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Abstract: Imaging detectors based on a microchannel plate (MCP) and charge division anode with
charge induction have broad applications in particles (photons, neutrons, ions, and electrons) de-
tection. However, the application of a charge induction readout mode is mostly focused on planar
anodes, and there are few reports on double-layer cross-strip (XS) anodes with high spatial resolution
and low gain requirements. In this paper, we design the parameters of the resistive layer and XS
anode by theoretical derivation and the three-dimensional finite element method, including the
sheet resistance, substrate thickness, strip width, and insulation thickness. The performance of the
XS detector is characterized with the help of a resolution target and full field illumination using
three different centroid algorithms. We conclude that the modified center of gravity (MCoG) has
best imaging performance, which achieves a spatial resolution of 44.2 µm with a periodic distortion
about 25.8%.

Keywords: charge induction; cross strip; finite element method; centroid algorithms

1. Introduction

In the past few decades, detectors based on microchannel plates (MCP) and position
sensitive anodes have been widely used in neutron detection [1], biomedical imaging [2,3],
X-ray spectroscopic measurement [4], and aerospace [5,6]. Direct readout is the traditional
readout to directly collect the electron cloud emitted from MCP by metal anodes. It arouses
the redistribution of secondary electrons on the anode, which results in image instability.
Luckily, charge induction readout technology overcomes these problems and also provides
significant performance and practical advantages. Different from the direct readout, the
charge induction readout has a resistive layer between the MCP and the anode. The elec-
trons fall on the resistive layer, and then the signal is coupled to the anode. Compared with
direct readout, charge induction readout can eliminate the secondary electron-mediated
charge redistribution noise and avoid the influence of an uneven electrostatic field on
the electron movement, so it is beneficial to improve the image linearity. In addition, the
resistive layer can play the role of electrical and physical isolation, which facilitates the
packaging and modularization of the detector. The anode is located outside the vacuum
chamber and is easy to replace.

There is much research concerning on the MCP imaging detector with a charge induc-
tion readout. In 2002, Jagutzki introduced the charge induction readout into a wedge and
strip anode (WSA) detector, obtaining similar image resolution to that of direct readout [7].
In 2003, Lapington developed an open-faced position-sensitive detector by combining a
WSA and charge induction readout for the SPIDER mission. It overcomes the major WSA
deficiency of image instability resulting from secondary electron-mediated charge redistri-
bution on the anode [8]. In 2013, Jagutzki applied the charge induction readout technology
to an intensifier and combined it with a delay line (DL) anode to form a detector for space-
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and time-correlated single photon counting [9]. In 2015, Ni applied charge induction read-
out to a curved MCP detector, reducing the influence of MCP curvature on charge cloud
size. The resulting imaging detector fulfilled the requirements of the Moon-based EUV
camera [10]. In 2020, Han developed photon-counting imaging for Aurora Observations
based on WSA and charge induction [11]. Charge induction readout technology is popular
and has been used on various occasions, but there is still a lack of exploration in the case of
cross-strip (XS) anode.

As the most recent developments of anodes, the XS anode has the advantages of high
spatial resolution, good linearity, and low gain requirement [12,13]. Different from the
planar structure of the WSA and DL anodes, the XS anode has two mutually perpendicular
anodes. The three-dimensional anode pattern will affect the anode charge distribution
in the process of electric field coupling. Therefore, it is necessary to carry out theoretical
and simulation research to design detector parameters. Here, a new photon imaging
detector combining charge induction readout with an XS anode is developed. This XS
detector is expected to achieve the detection of particles (such as photons, ions, neutrons,
and electrons) with a good imaging performance. In Section 2, the operation of an XS
anode detector with a resistive layer is introduced. Through theoretical research, the sheet
resistance and substrate thickness of the resistive layer are given. A three-dimensional finite
element model is established, and the anode parameters, including strip electrode width
and insulation thickness, are designed from the perspective of optimizing the induced
charge distribution on the XS anode and the inter-electrode capacitance between strips. In
Section 3, the XS anode is manufactured and the parameters are given. To characterize
the detector, a test system is set up. In Section 4, the designed anode is measured, and
the small difference between measurement and simulation proves the accuracy of the
model. The performance of the XS detector is tested with the resolution plate and full field
illumination. The results indicate that the XS detector can achieve a resolution of 44.2 µm
with a periodic distortion about 25.8%. Meanwhile, the calculation results of the same
raw data with different algorithms show that a modified center of gravity (MCoG) is the
optimal centroiding algorithm.

