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Abstract: Generative Adversarial Network (GAN), deemed as a powerful deep-learning-based
silver bullet for intelligent data generation, has been widely used in multi-disciplines. Furthermore,
conditional GAN (CGAN) introduces artificial control information on the basis of GAN, which is
more practical for many specific fields, though it is mostly used in domain transfer. Researchers have
proposed numerous methods to tackle diverse tasks by employing CGAN. It is now a timely and
also critical point to review these achievements. We first give a brief introduction to the principle of
CGAN, then focus on how to improve it to achieve better performance and how to evaluate such
performance across the variants. Afterward, the main applications of CGAN in domain transfer are
presented. Finally, as another major contribution, we also list the current problems and challenges
of CGAN.

Keywords: conditional generative adversarial network; loss function; cycle consistency; progressive
enhancement mechanism; domain transfer

1. Introduction

Since the booming development of deep learning, neural networks of various archi-
tectures have emerged in an endless stream. Domain transformation is one of the most
important problems for which deep learning is qualified. Generally speaking, domain
transfer is the process of moving data from one domain to another by learning the simi-
larities between the two domains and building a bridge between them to apply the old
knowledge to the new domain so that the new knowledge can be learned faster and better.
It can further address the image/scene gap during training and practical application. It can
change one aspect of the data while preserving others. In recent years, the domain transfer
method has been applied to solving many practical problems, such as geoscientific inverse
problems [1], maize residue segmentation [2], person re-identification [3], data augment in
face recognition [4] and age estimation [5]. Because of the complexity of high-dimensional
data, it is not easy to separate the features that need to change from those remaining
unchanged. However, the emergence of Conditional Generative Adversarial Networks
(CGAN) greatly improves the effect of the domain transfer. With the assistance of CGAN,
domain transfer can be easily applied in different application scenarios. Therefore, this
article will review the problems of domain transfer based on CGAN. In fact, CGAN could
also be used for other application fields, such as data augmentation, image inpainting and
so on. While their principles are similar, it is very necessary to conduct a review on CGAN.
For the sake of illustration, we will first review Generative Adversarial Networks (GAN)
without conditions and then expand the introduction to CGAN.

In 2014, Goodfellow et al. proposed GAN for the first time [6], providing a new method
for generating realistic images. Generally speaking, GAN consists of two independent
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networks: generative network and discriminative network. The generative network is used
to generate an image from a random vector, while the discriminative network determines
whether an image is a real image from a data set or a fake image generated by the generative
network. The framework of GAN seems to be quite different from deep learning algorithms
for classification [7] or regression [8], but they have some common features [9,10]. The main
body of GAN is barely the generative network, while the discriminative network can be
viewed as a complex loss function calculator, which needs to go through a process of
training rather than only a few simple arithmetic calculations, such as Mean Square Error
(MSE) [11]. On the other hand, to improve the training effect of GAN, the discriminative
network is not trained to the convergent state in the process of calculating the loss function.
In other words, the training of the generative network and the discriminative network are
alternately carried out.

However, GAN has a serious disadvantage; that is, it cannot control the output of the
generative network [12]. For example, the MINIST dataset is composed of handwritten
digits from zero to nine [6]. After completing the training, a random vector is fed into GAN,
and the output may be any one of zero to nine, which cannot be predicted in advance.
This greatly affects the practicability of GAN. To solve this problem, CGAN was proposed
in [13]. CGAN introduces a conditional variable, which is used to control the behavior of the
generative network, making the output constrained to the user-specified distribution and
ensuring its stability. However, conditional variables do not completely fix the generated
content of the generative network. The input of the generative network still contains
random vectors, and the generated results are still diverse. The stability and diversity of
CGAN’s generated results make it rather promising. In recent years, many institutions
have carried out research on CGAN, made various improvements [14–16] and applied it to
various domain transfer problems [17–21], and even spread them to various fields outside
this traditional field [22,23]. At present, a large amount of surveys have summarized the
models of GANs, but few of them concentrated on the topic of CGANs in domain transfer.
Therefore, this paper will first summarize the research on CGAN and further discuss
the problems and challenges facing it, aiming to encourage more researchers to develop
CGANs. We have inspected almost 190 papers manually about CGANs, while some of
them are not officially published or have similar ideas. Therefore, the final listed citations
are carefully selected, including papers published in SCI journals or conferences, papers
widely recognized by peer researchers (or highly cited papers) and a few novel interesting
papers. In the meantime, our analysis and findings can be generalized to those new fields.
Our main contributions can be summarized as follows:

1. This paper first summarizes the research on the CGAN in the domain transfer.
2. This paper summarizes the CGAN from different aspects, such as the loss function,

the model variants, application fields and so on, so that readers can easily understand
the situation of current research.

3. This paper discusses the remaining problems and challenges of CGAN and provides
the possible future directions for the development of CGAN.

The structure of this article is as follows. In Section 2.1, the theoretical basis of CGAN
will be introduced, and then in Section 2.2, we will focus on some typical improved versions
of CGAN. In Section 3, the main evaluation methods will be summarized. In Section 4,
applications of CGAN in various fields of domain transfer will be discussed in detail,
focusing on the problems faced in specific scenarios and their corresponding solutions.
In Section 5, we list some crucial problems and challenges of CGAN to date. Finally,
the future development of CGAN will be analyzed in Section 6.

2. The Development Methods of CGAN
2.1. The Principle of CGAN

CGAN is directly derived from GAN. In order to better introduce CGAN, the principle
of GAN is herein briefly reviewed. In GAN, there are two networks—generative network G
and discriminative network D, in which G is used to establish the data distribution, and D
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is used to estimate the probability that a sample comes from the dataset or G. In order
to obtain the distribution, pg, of the dataset, x, G will establish a mapping from the prior
noise distribution, pz(z), to the data space, x; G outputs a scalar, D(x; θd) to represent the
probability that x comes from the dataset. During the training, the parameter updates of G
and D are carried out simultaneously. When adjusting the parameters of G, the goal is to
minimize log(1−D(G(z))), and when adjusting the parameters of D, the goal is converted
to log D(G(z)). They counteract each other and optimize the following functions in the
opposite direction:

min
G

max
D

V(D, G) =Ex∼pdata(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))]
(1)

The generic framework of GAN could be seen in Figure 1. If the above generative
network and discriminative network are conditional on some additional information y,
then GAN will be extended to CGAN. Here, y can be any additional information, such as
category labels or other modal data. In the design of network architecture, y is often used
as the input for both the generative network and discriminative network. For G, the prior
noise pz(z) and the condition y are concatenated for the hidden layer; for D, sample data
or generated data x and condition y are concatenated as the input. Therefore, the objective
function becomes:

min
G

max
D

V(D, G) =Ex∼pdata(x)[log D(x|y)]

+Ez∼pz(z)[log(1− D(G(z|y)))]
(2)

x

z y

y

Generator

Discriminator

G(z|y)

Figure 1. The generic framework of GAN. Compared with GAN, it also takes the condition y as the
input of the generator and discriminator.

