J 

I K 

L 

each bar must
be repeated
8 or 12 times
 
 
 
continues until
both voices are
in phase again

H 

Figure 12. Complete score of S. Reich’s Clapping Music. Each box contains nested musical patterns
derived from the initial motif A. Derived pattern L embraces the whole piece. This is only one of
many possible procedural analyses of this famous work.

Our model derivates the whole composition from transformations of the first four
notes (motif A), applying six generic operations using the genotype functions explained in
Table 3.

There exist several ways to model the piece, since its patterns can be obtained using
different methods. Comparing different strategies of generating this work is an interesting
question beyond this paper’s scope. Each model can correspond to alternative manners of
perceiving structural aspects. A different analysis but also procedural model of Clapping
Music can be found in [33]. To create our model, we looked for the most concise code
assembling simple and generic operations.

In Section 4.4, a new genotype function is derived from the analytical recreation of the
piece, expanding the available function library. The new function enables endless variations
of the original idea and its integration with other functions.
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Table 3. Genotype functions used to model Clapping Music. The table shows only functions that are
not mere identity functions that act as simple data containers for each parameter type.

Function Name Arguments Type Output Type Description

vMotifLoop
(lnotevalue, lmidipitch, larticulation,

lintensity) voice

Creates a sequence of events based on
repeating lists. The number of events

is determined by the longest list.
Shorter lists are treated as loops.

vConcatV (voice, voice) voice Concatenates two voices sequentially.

vRepeatV (voice, quantized) voice Repeats a voice a number of times.

vSlice (voice, quantized) voice
Removes a number of events at the
beginning or at the end of a voice.

vAutoref (quantized) voice
Returns a copy of a previous voice

branch of the functional tree,
referenced by an index.

s2V (voice, voice) score Joins two voices simultaneously.

4.2. Pure Procedural Representation

The piece was modeled using a species called piano which, according to the formal-
ism stated in Section 2.2, is defined as the set specpiano = (Types,~t, Maps, Funcs, Coders).
The required elements for completing this definition are enumerated in Table 4.

Table 4. Minimal elements in piano species required to model Clapping Music procedurally.

Types Event Structure
~t Maps Funcs Coders

{notevalue, (notevalue, (norm2notevalue, {q , {tran,
midipitch, midipitch, norm2midipitch, ln , dec,

articulation, articulation, norm2articulation, lm , enc,
intensity, intensity) norm2intensity, la , eval,
quantized, norm2quantized, li , conv}

lnotevalue 1, norm2goldenvalue) vMotifLoop,
lmidipitch, and inverse vConcatV,

larticulation, converters vRepeatV,
lintensity, vSlice,

event, vAutoref,
voice, s2V}
score}

1 The types beginning with l are lists of a parameter type.

Beyond the simple identity functions q, ln, lm, la, and li, which simply take and
return unchanged numeric values or lists that serve as leaf values of the functional tree,
only a few functions are needed to model Clapping Music. The processes carried out by
these functions are described in Table 3. The complete work is recreated by the decoded
genotype displayed in Listing 1.



Appl. Sci. 2022, 12, 8322 19 of 25

Listing 1. Decoded genotype of Clapping Music model. The uppercase letters in the comments refer
to the patterns analyzed in Figure 12.

s2V( // score L: joins the 2 voices vertically
vSlice( // voice J: slices last cycle due to phase shift

vRepeatV( // phase G: F 13 times
vRepeatV( // cycle F: E 8 times

vConcatV( // pattern E: C + D
vConcatV( // motif C: A + B

vMotifLoop( // core motif A: 3 8th-notes and a silence
ln(1/8), // note values
lm(65), // pitch (irrelevant for this piece)
la(50), // articulation
li(60,60,90,0)), // intensities (last note louder for clarity)

vSlice( // motif B: A with 1st note sliced
vAutoref(0),
q(1))),

vSlice( // motif D: C with first two notes sliced
vAutoref(3),
q(2))),

q(8)),
q(13)),

q(-12)),
vConcatV( // voice K: F + H

vAutoref(7),
vRepeatV( // phase I: H 12 times

vSlice( // cycle H: F without 1st note, for phase shift
vAutoref(10),
q(1)),

q(12))))