2. Design of Detector Parameters
2.1. Detector Operation

The developed XS detector consists of a Kovar-alumina brazed body assembly con-
taining MCP stacks, resistive layer, and XS anode. The schematic diagram of XS detector
operation is depicted in Figure 1. First, the incident particle is converted into an electron
cloud of 106–107 electrons by the MCP stack. Then, these electrons are accelerated by the
electric field to the resistive layer, and induced charge pulses are generated on the XS anode
strips because of the change of the electromagnetic field. Finally, the position of incident
photons can be inversed by calculating the charge collected by the anode. The MCP stack
is formed by using two MCPs with one placed on top of another with a bias angle of 13◦.
The resistive layer is a ceramic substrate coated with high-resistance germanium film; a
−200 V is applied across the MCP-to-resistive layer gap by using a resistor mounted on the
external wall of the brazed body.
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2.2. Resistive Layer

The resistive layer and the readout anode can be viewed as a distributed two-dimensional
RC network in the finite element approximation, as depicted in Figure 2, where Rs is the
sheet resistance of resistive layer and Ctotal is the total equivalent capacitance between the
resistive layer and the anode. ρ (x,y) indicates the point where the electron cloud lands on
the resistive layer. C1 to CN represent the capacitances between the germanium film and each
anode strip, respectively. The total capacitance Ctotal is dependent on capacitances C1 to CN
and the inter-electrode capacitances Cij (i = 1 to N, j = 1 to N, I 6= j) between anode strips.
Additionally, the readout circuits are presented by a charge-sensitive amplifier (CSA) in the
red dotted box.
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Figure 2. A lumped-parameter presentation of the readout mode for charge induction. ρ(x,y) is the
electron cloud on the resistive layer. Rs is the sheet resistance of the resistive layer. C1, C2, C3, to CN

are the capacitance between the resistive layer and each anode strip, respectively. C12, C23, C13 to C1N ,
C2N , C3N are the inter-electrode capacitance for each anode strip. Ctotal is the capacitance between the
resistive layer and the virtual ground.

The induced charge on the anode is affected by the sheet resistance of the resistive
layer. If the sheet resistance is too low, the transmission to the electrode decreases, whereas
a too-high sheet resistance results in the decrease in resolution and count rate because of
the electron cloud overlapping. When the electron cloud diffuses on the resistive layer, the
charge density distribution can be expressed as [14]:

ρ(r, t) =
Ne

2π(2t/τ + σ2)
exp

(
− r2

2(2t/τ + σ2)

)
(1)

where, in this case, τ = RsCtotal. N is the number of incident electrons. Clearly, the variation
of the density distribution function of the charge cloud is related to the broadening width σ
and time constant τ. The charge cloud broadening σ can be adjusted by changing the gap
distance and gap voltage, which is generally about 0.5 mm. Given that Trc is the duration
of the electron cloud on the resistive layer, which satisfies ρ(0, Trc) = 0.2× ρ(0, 0). To avoid
overlapping, Trc needs to satisfy t < 1/(5 × Ncnts); Ncnts is the counting rate of detector.
As much energy as possible needs to be transmitted to the anode to achieve high energy
utilization. A sheet resistance of 50 MΩ is finally chosen to satisfy the above requirements.

The width of the induced charge cloud footprint at the plane of the anode obviously
must be optimized to match the XS anode. Indeed, a too-narrow footprint results in an
under-sampled charge distribution. At the same time, a too-wide charge footprint leads
to charge division between a large number of anode electrodes and, consequently, to the
reduction in the signal-to-noise ratio (especially at the edge of the charge distribution). The
charge density on the resistive layer as a function of radius for different substrate thickness
is shown in Figure 3. It is seen that the thicker the substrate thickness, the more dispersed
the induced charge footprint, which prevents accurate centroid decoding. The substrate
thickness of 0.5 mm is found to be optimal as five to seven strips must be covered.
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2.3. XS Anode

The XS anode is a metal and ceramic cross-strip pattern structure with 32 + 32 strips for
the top and bottom layers, respectively. For planar anodes, the amount of charge received
on each anode is mainly related to its exposed area and charge distribution. For an XS
anode with a double-layer structure, the top-layer anode will shield the bottom anode to
some extent. The difference of charge amount between top and bottom layers will affect
the signal-to-noise ratio in different spatial directions and the selection of amplifiers.

A detector composed of an XS anode and a resistive layer in the electric field satisfies
Maxwell’s equations. It is assumed that there is a weak current density caused by the
electric field. Therefore, the magnetic flux density B is negligibly small. Then the charge of
the anode can be achieved by the Gauss’s law [15]:

∇ · (−ε∇V) = ρv (2)

where ε is the dielectric constant, V is potential, ρv is free charge density. To reveal the
relationship between the induced charge collected by the anode and its structure, the
resistive layer and XS anode model are established by COMSOL, as shown in Figure 4.
An electron cloud is generated on the resistive layer according to Equation (1), and the
amount of induced charge on anode strips is integrated. The charge ratio of top and bottom
anodes Rc as a function of insulation thickness for different exposed area ratio Ra is shown
in Figure 5.
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bottom strip width w2 is 350 µm, 400 µm, 450 µm, and 500 µm, respectively.