2.2. The Improvement of CGAN

When CGAN is applied to the computer vision field, image transformation can be
completed if the condition is specified as an image. To be specific, given two types of image
data (respectively, represented as domain X and domain Y), the input of the generative
network will be random vector z and samples x of the domain X during the training
process. After achieving the output image, we compare it with the corresponding sample
y of the domain Y. However, this method faces many difficulties in practical application,
so many scholars have tried to use different technologies to improve the framework or
training mode. This section reviews these efforts so far.

2.2.1. The Loss Function of CGAN

As mentioned above, the main part of GAN is the generative network, while the
discriminative network is only a complex loss function. The same is true of CGAN. How-
ever, maximizing the classification error of the discriminative network will only have a
limited effect on CGAN. Faced with a variety of complex application scenarios, researchers
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have also proposed many other loss functions for the training of CGAN. Representing the
parameters in the CGAN as θ, and then these loss functions as L1(x; θ), L2(x; θ), ..., Ln(x; θ),
then the training of CGAN becomes a multi-objective optimization problem, using the
weighted sum of each loss as the final loss function,

L(x; θ) =
n

∑
i=1

ηiLi(x; θ), (
n

∑
i=1

ηi = 1). (3)

Here, ηi represents the coefficient. The losses commonly used except for discriminant
losses are described below.

1. Content loss: This loss is primarily used to measure the gap between the generated
image and the user’s expectations. For example, when training CGANs whose task
is to transfer gray-level images to color images, the general strategy is to first render
a set of color images grayscale and then use the paired gray level image y and color
image x as training data. During the training process, when the generative network
inputs gray level images and outputs color images, users usually expect the output
results to be as close as possible to the corresponding color image in the training set.
Therefore, the loss is expressed as the difference between the values of each pixel in
the generated images and the training data, which is generally characterized by mean
square error (MSE),

Lcontent(x; θ) =
1

CHW

C

∑
i=1

H

∑
j=1

W

∑
k=1

(G(y)ijk − xijk)
2. (4)

Here C, H and W, respectively, represent the number of channels, height and width
of the image, ·ijk represents the i-th channel, j-th row and k-th column of a sam-
ple. However, it is worth noting that excessive increases in this loss will lead to
image blurring.

2. Perception loss: Although content loss can monitor the content of the generated
image, it gives more consideration to the underlying semantics of the image due to
its pixel-by-pixel differential mechanism. In order to monitor the high-level semantic
consistency between the generated image and the actual image, perception loss is
often used. In essence, it is still the MSE of two tensors, except that the two tensors
are no longer about the image itself, and instead, the feature map is derived from
the images with a certain model. For example, ESRGAN [14] takes the generated
image and the actual image as the input of the VGG19 network [24], respectively,
and then calculates the MSE of hidden variables of each layer in the middle of the
VGG19 network. Generally, the expression of the loss is:

Lperception(x; θ)

=
1

CHW

C

∑
i=1

H

∑
j=1

W

∑
k=1

(F(G(y))ijk − F(x)ijk)
2.

(5)

Here, similarly, C, H and W, respectively, represent the number of channels, height
and width of the image, ·ijk represents the i-th channel, j-th row and k-th column of a
sample, and F can be any model.

3. Hidden variable loss: Both content loss and perception loss are evaluated by the
final images generated by the generated network. However, when the network is
deep, the idea of end-to-end learning can swiftly cause the problem of gradient
disappearance or gradient explosion. For this reason, we would consider monitoring
hidden variables in the network. Since hidden variables do not have a dataset as the
“standard answer”, it is necessary to design the network architecture in a reasonable
way to construct two hidden variables with the same semantics. For example, in the
task of improving image resolution, if the generative network is designed to resemble
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an auto-encoder network, two hidden variables on the symmetry of the bottleneck can
be considered to represent the same semantic information, and the difference between
them can be designed as the loss of hidden variables. The expression of the loss is

Llatent(x; θ) = D f (l1‖l2), (6)

where l1 and l2 are the distributions of two hidden variables, and D f is f-divergence.
The specific type of f-divergence can be selected according to different tasks.

4. Category loss: In some scenarios, the user does not require the generated image to
be similar to an expected image, as long as it has the correct category. For example,
after training with MNIST, the user requires the network to generate the specified
number but does not require the handwriting characteristics of the number. For these
requirements, many CGAN models put the generated images into a pre-trained
classifier. Therefore, the expression of this kind of loss is similar to the common
classification problem, and cross-entropy loss is commonly used. The expression of
the loss is

Lclass(x; θ) = Ez,c[− log Dcls(c|G(z, y))], (7)

where Dcls represents the classifier and c represents the category to which the im-
age belongs.

The above four kinds of losses are only representing typical usage in CGAN, and there
is no clear boundary between them. Their differences are mainly reflected in independent
variables, calculation methods, etc. Table 1 summarizes them as a whole.

Table 1. The comparison of different loss functions.

Loss Function Content Loss [25] Perception
Loss [14]

Hidden Variable
Loss [26] Category Loss [27]

Source of indepen-
dent variables

The output of generative network
and training data

Two latent variables
in the network

The output of generation
network and condition

Data type of inde-
pendent variables Image tensors Distribution

Whether to use ad-
ditional networks No Yes No Yes

Metric Error (usually MSE) Divergence Divergence (usually cross-
entropy loss)

Contents of super-
vision

Low-level seman-
tics of generated
images

High-level seman-
tics of generated im-
ages

States of generative
network Class of generated images

In most of the existing results, all the above losses are not applied simultaneously.
The usual practice is to select 2–3 losses to build the loss function according to the specific
requirements of the task. Table 2 summarizes the usage of these losses in some typical
works. As can be seen from Table 2, most CGAN models use content loss. That said, in most
application scenarios, supervision of the low-level semantics is necessary.
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Table 2. The usage of loss functions in various methods.