4.3. Internal Autoreferences

As noted above, another key feature of the GenoMus grammar is the ability to set
internal references to branches inside a functional tree for the purpose of reusing music
materials throughout the development of a piece. The argument supplied to a vAutoref
function refers to a list of subexpressions stored and updated after each genotype function
is evaluated. An autoreference can refer only to the available subexpressions indexed at
the time of its evaluation, which implies that during the generative metaprogramming
process, a function will only reuse preexisting musical material. This reflects how human
perception and memory work, establishing interrelations only with preceding elements.

To clarify the autoreferences inside a genotype, Table 5 lists all subexpressions stored
at the end of the genotype evaluation. This network of internal pointers allows efficiency
and data reduction, and more importantly, it reflects the deep structure of music.

Figure 13 displays the functional tree of this decoded genotype, along with its internal
autoreferences. The tree is represented in inverse order, from left to right, to reflect how
substructures are feeding to subsequent functions that construct larger musical patterns,
as well as the subexpressions indexing order.
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Table 5. Subexpressions of voice function type stored during the evaluation of Clapping Music
genotype, available to be pointed by internal autoreferences with function vAutoref. Only voice type
subexpressions are shown, although they exist for other categories too. Autoreferences can refer to
foregoing autoreferences, as occurs at line 25, where vAutoref(10) points to vAutoref(7), which in
turn points to a subexpression containing two more autoreferences.

Index Subexpression

0. "vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0))"
1. "vAutoref(0)"
2. "vSlice(vAutoref(0),q(1))"
3. "vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0)),vSlice

(vAutoref(0),q(1)))"
4. "vAutoref(3)"
5. "vSlice(vAutoref(3),q(2))"
6. "vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0)),

vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),q(2)))"
7. "vRepeatV(vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),

li(60,60,90,0)),vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),q(2))),q(8))"
8. "vRepeatV(vRepeatV(vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),

li(60,60,90,0)),vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),q(2))),
q(8)),q(13))"

9. "vSlice(vRepeatV(vRepeatV(vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),
la(50),li(60,60,90,0)),vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),
q(2))),q(8)),q(13)),q(-12))"

10. "vAutoref(7)"
11. "vAutoref(10)"
12. "vSlice(vAutoref(10),q(1))"
13. "vRepeatV(vSlice(vAutoref(10),q(1)),q(12))"
14. "vConcatV(vAutoref(7),vRepeatV(vSlice(vAutoref(10),q(1)),q(12)))"

−12

Figure 13. Functional tree of Clapping Music decoded genotype, along with the patterns in the
score. A step-by-step slideshow version of this graph with additional comments can be found in the
Supplementary Materials linked at the end of the article.
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The encoded genotype of our Clapping Music model consists of 117 values, which is
remarkable for a piece lasting several minutes. This fact reflects how this work is a really
good example of the minimalist principle of reducing the development of a composition to
essential elements and to a process capable of exhibiting its own capacity for autonomous
growth. Figure 14 shows the visualization of the abstract pure numerical representation of
the composition.

Figure 14. Visualization of Clapping Music encoded genotype. The decoded genotype shown in
Listing 1 was encoded as a float array as described in Figure 6. The visualization of this numeric
sequence, using the color code detailed in Table 2, shows that most of the code consists of genotype
functions (introduced and closed by black long and short bars), while there are only a few leaf values
(numeric values given as final parameters, preceded by gray bars). As discussed previously, this
vector is also one of its related germinal vectors.

4.4. Creating New Functions from Musical Examples

The genotype of a whole composition like this (or only part of it) can be automatically
flattened to create a new genotype function where all leaves are assembled as a single array
of arguments, although the numeric values that feed arguments for the autoreferences are
excluded from the arguments array of the new derivate function because of their structural
character. These numbers must be immutable to preserve the internal consistency of the
procedure. For instance, a new function called sClapping could be created to be handled as
a new procedure, abstracted from the original piece and compacted following the structure
shown in Table 6.