It can be seen that for the same exposed area, the charge ratio increases linearly with
the increase in insulation thickness. For the anode of Ra = 1, the charge ratio Rc is greater
than 1. This is because the bottom strip is farther away from the resistive layer and the
electric shielding effect of the top strip. For the same insulation thickness, the charge ratio
Rc decreases with the increase of the exposed area ratio Ra. The initial broadening and
central falling point of the electron cloud on the resistive layer also affect the charge ratio, so
Rc is an average value. Based on the above rules, the anode parameters could be designed
and the charge amplifier with appropriate magnification could be selected.

2.4. Crosstalk Effect of the Inter-Electrode Capacitance

The spatial resolution of the XS anode is primarily determined by the electronic noise,
which is mainly induced by the charge-sensitive amplifier (CSA) and increases with input
capacitance adding [16]. The anode is a periodic structure, and the circuits of each channel
are independent of each other. The capacitance of one channel is:

Cin = Ci + Cie + Ca + (1 + A) · C f (3)

where Ci is the strip electrode capacitance, Cie is the inter-electrode capacitance of the anode
strip, Ca is the amplifier input capacitance, Cf is the feedback capacitance, and A is the
open loop gain of the integrated amplifier. Crosstalk directly affects the signals on the strip
electrodes because of the inter-electrode capacitance Cie of the XS anode. Optimization of
the inter-electrode capacitance is conductive to reduce the electronic noise.

For an ideal XS anode, the charges on the strips could be expressed as:

Q = CmutualV Where, Q =

Q1
...

Qn

, Cmutual =

C11
. . .

Cnn

, V =

V1
...

Vn

 (4)

However, the crosstalk effect cannot be neglected in practice. The expression of charges
on strips can be written in Maxwell’s capacitance matrix:
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Q′ = CMaxwellV Where, Q′ =


Q′1

...
Q′n

, CMaxwell =



n
∑

i=1
C1i −C12 · · · −C1n

−C21
. . .

...
... −C(n−1)n

−Cn1 · · · −Cn(n−1)
n
∑

i=1
Cni


(5)

where Cii is the capacitance of strip i to the vacuum chamber, Cij is the capacitance between
the strip i and j, Cij = Cji. Substituting Equation (5) into Equation (4), the relationship
between the ideal charge and the actual charge can be obtained, and the charge can be
corrected to remove crosstalk.

Q′ = CMaxwellC−1
mutual Q (6)

The XS anode model established by COMSOL mentioned earlier is also used to
optimize inter-electrode capacitance. Taking one top strip and one bottom strip as examples,
the variation of total inter-electrode capacitance (Cie = ∑

i 6=j
Cij) with insulation thickness for

different strip widths is depicted in Figure 6. It can be seen that, for the same strip width,
Cie decreases with the increase in insulation thickness. For the same insulation thickness,
Cie increases with the increase in strip width. The top and bottom strips can be regarded as
parallel plate capacitors. The width of the strip and insulation thickness corresponds to
the area of the capacitor plate and the dielectric thickness, respectively. This explains the
variation of inter-electrode capacitance with different parameters.
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To sum up, reducing the inter electrode capacitance requires increasing the thickness
of the insulation layer and reducing the width and area of the strip. However, this will
lead to the imbalance of charge ratio and the reduction in power utilization. Therefore,
when designing anode parameters, it is necessary to comprehensively consider the system
requirements and make trade-offs.

3. Experiment

The 32 + 32 XS anode is manufactured by low-temperature cofired ceramic (LTCC)
technology, as shown in Figure 7. The whole process includes casting, drilling, through-
hole filling, electrode printing, lamination, hot pressing, slicing, cofiring, etc. The design
parameters are listed in Table 1.
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Table 1. Design parameters of XS anode.

Top Strip
Thickness

Bottom Strip
Thickness

Insulation
Thickness

Top Strip
Width

Bottom Strip
Width

Periodic
Width

15 µm 15 µm 100 µm 253 µm 475 µm 690 µm

To evaluate its performance in spatial resolution and image linearity, the detector is
placed in a vacuum chamber with a pressure of about 10−5 pa. As shown in Figure 8, an
ultraviolet beam is used to illuminate the target board located in front of the detector. A
negative high voltage is applied to the MCP stacks and the MCP-to-resistive layer gap via
two resistors connected in series.
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The signal processing electronics of the detector consists of 64 pre-amplifier shaping
amplifiers (PASA), analog-to-digital converters (AD9257, ADI), and control (Spartan6,
Xilinx) and interface circuits (RTL8211EG, REALTEK; CY7C68016A, CYPRESS). Each 64-
channel signal is amplified and shaped, and then converted into digital form and sent to
the FPGA. When the amplitude of the signal reaches the preset threshold, the sampling
logic of FPGA is triggered and the data are transmitted to the computer through optical
fiber or USB. The decoding software subsequently converts data to X, Y coordinates.
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4. Results and Discussion
4.1. Results of Simulation and Measurement