Methods Adversarial
Loss

Content
Loss

Perception
Loss

Hidden Variable
Loss

Category
Loss

Laplacian Pyramid [28] X X
SRGAN [29] X X

Amortised MAP Inference [30] X
ESRGAN [14] X X X

Pixel-Level Domain Transfer [31] X X
Markovian GAN [32] X X

Generative Visual Manipulation [33] X X X
ICGAN [34] X X
pix2pix [35] X X

Scribbler [36] X X X
CycleGAN [15] X X
DiscoGAN [26] X X
DualGAN [37] X X
pix2pixHD [25] X X

MUNIT [38] X X
StarGAN V2 [39] X X X

ExprGAN [40] X X X X
AttGAN [19] X X X
STGAN [41] X X X

SynCGAN [42] X X X
StackGAN [16] X

StackGAN++ [43] X X
MirrorGAN [44] X X X
DM-GAN [45] X X X

2.2.2. Cycle Consistency

The premise of the successful training of the above image transformation model is that
the data between the two domains have certain relationships. However, in many actual
tasks, such as converting a picture of a man to a picture of a woman with the same face,
such a requirement is difficult to meet. In this case, without the criteria to judge the quality
of the generated data, many of the loss functions mentioned above lack data sources. That
is to say, it is impossible to improve the network performance only by optimizing the loss
function. The objective of optimization should be the network framework rather than
the loss function. For this reason, some researchers used the idea of cyclic consistency to
solve this problem and designed different CGAN frameworks, typical of which included
CycleGAN [15], StarGAN [27], DTN [46] and XGAN [47].

CycleGAN

The framework of CycleGAN is shown in Figure 2. It consists of two generative
networks and two discriminative networks. Let G become a generative network converting
an image from domain X to domain Y. After the original input x obtains the output Ŷ
through G, if Ŷ is fed back into F, the original input x should be retrieved. This is equivalent
to having the image loop back to the starting point and keeping it consistent. Its total loss
consists of four parts: firstly, two losses formed by two discriminative networks will guide
the generative networks to generate more realistic images for the target domain, which is
consistent with the loss function corresponding to raw GAN; secondly, two loop losses will
guide the generative networks to generate images that are as close as possible to the input
image. Its loss function is
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Lcyc(G, F) =Ex∼Pdata(x)[‖F(G(x))− x‖1]

+Ey∼Pdata(y)[‖G(F(y))− y‖1],
(8)

where ‖ · ‖1 is l1 norm.

x̂Ŷx G F
cycle-consistency loss

DY

ŷX̂y F G
cycle-consistency loss

DX

Figure 2. The framework of CycleGAN. It consists of two generative networks and two discriminative
networks. G is a converter from domain X to Y, and F is the reverse. The cycle-consistency loss
monitors whether the data are distorted in the transformation of X-Y-X and Y-X-Y.

StarGAN

CycleGAN uses the idea of cycle consistency to realize the conversion of images on two
domains. However, in this method, a target domain requires a large number of generative

networks, namely, n domains require
1
2

n(n − 1) generative networks. In addition to
high complexity, inadequate utilization of data may lead to the unsatisfactory quality
of generated images, and it is impossible to train domains together from different data
sets. Therefore, reference [27] proposes StarGAN to solve the problem of multi-domain
transformation, which only trains a single generator with data from multiple domains to
ensure the generated images contain different domain styles.

The training process of StarGAN is shown in Figure 3. It also uses two constraints,
conditional generative adversary and cyclic consistency. Figure 3a represents the training
of the discriminative network. The real images and the generated images are transferred
to the discriminative network, which needs to determine the authenticity of all images
and their corresponding domains. Figure 3b represents the training of the generative
network, where the generator receives both the input images and the target domain label.
Figure 3c represents the process of cycle consistency. It will take the image generated by the
previously generated network with the original domain label as the input of the generated
network. Figure 3d represents the training of the discriminator, which aims to distinguish
whether the image is real or not and whether in the correct domain.

In short, in order to realize the mutual transformation of multi-domain images, the gen-
erative network must receive two kinds of information, the input images and the target
domain to be transformed. To this end, the target domain information is equivalent to
the conditional constraint of the generated network. Cycle consistency is used to avoid
a situation where the generated images and the input images have nothing to do with
each other.
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G

Fake image

Target
domain

Input image

Real image

D

Fake image

Real / Fake Domain
classification

Deep-wise concatenation

Fake image

G

Original
domain

Reconstructed
image

D

Fake image

Real / Fake Domain
classification

(a) Training the
discriminant network

(b) Original-to-target
domain

Deep-wise concatenation
(c) Target-to-original

domain
(d) Fooling the

discriminant network

Figure 3. The framework of StarGAN. (a) D is composed of two modules and receives the real images
and fake images. One is to distinguish real images from fake ones, and the other is to classify them
into different domains. (b) G receives the target domain and input data and generates fake images.
(c) G reconstructs the raw images using the fake image and original domain information. (d) D
distinguishes the source of the image and its domain. A well-trained G can make D fail to complete
this task.

DTN

The cycle transformation in CycleGAN and StarGAN is relatively simple; in order
to make this process dig out more information, DTN [46] introduces perceptual loss and
strives to produce images that are consistent with the target on high-level semantics. This
strategy allows DTN to achieve linear regression of significantly different images. The DTN
framework is shown in Figure 4.

f g

f

D
Target
domain

Source
domain

Target
domain

Target
domain

f(x)

G

LTID

LGAND/LGANG

f(g(f(x)))LCONST

Figure 4. The framework of DTN. The generative network G is composed of feature extractor f and
image generative network g, where f will extract the image features of the input image, and g is used
to generate the image. As to loss function, Lconst supervises the difference of features between two
domains, LTID supervises the difference between output and input, and LGAND/LGANG distinguishes
the authenticity of the images.

Normally, DTN consists of a generative network and a discriminative network.
Among them, the generative network is composed of feature extractor f and image gen-
erator g. f is used to extract the image features of the input image, which is actually the
semantic style of the image, and then g is used to generate the images.

Two types of images will be taken as the input data: the source domain images (e.g.,
real face) and the target domain images (e.g., cartoon face). Firstly, the network will generate
target domain images with similar semantic feature information. In order to ensure the
generated images have a semantic similarity with source domain images, DTN will send
the generated images to feature extractor f again to render it for extraction of the feature,
and then compare this feature with that of the source domain images. The difference
between them will be set as the loss function, i.e., LCONST, which will be minimized to
guarantee the feature matching. Secondly, in order to facilitate the generative network
capturing the characteristics of target domain images, the target domain images will be
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transferred to themselves by the generative network, minimizing the difference between
them, i.e., LTID.

For the discriminative network, it takes in three different types of images: real source
domain images, target domain images generated from the target domain and target domain
images generated from the source domain. The discriminant network will judge whether
the input image is realistic, which is rated as a high score or a low score and vice versa.