Table 6. Data structure of the genotype function sClapping, a new function generated after flattening
the functional tree of Clapping Music shown in Listing 1.

Function Name Arguments Type Output Type Description

sClapping

(lnotevalues, lmidipitch,
larticulation, lintensity,
quantized, quantized,
quantized, quantized,
quantized, quantized,

quantized)

score

Creates two voices with
a repeated pattern with
a progressive phase shift

of the second voice
created by slicing notes

at the beginning of
the pattern.

5. Discussion and Conclusions

The aesthetic potential of computer-generated artworks is often obscure, especially
when there are aspirations to find original styles and new methods. Human composers
usually conceive sequences of notes, agogics, articulation gestures, and dynamic expressive-
ness as a whole. There is no intrinsic value in an isolated sequence of durations and pitches
if it lacks expressive attributes such as articulation and dynamics. Interrelations of different
parameters, both in the short- and long term, are critical to obtain appealing results.

A good piece of music is much more than the sum of its parts. Composers often
construct a piece by planning interrelations between the details of motifs and the over-
all structure. This holistic conception of creativity has been obviated in much previous
research focused on particular compositional tasks. So, in our framework, macro- and
microformal features are created and transformed as an entire entity from the beginning of
the transformational operations.

Preliminary experiments with GenoMus showed that many of the randomly gener-
ated musical excerpts exhibited surprising expressive qualities: an interesting dynamic
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gesture can create a feeling of order and purpose when applied to sequences of notes that
otherwise could be assessed as being meaningless or too random. So, to discover potential
combinations, our framework fuses the generation of completely developed excerpts with
the incremental transformation of the details of any element inside them.

5.1. Development and Specification of the Grammar Key Characteristics

The writing and testing process throughout the creation of our grammar proposal has
been long. Since the first sketches presented in 2015 [34], each iteration of the project has
been tested with the composition of real instrumental and electroacoustic pieces [25,35,36].
Those practical experiments with actual artistic applications have shown the strengths and
weaknesses of each version, and have been fundamental in laying the foundations for the
current prototype, which can be summarized as follows:

• Grammar based on a symbolic and generative approach to music composition and analysis.
GenoMus is focused on the correspondences between compositional procedures and
musical results. It employs the genotype/phenotype metaphor, as many other similar
approaches, but in a very specific way. The musical analysis represented as trees has
been also used by Ando et al. [37], representing classical pieces.

• Style-independent grammar, able to integrate and combine traditional and contemporary tech-
niques. In any approach to artificial creativity, a representation system is a precondition
that restricts the search space and imposes aesthetic biases a priori, either consciously
or unconsciously. The design of algorithms to generate music can be ultimately seen
as an act of composition itself. With this in mind, our proposal seeks to be as open
and generic as possible, to represent virtually any style, and to enclose any procedure.
The purpose of the project is not to imitate styles, but to create results of certain
originality, worthy of being qualified as creative. A smooth integration of modern
and traditional techniques is one of the purposes of our grammar. GenoMus allows
for the inclusion and interaction of any compositional procedure, even those from
generative techniques that imply iterative subprocesses, such as recursive formulas,
automata, chaos, constraint-based and heuristic searches, L-systems, etc. This simple
architecture achieves the integration of the three different paradigms described by
Wooller et al. [38]: analytic, transformational, and generative. So, a genotype can be
viewed as a multiagent tree.

• Optimized modularity for metaprogramming. Each musical excerpt is generated by a func-
tion tree made with a palette of procedures attending all dimensions: events, motifs,
rhythmic and harmonic structures, polyphony, global form, etc. All function categories
share the same input/output data structures, which eases the implementation of the
metaprogramming routines encompassing all time scales and polyphonic layers of
a composition, from expressive details to the overall form. This follows the advice
of Jacobs [39] and Herremans et al. [40], who suggest working with larger building
blocks to capture longer music structures.