XGAN

Generally speaking, in order to simplify the calculation of the consistent cyclic loss,
most researchers usually encode the related variables to a fixed length, while this method
does not accommodate the generality when there is a large domain displacement between
two domains. Therefore, XGAN [47] establishes two auto-encoders in two domains, and
both domains have an encoder and an decoder, respectively, as shown in Figure 5a, to solve
this problem. Specifically, Encoder 1 and Decoder 1 were combined as an auto-encoder
in domain x to obtain the semantic characteristics of the images here. Domain y has the
same constitution (Encoder 2 and Decoder 2). It should be noted that the last several
layers of Encoder 1 and Encoder 2 are associated with each other so that the associate
semantic features can be produced when encoders encode the images in their own domain.
The same occurs to Decoder 1 and Decoder 2 to allow the two domains to generate relevant
semantic features.

Decoder 1Encoder 1

Decoder 2Encoder 2

Shared
semantic space

(a) Encoders and decoders of each domain

Decoder 1Encoder 1

Decoder 2Encoder 2

Shared
semantic space

Cdann

e1 e2

(b) Adversarial loss of domain Ldann

Decoder 1Encoder 1

Decoder 2Encoder 2

Shared
semantic space

(c) Semantic consistency loss of domain Lsem

Decoder 1Encoder 1

Decoder 2Encoder 2

Shared
semantic space

T D Score

(d) Adversarial loss

Figure 5. The framework of XGAN. Generally speaking, it is composed of two encoders and two
decoders. As for the loss function, Ldann assures the quality of the encoding, and Lsem preserves the
semantics after domain transfer. Specifically, in (a), each domain in XGAN has their own encoder-and-
decoder. In (b), the domain adversarial loss is used to moderate the differences in semantic features
between two domains. In (c), the semantic consistency loss is used to ensure that the semantic features
generated have the same meanings in different domains. (d) Is the whole architecture of XGAN.

In order to strengthen the semantic relationship in two domains, XGAN defines the
domain adversarial loss, Ldann, to embed the image features of two domains into the
same subspace and moderate the differences in semantic features between two domains,
as shown in Figure 5b. From this, we could also see that the images in different domains
are still encoded by their own encoders to obtain the semantic features, which would be
then decoded by their decoders to restore the image. The binary classification model Cdann
is trained to classify the resource of the semantic features in the current semantic space,
namely from Encoder 1 or Encoder 2. Simultaneously, Encoder 1 and Encoder 2 are aimed
to prevent Cdann from being identified by decreasing the accuracy of the classification,
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which could, in turn, enable them to represent images with similar semantic features in
their own domains.

However, the above mechanism could only ensure that the semantic features generated
between the images of the two domains are similar in phenotype but cannot indicate that
they have the same meanings in different domains. For example, suppose that the semantic
vectors generated by the encoders in the two domains are similar, where domain X means
people with black hair and big eyes are a little angry and domain Y means people with
golden hair and small eyes are laughing happily—they represent two totally different
internal meanings. Therefore, XGAN defines semantic consistency loss, i.e., Lsim, to solve
this problem, and its intuitive form is shown in Figure 5c. It can be seen that the images in
domain X will be obtained with semantic features by encoder 1 first, and then be decoded
by decoder 2 in the domain Y. Now the restored image will be sent to encoder 2 to obtain
semantic features by encoder 2. Minimizing the difference between the restored image
and the original input image will make the semantic features in the two domains require
relevance in meaning. In a word, the architecture of XGAN is shown in Figure 5d.

Furthermore, the main purpose of this subsection is to allow readers to gain a generic
understanding of CGAN and some typical variants of CGAN as much as possible. While
most typical related works are discussed in this paper, we can not list many other variants
of CGAN to uphold the focus of our contribution in this paper. On the other hand, some
other variants of CGAN could be found in some relevant papers [48–54] if a reader is truly
interested in an exhaustive search of all CGAN variants.

2.2.3. Progressive Enhancement Mechanism

CGAN can be used to generate images, but these images are usually 64 × 64 or
128× 128, making it difficult to obtain the desired effect with larger images. One intuitive
reason is that more information needs to be learned to generate large images, and it is
difficult for GAN to generate a large amount of information within one breath so that
GAN will produce some unnatural phenomena, such as distorted or blurred outputs, when
generating large images. A progressive enhancement mechanism can gradually generate
high-resolution images from low-resolution images, which has a good application prospect
in the generation of high-resolution images. Hence, herein, we will briefly introduce some
typical methods based on progressive enhancement mechanisms, such as StackGAN [16],
StackGAN++ [43] and PGGAN [55].

StackGAN

The core idea of StackGAN is to use two generative networks and two discriminative
networks to generate the final image hierarchically. As shown in Figure 6, StackGAN
contains two layers, each of which is composed of a generative network and a discriminative
network. The first layer is mainly responsible for producing small blurred images so that
the generative network’s “attention” is focused on the edges of the image and the overall
structure rather than the details. Then, the fuzzy image generated by the first layer with the
overall structure of the image is passed to the generative network of the next layer, which
generates the image on the basis of the fuzzy image of the first layer. For the generative
network in the second layer, it directly obtains the general information of the image edges,
shapes and so on and does not have to pay any effort to generate the overall content.
Instead, it focuses its “attention” on the details of the image, thus achieving the purpose of
generating large-size images.
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Conditioning
Augmentation

Semantic
Content

Standard Normal
Distribution

Up-sampling 64×64 generated
sample

Down-sampling64×64 real
sample

Discriminant
Loss

Down-sampling
256×256

generated sampleUp-sampling
Residual
block

Down-sampling256×256
real sample

Discriminant
Loss

Stage I Stage II

Figure 6. The framework of StackGAN. The generation process is composed of two stages. In Stage I,
the generator generates the low-resolution images with rough shapes and colors from semantic
content and standard normal distribution. In Stage II, the high-resolution images are formed by
fine-tuning according to the results of Stage I.

StackGAN++

StackGAN++ is an improvement of StackGAN. Compared with StackGAN, it is no
longer layered, in which the generative network adopts a tree structure and is composed of
multiple generative networks that can generate different images. Each generative network
corresponds to a discriminative network respectively to achieve coherent image generation.

The framework of StackGAN++ is shown in Figure 7, where the left part is the
architecture of the generative network, and the right part is the architecture of the discrimi-
native network.

Condition

Standard Normal Distribution

4×4×64Ng

64×64×4Ng

128×128×4Ng

256×256Ng

Up-sampling

Up-sampling

Up-sampling

G0

G2

256×256×3 image

128×128
×3 image JCU D1G1

64×64×3
image JCU D0

JCU D1

Real
image

Fake
image

Down-sampling

D1 D2 Condition

Conditional
loss

Unconditional
loss

JCU Discriminator

Figure 7. The framework of StackGAN++. The main difference against StackGAN is using more than
one generative network and discriminative network. These networks form a tree, different branches
of which correspond to different scales in the same scenario.
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The generative network is a tree structure made up of three small generative networks
that can produce images of different sizes. It can be seen from Figure 7 that the first
generative network is responsible for generating a 64× 64× 3 image, the second generative
network generates a 128× 128× 3 image from the first generative network, and the last
generative network generates a 256× 256× 3 image from the second generative network.

PGGAN

Although StackGAN can generate high-resolution images at the 256× 256 level, the res-
olution is still hard to reach at 1024× 1024. As another progressive enhancement network,
PGGAN is expected to generate higher resolution images, and its framework is shown in
Figure 8.

As can be seen from Figure 8, PGGAN only generates a 4× 4 image at the beginning,
but with the increase in network architecture, the resolution of the generated image is
gradually improved. This incremental training enables the network to focus its attention
on the general distribution of the image at the beginning. As the training proceeds, GAN’s
attention shifts from the general distribution of the image to the details of the image,
thus avoiding the training difficulties caused by GAN in the process of learning all the
information about the image at the same time.

Notably, during PGGAN training, the generative network and discriminative network
are equivalent to mirror structures of each other, both of which grow simultaneously, and all
existing components of the generative network and discriminative network are trainable
throughout the training process. When a new layer is added to the original generative
network and discriminative network, the previous layer is still trainable except for training
the new layer, rather than only training the new layer.

16×16 Image

Up-sampling

32×32 Image

+1－α
α

fromRGB

toRGBtoRGB

32×32 Image

Down-samplingfromRGB

Down-sampling

+
α

1－α

16×16 Image

16×16 Image

toRGB

fromRGB

16×16 Image

16×16 Image

toRGB

32×32 Image

Up-sampling

fromRGB

32×32 Image

16×16 Image

Down-sampling

Discriminant
network

Generation
network

Figure 8. The framework of PGGAN. α will increase continuously during the training process, thus
realizing a slow increase in the degree of upsampling. Note that this figure represents only one layer
of the network, and the actual training process needs to stack several similar architectures.
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3. The Evaluation Method of CGAN

In order to evaluate the performance of CGAN, it is necessary to design a fair evalu-
ation method. In the field of image classification, the accuracy of image classification on
the test set is almost the most convincing index. However, CGAN’s main task in computer
vision is to edit or synthesize images, which is a process of “creation of art”, so it is difficult
to use a unified index for evaluation. Hence, in order to evaluate the performance of CGAN
as comprehensively as possible, different methods are used in different works. Generally
speaking, these methods can be divided into two categories: automatic evaluation and
manual evaluation.

3.1. Automatic Evaluation

Automatic evaluation refers to the evaluation index that can be calculated directly
by using the formula without human participation. Some indexes in the original GAN,
such as Inception Score (IS) [56] and Fréchet Inception Distance (FID) [57], can also be
used to evaluate CGAN to measure the fidelity of the generated images [23,45,58–60].
Compared with the classical GAN, for CGAN, the expected image is usually given in
some task, and the similarity between the generated image and the expected image is
also an important index, such as the Target Attributes Recognition Rate (TARR), Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) [41,61,62].

As noted, CGAN’s task is to generate correct images rather than only arbitrary images.
We have also mentioned the diversity of the CGAN loss function in Section 2.2.1, and each
loss function corresponds to whether the generated image meets the requirements in some
aspects. For example, category loss is used to monitor whether the generated image
conforms to the category specified in the input conditions. Therefore, the classification
accuracy of the generated image can also be used as an evaluation index for CGAN.
The hypothesis that the classifier trained on the real image can be well applied to the
classification of the generated image once the quality of the generated image is good
enough is employed here. For example, the indicator Dice introduced by [35,63] uses the
pre-trained image segmentation model, FCN-8s, to segment the generated image and then
calculates the distance between the segmentation result and the original semantic mask.
The principles of [58,61] are similar. In addition to the discriminant method developed by
category loss, reference [64] calculates the average distance of a group of random samples
in the feature space, and also the Cosine Similarity (CSIM) of embedded vectors proposed
in [65] has a similar effect.

For some cross-modal tasks, a more indirect approach is often required. For exam-
ple, reference [45] mainly solves the task of converting text to image using R-precision.
First, it needs 100 candidate texts, including R ground truth text and 100− R random text.
Then, it queries these candidate texts according to the generated images and counts the
number of texts related to the generated images in the previous R text, that is r, and the
value r/R is namely the R-precision.

The advantage of automatic evaluation is that it does not need manual intervention
and can save on manpower. In addition, it can derive quantitative metrics for the quality
of the generated data. However, its disadvantages are also obvious. On the one hand,
due to the complexity of data generated, the evaluation content is diverse, and there is no
absolutely reasonable index. For example, IS can reflect the proximity of the distribution
between the generated data and the real data, but it cannot monitor the problem of over-
fitting. When the model can only generate data from the training set but cannot create
data, IS may still remain at a high level. If one application relies too much on automatic
evaluation, the problem of disconnection between the evaluation metrics and the actual
effect will occur. On the other hand, as many evaluation metrics are involved in the
pre-training model, the uncertainty of evaluation results will also increase.
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3.2. Manual Evaluation

Manual evaluation is a supplement to automatic evaluation, which is helpful for
finding out some factors that are not considered enough in the process of designing au-
tomatic indexes. One of the simplest methods is to select some typical samples from the
generated data for human analysis [23,61,64]. However, this simple analysis method is
only representative of the authors’ or recruited analysts’ opinions, with a large degree
of randomness.

In order to make the evaluation results more objective, it is often necessary to invite
several evaluators to evaluate independently. For example, in [64], several groups of images
will be displayed, each of which contains a real image and a generated image, and the
evaluator needs to choose the more likely real image based on his own judgment. There
are several improved versions of this evaluation method. From the perspective of the
evaluator, if the image involves professional content, the evaluator should be a domain
expert [23]. From the perspective of the measurement scale, if we desire the evaluators to
pay more attention to the overall image rather than local, the display time of the image can
be limited (such as 1 second), and when the display time is depleted, the image immediately
disappears. At this time, the evaluator needs to rely on the impression of the two images
to choose the proper one [35]. From the point of view of evaluation results, if we want
the evaluators to understand the attributes of real images to a deeper extent, there are
mainly two schemes. In one way, we can demonstrate the answer to the evaluator at the
beginning of the evaluation as feedback [35]. For another, we can display two real images
and a generated image once at a time so that the evaluator will have more opportunities
to perceive the attributes of the real image [65]. In addition, comparative experiments can
also be conducted, in which the image generated by another algorithm replaces the real
image, and the evaluator will choose the better image to attain the conclusion on which
algorithm is better.

Similar to automatic evaluation, in the task of text-to-image generation, there are
corresponding manual evaluation methods in order to determine whether the generated
image is conditional on the text. For example, in [60], a number of text descriptions are
randomly selected for each category of data, and images are generated using different
algorithms. The evaluator sorts these images from text-related to non-related, and then the
average ranking of each algorithm is counted and compared.