• Support for internal autoreferences. In almost any composition, some essential pro-
cedures require the reuse of previously heard patterns. As many pieces consist of
transformations and derivations of motifs presented at the very beginning, our frame-
work enables pointing to preceding patterns. At execution time, each subexpression
is stored and indexed, being available to be referenced by the subsequent functions
of the evaluation chain. Beyond the benefits of avoiding internal redundancy when
there are repeated patterns, the possibility of creating internal autorefences of nodes
inside a function tree is an indispensable precondition for the inclusion of procedures
that demand the recursion and reevaluation of subexpressions. This kind of reuse of
genotype excerpts is also observed in genomics [41].
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• Consistency of the correspondences among procedures and musical outputs. To obtain an
increasing knowledge base, correspondences between expressions, encoded repre-
sentations, and the resulting music must be always the same, regardless of the forth-
coming evolution of the grammar and the progressive addition of new procedures
by different users. To encode musical procedures, each function name is assigned
a number, but to keep the encoded vectors as different as possible, function name
indices are scattered across the interval [0, 1] and are registered in a library containing
all available functions.

• Possibility of generating music using subsets of the complete library of compositional proce-
dures. Before the automatic composition process begins, users can select which specific
procedures should be included or excluded from it. It can also be used to set the
mandatory functions to be used in all the results proposed by the algorithm.

• Applicability to other creative disciplines beyond music. Although this framework is
presented for the automatic composition of music, the model is easily adaptable to
other areas where creative solutions are sought. Whenever it is possible to decompose
a result into nested procedures, a library of such compound procedures can be created,
taking advantage of their encoding as numerical vectors that serve as input data for
machine learning algorithms.

5.2. Perspectives for Training, Testing, and Validation of the Model

When modeling artistic creativity with algorithms, probably the most evasive issue to
address is programming fitness functions. The problem of defining how to evaluate and
select the products of automatic composition falls beyond the scope of this text, but some
insights can be made to ground further research in this area, based on some preliminary
experiments made during code testing.

By definition, the assessment of a piece of art can only make sense from a subjective
point of view, since the goal of art is to provoke inner and personal reactions. These individ-
ual responses are very dependent on cultural, social, and individual contexts. Furthermore,
the rating of musical ideas can be identified itself with the very act of composition, as long
as composing music is ultimately making choices. However, provided with enough data,
some predictions can be made regarding the expected reception for a new piece.

GenoMus is primarily conceived as a tool for discovering new music, both for users
with no technical skills in music composition and for expert composers who can implement
their own functions and musical data to feed the system and to create creative feedback.
With this in mind, we propose some guidelines for the training of the model:

• Multiple strategies of evolution in parallel: Starting from a given genotype, a wide
range of manipulations can be combined, mutating and crossing leaves and branches
of the functional tree, and also introducing previously learned patterns at any time
scale. The architecture of germinal vectors as universally computable inputs has been
designed to enable high flexibility for any manipulation of preexisting material as
simple numeric manipulations.

• Specimen autoanalysis: Some genotype functions can return an objective analysis of a
set of musical characteristics, such as variability, rhythmic complexity, tonal stability,
global dissonance index, level of inner autoreference, etc. These genotype metadata
are very helpful for reducing the search space when looking for some specific styles,
and allow any AI system to measure the relative distance and similarities to other
specimens, classify results, and drive evolution processes.

• Human supervised evaluations: subjective ratings made by human users, attending to
aesthetic value, originality, mood, and emotional intensity, can be stored and classified
to build a database of interesting germinal conditions to be taken as starting points for
new interactions with each user profile.

• Analysis of existing music: selected excerpts recreated as a decoded genotype (as
shown in Section 4), both manual or automated, can enrich the corpus of the learned
specimens of a general database.
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Finally, we provide in the Supplementary Materials a collection of MIDI sequences
generated during tests with GenoMus using the provided software, rendered without any
manipulation, just to illustrate the expressiveness and stylistic variability of the outputs, even
without any application of machine learning techniques. With barely the integration of very
simple genotype functions in a basic library, some appealing results have already emerged.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app12168322/s1: Figure S1: Version of Figure 13 as a step-by-
step slideshow with additional comments; Application S1: Max patch described in Figure 2, along
with the core JavaScript code and other required auxiliary files; Audio S1: Selection of raw music
materials generated during tests with the prototype.
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