The manual evaluation effectively alleviates the problem that the evaluation index is
out of line with the actual effect, and it is easier to grasp the overall effect of the generated
data rather than the local performance. However, its disadvantages are also apparent,
the main one of which is the consumption of more manpower. In addition, due to the
influence of personal preferences, the evaluation results also have larger uncertainty.

As a summary, we list the descriptions of various evaluation methods in Table 3.
Because of the advantages and disadvantages of automatic evaluation and manual eval-
uation, they are often used simultaneously in many scenarios, playing a complementary
role. When the result of the manual evaluation is significantly worse than that of automatic
evaluation, it is necessary to consider whether the automatic evaluation metrics cannot
reflect all aspects of the generated data. On the contrary, it is necessary to pay attention to
whether the evaluators in the manual evaluation method are deceived by some appearance
of the generated data, that is, fail to pay attention to some defects reflected by the automatic
evaluation metrics.
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Table 3. A summary of various evaluation methods.

Type Index Description

Automatic
evaluation

IS [23,45,56,58–60] Mapping the evaluation task to a classifier.

FID [23,45,57–60] Using the inception network to extract features from an interme-
diate layer.

TARR [61] Computing the recognition rate of attributes on synthetic data by
a model trained on real data.

PSNR [41]
Computing an expression for the ratio between the maximum
possible value (power) of a signal and the power of distorting
noise that affects the quality of its representation.

SSIM [62] Measuring the similarity between the two images.

Dice [35,58,61,63–65] Measuring the gap between the semantic segmentation result and
the real result.

R-Precious [45] Retrieving the relevant text for a given image query.

Manual
evaluation

Sample Analysis [23,61,64] Analyzing some typically generated images qualitatively.

Evaluator Tests [23,35,64,65] Inviting some reviewers to identify the real image and the gener-
ated image.

Simulative Recommendation [60] Ranking the images from different sources under the given condi-
tions.

4. The Applications of CGAN

The main task of CGAN is to creatively generate new data based on the given data,
and the generated data should contain as much information as possible from the given
data. From this perspective, the essential role played by CGAN is to convert information
from one form of representation to another. This is the reason why CGAN is mainly used
for domain transfer. It should also be noted that CGAN not only plays its role in the field
of domain transfer but also has the ability to conduct data augmentation in supervised
learning [42,66,67], as we discussed in earlier sections. Furthermore, CGAN can even
be found to succeed in some discrimination tasks [68] and emerging fields, as reported
in [22,23]. Actually, there were also traditional models in the early stage, but here we only
focus on the methods to use the CGAN model. The following is a timely summary of our
review of the most notable works in different scenarios.

Firstly, we give an overview of the application areas of CGAN. For any task, it is
necessary to include input data and output data. The input data can be images, labels,
text, and so on, yet the images are the most common. In particular, if the input datum is
also an image, the task can be considered an image transformation. From the perspective
of humans’ cognition process, the elements of an image can be roughly divided into the
overall contents, partial contents, styles, colors, resolution, etc. The semantic levels of an
image can also be divided into the visual layer (low level), object layer (middle level) and
concept layer (high level). The low-level semantics are the style, color, and resolution of
an image; the middle-level semantics include attributes and features, which are the state
of an object at a certain moment in the image; the concept layer is the high-level, which is
the content shown by images to humans. The task of image conversion is to change the
operation of one or a few of these elements. Table 4 lists the categories of common tasks.
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Table 4. The classification of tasks involving CGAN.

Task Type Task Description Semantic Level Typical Papers

Super resolution Converting image from low resolution
to high resolution

Low-level

[14]

Texture transformation Converting photos to oil paintings [15]

Color transformation Converting grayscale image to color image [69]

Coloring in a line drawing [33]

Environment transformation Time conversion of landscape photo

Middle-level

[70]

Season conversion of landscape photo [15]

Attribute edition
Object style editing [38]

Object outline editing [33]

Facial attribute editing [71]

Image synthesis

Converting the semantic mask to a photo [72]

Converting sketch to photo [73]

Converting normal map to satellite map [35]

Converting thermal to photo [74]

Image inpainting Repairing the image with some missing pixels
High-level

[75]

Data augmentation Generating more data from existing data [66]

Image creation Generating image from text description [58]

4.1. Super Resolution (SR)

High-resolution images are widely used in the production industry and daily life.
However, due to the large size of their corresponding files, it presents great challenges
for stable storage and efficient transmission. Therefore, a feasible method is to use the
low-resolution images in the process of image storage and transmission, and when the
image needs to be employed, the high-resolution image will be restored according to the
low-resolution image. Therefore, Single Image Super Resolution (SISR) has become a
research hot spot in the field of computer vision [28].

SRGAN was the first work to solve the SR problem via a CGAN model [30]. In SRGAN,
the generative network consists of several jump connections to synthesize the low-level
and high-level semantics, and two sub-pixel convolutional layers are used to improve the
image resolution. In terms of the loss function, SRGAN uses perceptual loss in addition
to adversarial loss, where the perceptual loss is calculated by the feature map of the VGG
network (Oxfords Visual Geometry Group’s pre-training network) [29].

In recent years, Curriculum Learning (CL) [76] has received more and more attention,
the main idea of which is to feed the training data to the model step-by-step rather than all at
once. It has achieved great success in many tasks such as natural language processing [77,78],
image recognition [79] and even image generation [80]. Inspired by curriculum learning,
the ProGanSR has been proposed, and it indicates that the learning direction should be
gradually transformed from a small level to a large level. ProGanSR uses an asymmetric
pyramid structure to achieve efficiency. Each pyramid consists of a dense compression unit
and a sub-pixel convolutional layer to double up the input resolution. Mahapatra et al.
proposed a local significance diagram defining the importance of each pixel, which could
be used in the adversarial loss on classical MSE [81].
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Alongside the mentioned papers, numerous papers used CGAN to achieve SR [17,82–84].
Some other works on image style transfer mainly focused on the architecture of the CGAN,
such as [26,31–37,72,85]. Recently, a novel model named MSG U-Net architecture is pro-
posed based on [85], where the network is trained by allowing the flow of gradients from
multiple-discriminators to a single generator at multiple scales [86].

4.2. Image Style Transfer

The task of image style transfer is to transform one type of image into another style of
image, including black and white to color, line coloring, texture transformation (for example,
oil painting generated from photos), and so on. Similar to SR, it falls into the category of
low-level semantic image generation but locally requiring high-level semantic support.

Isola et al. [35] proposed Pix2Pix as a universal model for solving different image-
to-image tasks in the supervised setting, i.e., the training data would include the source
image and its corresponding destination image. Wang et al. [25] extended the framework
to generate high-resolution images.

As a basis, CycleGAN [15] has made significant progress in unsupervised settings by
introducing cyclic consistency loss to ensure that the destination image correctly retains
domain invariant features, such as pose, of the source image. Although CycleGAN learns
deterministic one-to-one mapping, it fails to capture the multi-modal attributes of the
image distribution. MUNIT [38] recognizes this limitation and extends the framework
to learn multi-modal mapping, which can generate different and real translation output.
However, it trains different encoder–decoder models for each domain, so it is not easy to
scale up to multiple domains. StarGAN [27,39] solves this problem and proposes a unified
model for multi-domain translation. FUNIT [62] tries to generalize images from unseen
domains using some reference images from the target domain, but it requires fine-grained
class labels during training and cannot model unspecified changes within the class.

Due to the in-depth research on image style transfer, CGAN has been applied to other
fields. For example, in the case of Geographic Information Systems (GIS), CGAN is used to
transfer satellite images to maps [18,87]. In the case of Computer Graphics, reference [88]
uses CGAN to generate the SyntheticFur dataset by transferring the style of photos and [89]
uses it to denoise blurred images.

4.3. Feature Synthesis

Image feature synthesis is similar to style transfer in the sense that it edits the image,
but it changes the semantic information of the image. For ordinary GAN, it is difficult to
obtain hidden variables. For this reason, ICGAN is proposed in [34], where the encoder is
first used to convert the image into high-level semantics, and CGAN takes the high-level
semantics as the condition to generate the edited image. In recent years, researchers have
mainly been concerned about the difficulty in collecting paired data in feature synthesis.
Accordingly, among many works, reference [38] assumes that the latent space of the images
can be decomposed into content space and style space, where content space is shared by the
source domain and target domain, and style space is owned by two domains, respectively.
Meanwhile, reference [90] further applies the idea of cyclic consistency in feature synthesis
tasks and puts forward a cross-cycle consistency loss.

As a specific type of data with high recognition and wide application, face photos
have been studied by a large number of researchers. The reason for its high recognition
lies in numerous features [71]. Without a doubt, it is also an important subject to transform
face features with CGAN. The authors of [91] explicitly represent face features with vectors,
which satisfy orthogonality (each component controls different features independently,
without affecting each other), richness (that vectors can express enough features), and con-
trollability (where users can achieve satisfactory results by specifying this vector). The
authors of [92] further refined the generated image by using unlabeled data. However,
the foundation theory and common improvement methods of CGAN can only be used for
typical image modification, such as adding happy, sad, angry and other basic expressions to
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the face, but it cannot customize arbitrary complex expressions. To this end, reference [40]
introduces the concept of “expression intensity”, which can combine complex expressions
of sadness with small amounts of anger and similar expressions. In addition to the design
of the overall network architecture, the design of network components has also been car-
ried out. For example, reference [61] introduces a Graph Convolutional Network (GCN)
network, with the graph structure representing the features, the nodes of the graph repre-
senting components of the feature, and the edges of the graph representing the relationship
between the components. Recently, the attention mechanism has been further employed in
this field [19,41,61].

4.4. Image Inpainting

In the process of image storage, some pixels may be lost due to various reasons. In or-
der to restore the original appearance of the image as far as possible, certain methods
are needed for image inpainting. Intuitively, pixels in an image have a great correlation
with their neighboring pixels but less correlation with distant pixels. Therefore, traditional
methods similar to interpolation have been widely used [93–95]. However, if there are con-
tinuously missing pixels in the image, the significant effect of the interpolation method will
be greatly limited, especially when the missing part contains the whole object, which will
render the interpolation method to be completely unpredictable. Under this circumstance,
it is a great alternative to employ CGAN [75,96–99].

However, using CGAN to solve image inpainting also faces many new problems.
For example, reference [96] can only fill in the center of the image, not the area of variable
sizes. When the missing pixels form a connected region, the boundary of the missing region
can still be seen on the inpainted image [97]. In addition, problems such as model collapse
and overfitting are also quite serious. In order to solve these problems, reference [100]
optimized the overall framework and super parameters of CGAN. A multi-stage generation
method is introduced to create high-quality images by gradually adding layers to the gener-
ative network and discriminative network in [55]. Following this work, reference [101] uses
the adaptive normalization layer [102] to control the visual features of images at different
scales on the basis of [55]. Some studies also attempt to improve from the perspective
of loss functions, such as Wasserstein distance [20], least squares [20] and energy-based
GANs [103]. In addition, similar to the SR, here we can also adapt the curriculum learning
method [104].

4.5. Pose Transfer

Pose transfer is another kind of image domain transfer task. For an object, given a
photo taken from an angle and a target angle, the model needs to generate an image of
the object observed from the target angle. Intuitively, when an object is viewed from a
particular angle, a considerable area of the object’s surface is occluded, and if the target
angle involves these areas, the model needs to be drawn from scratch. That is to say,
the trained model should have a considerable amount of prior knowledge about the
characteristics of the object, meaning that the model for pose transfer is often oriented to
specific objects. Reference [105] discusses the pose transfer of a figure image. To solve the
deviation between pixels, a deformable jump connection is introduced into the generator.
In addition, in order to ensure that the details of the generated image match with the
original image, a nearest-neighborhood loss function is proposed. Reference [106] further
considers the pose transfer with a background, which uses a multi-branch reconstruction
network to fuse the foreground, background and pose information into embedded features
and then combine these features to re-compose the input image itself. The training process
involves a progressive enhancement mechanism.

Another target of pose transfer is a vehicle. Because vehicles are more regular shapes
than figures, reference [107] integrates the prior geometry of 3D space into the model,
forming a semi-parametric approach. Specifically, the symmetries of regular geometry and
piecewise planarity are integrated into the composition of the new pose, and the Image
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Completion Network (ICN) is used to generate the final image. Reference [108] further uses
the law of perspective transformation, decomposes the vehicle into several quadrilateral
planes, and processes the images on each plane respectively, obtaining a more realistic
image in the overall structure.

In general, the application of CGAN in the pose transfer is still limited and heavily
depends on prior knowledge in specific fields. There is still a long way to go to realize auto-
matic and adaptive pose transfer. In the future, classifier ensemble techniques [21,109–112]
may be a feasible approach to tackle this challenge.

4.6. Image Generation from Text Descriptions

Using CGANs to generate images according to text description was first proposed
by Reed et al. [113]. It first encodes the text description as a vector representation and
then uses the representation as a condition to train CGAN. In order to make the generated
image more in line with the user’s needs, Reed et al. added the position constraint of the
object in the image to the CGAN condition [114]. In detail, besides the text description,
the expected coordinates of some objects will also be fed into the CGAN. Afterward,
Zhang et al. proposed StackGAN [16] and StackGAN++ [43], which have been detailed
in this paper earlier. In addition, HDGAN [115] adopts a multi-stage strategy similar to
StackGAN++.

The previous research in this area only used global sentence embedding as a condition
to train CGAN, and the granularity was quite rough. AttnGAN [116] introduced the
attention [117] module and added word-level conditions, making the generated image
closely related to the description. MirrorGAN [44] borrows the idea of cycle consistency
to re-convert the generated image into text and supervise the distance between the re-
converted text and the original text during the training process. DMGAN [45] uses a
dynamic memory module to screen out which text contents are more important to the
generation of images and is dedicated to improving the resolution of relevant parts of
images. SD-GAN [60] uses two networks that work together to make the generated images
consistent in various descriptions.

Similar to the task of image style transfer, some researchers also proposed some
effective and efficient network architectures [58–60,115,118–120].

4.7. Other Fields

Dehazegan [121] first applied conditional GAN into the field of single image dehazing
and explored the connection among CGAN, image dehazing, and differentiable program-
ming, which advanced the theories and application of these fields. DATNet [122] proposed
a new architecture for addressing sequence labeling, which employed two variants: datnet-
f and datnet-p to explore the effective feature fusion between high resources and low
resources and further proposed a novel generalized resource adversarial discriminator
(GRAD) to boost model generalization. In cross-modal retrieval, TANSS [123] proposed
ternary adversarial networks with self-supervision to solve the problem of inconsistency
between the seen classes in the source set and unseen classes in the target set. In semantic
segmentation, reference [124] proposed a weak supervision adversarial domain adaptation
to improve the segmentation performance from synthetic data to real scenes, which consists
of three deep neural networks. We summarized all CGANs in different application fields
in Table 5.
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Table 5. A summary of CGANs in various application fields.

Application Fields Task Description Typical Papers

Super Resolution (SR) Converting image from low resolution
to high resolution [17,26,28–37,72,76–86]

Image style transfer
Transforming one type of image

into another style of image, such as
color transformation, texture transformation, etc.

[15,18,25,27,35,38,39,62,87–89]

Feature synthesis Combining separate features
to make composite features [19,34,38,40,41,61,71,90–92]

Image inpainting Restoring the original appearance
of the image [20,55,75,93–104]

Pose transfer Generating images of the object
observed from other angles [21,105–112]

Image generation
from text descriptions Generating images according to text description [16,43–45,58–60,113–120]

Other fields Such as: single image dehazing,
sequence labeling, inconsistency, etc. [121–124]

5. The Remaining Problems and Challenges

Although CGAN has made great progress in recent years, compared with many other
sub-fields of artificial intelligence, it still faces many problems and challenges. Here are a
few insights gained from our literature review.

• Conditions are ignored. Many CGAN models easily ignore the conditions and
generate data that fail to meet the conditions in some practical applications. Currently,
there are maybe two causes for this problem. First, the characteristics of samples under
different conditions in the training set are not significantly different; that is, the model
cannot accurately classify samples according to conditions. Second, the network
architecture is not reasonable. For example, the conditions representing high-level
semantics of data only act on the first half of the network, resulting in only affecting
low-level semantics of data.

• Proper coding of conditions. In order to make the CGAN model easily trainable,
conditions need to be coded. However, how to have the reasonable encoding of
conditions is a problem that needs further study in the field of CGAN because the
commonly used Convolution Neural Network (CNN) may not contain the details that
essentially correspond to the characteristics of the generated image.

• The high calculation cost. In CGAN, in addition to learning the distribution of
generated images as unconditional GAN, the relationship between input conditions
and generated images should also be learned, which further aggravates the burden of
the model. Therefore, from this perspective, it is necessary to reduce the complexity of
the model. One possible approach to this problem is model compression. However,
the current research on how to implement model compression for CGAN is still very
preliminary. For example, reference [104] only reduces the capacity of the model by
screening the convolution kernel, which plays a rather limited role actually.

• The strong coupling with data. The training effectiveness of CGAN often depends
heavily on the given data. For example, in the image style conversion task, let us
consider a scenario where the image time needs to be converted from noon to evening.
If the training data are only natural scenery photos, it is still difficult for CGAN to
convert city photos after the training, which restricts the application of CGAN. This
problem is difficult to solve by moderating the model alone. Therefore, a variety
of standard data sets is the viable solution to this problem. At present, in terms of
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scientific research, some websites such as Kaggle have provided many types of data
sets, but they are far from satisfying the research needs.

• The strong coupling with the task. Compared with the unconditional GAN, CGAN
can be used to complete more tasks. However, the network used to solve one task
is difficult to apply directly to another task. Despite that quite a few researchers
summarized some design principles, such as the tricks summarized in Section 2.2,
most of them only guided the overall framework of the network rather than a specific
architecture inside the generative network and the discriminative network, which
might have a great difference in different tasks.

• Neural Architecture Search (NAS) It should be noted that in recent years, Neural
Architecture Search (NAS) technology has made a lot of achievements in the field of
image classification [125,126], which is expected to help with the automatic design of
network architecture. However, the complexity of CGAN means that there is still a
long way to go, and even NAS technology can be employed.

Furthermore, it should be reminded that, currently, CGAN is only a branch of GAN,
and the performance improvement methods of CGAN [127–130] are not significantly
different from the traditional GAN. From the perspective of the application, CGAN’s
application scope is still very limited, except for computer vision. For example, in the field
of natural language processing, published research results are comparatively much less than
in the computer vision [131,132]. The reason is the complexity of language itself and the
discreteness of text data. In the future, overcoming these difficulties and designing a more
efficient model will be the main tasks for natural language processing based on CGAN.

6. Conclusions and Prospects

With the rapid development of artificial intelligence technologies, GAN has been
widely applied in the field of data generation. In order to control the output results of GAN,
researchers added conditions to the input of GAN to solve the ill-conditioned constraint
problem, and CGAN has been investigated extensively in recent years.

This paper focuses on the research of CGAN in domain transfer and introduces
the development process of CGAN from the perspectives of: the principle of CGAN,
the development of loss function, the model variants of CGAN, evaluation methods and
application fields. These studies fully demonstrate that the CGAN model has great potential
and research value.

However, due to the short life of CGAN to date, it is still in the initial stage of
development, and the relevant theories and applications are far from maturity. Meanwhile,
we have also discussed and listed the future development directions of CGAN in Section 5.
In summary, more investigations on CGAN are necessary for consolidating its development,
and we hope this paper will contribute to researchers interested in applying CGAN in
different domains.
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