The same amplifier groups are used to collect the anode signal, and pulse height
distribution of the top and bottom anode are measured, as shown in Figure 9. The charge
ratio of top and bottom anode is about 1.9, which is consistent with the simulation results.
Table 2 shows the simulated and measured capacitance for the XS anode. The relative norm
difference of the results is used and defined as:

di f f erence =
∣∣∣∣CS − CM

CM

∣∣∣∣× 100% (7)

where CS is the simulated capacitance and CM is the measured capacitance. It can be
seen that the simulated capacitance is about 9% larger than those of measured values.
Due to machining error and geometry defect of the anode being neglected, the errors of
inter-electrode capacitance are introduced. However, the minor difference between the
simulation and measurement proves the reliability of the model.
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Table 2. Inter-electrode capacitance results of simulation and measurement.

Top Adjacent
Strips

Bottom
Adjacent Strips

Top-Bottom
Adjacent Strips

Measured capacitance/F 9.04 × 10−14 1.89 × 10−13 8.8 × 10−14

Simulated capacitance/F 9.74 × 10−14 2.06 × 10−13 9.6 × 10−14

Difference 7.7% 9.0% 9.1%

4.2. Spatial Resolution

To characterize the resolution of the XS detector, a USAF1951 spatial resolution target
in contact with the detector was illuminated by using a UV light. The basic concept of the
centroiding algorithm is to calculate the central position of the incident photon using the
charge value collected by each strip according to the induced charge distribution projection
on two axes. Well-known decoding algorithms are Gaussian 3 strip (G3S), Gaussian 5 strip
(G5S), and modified center of gravity (MCoG), which are summarized in Table 3. G3S and
G5S, respectively, use three and five strips to fit the induced charge cloud as a Gaussian
function. Modified center of gravity (MCoG) is the simplest and fastest method among all
centroid algorithms, while its threshold depends on the noise of the system and distribution
of induced charge [17]. For comparison, three centroiding algorithms have been used for
decoding the same raw data, and the result images are shown in Figure 10.
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Table 3. Different centroiding algorithms.

Centroidings Formula

G3S i0 = ln Qi+1−ln Qi−1
2(2 ln Qi−ln Qi−1−ln Qi+1)

+ i 1

G5S Levenberg-Marquardt

MCoG i0=

N
∑

i=1
imax[0,(Qi−Th)]2

N
∑

i=1
max[0,(Qi−Th)]

1 Where i is strip number, Qi is charge value of i-th strip, Qtotal is the total charge, and i0 is the centroid in X-axis
or Y-axis. 2 Th is a threshold, which, when used to reduce the influence of readout noise and minimize the fix
pattern, can be a fixed value or a floating value.
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Figure 10. Image obtained with (a) G3S, (b) G5S, and (c) MCoG algorithm, respectively. The insets in
the figure show that histograms through the vertical and horizontal lines of minimum element can be
distinguished. The resulting image obtained with MCoG centroiding takes into five largest strips
above a threshold Th fixed at 3% of total per-axis charge.

It is clear that the image of Group 3 Element 2 of the resolution target pattern obtained
with G3S can be resolved, which means the spatial resolution in this case is 55.7 µm. The
image of G5S has a better result and reaches a resolution of 49.6 µm (Group 3 Element 3).
This is because G5S takes more strips into account to deduce distortions caused by various
noise (readout noise, inaccuracies in anode geometry and amplifiers gain nonlinearity, etc.).
MCoG resolves 44.2 µm (Group 3 Element 4) and the distortion is substantially less than
that of G3S and G5S. The reason why MCoG has a better imaging result than Gaussian
fitting is that the mismatch between charge distribution on anode and Gaussian function.
In the charge induction readout mode, due to the discontinuous structure and geometric
deviation of the anode, Gaussian function cannot accurately describe the charge distribution
on the XS anode. MCoG takes the charge of the strip as the weight factor of the distance
and has a floating threshold, which is more suitable for describing the charge distribution
on the anode.

4.3. Periodic Distortion

Global uniformity is studied with full field illumination. The images shown in
Figure 11 are obtained with G3S, G5S, and MCoG centroiding respectively. There is an obvi-
ous periodic fixed pattern in the image, which is related to the XS anode periodic structure.
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Figure 11. Full field illumination image and photon number statistics obtained with (a) G3S, (b) G5S
and (c) MCoG centroiding respectively.

To characterize the fixed pattern of different centroiding algorithms, the photon dis-
tribution of a four-anode periods region in the image is counted. It is clear that G3S
centroiding has severe periodic distortion. G5S and MCoG centroiding have less periodic
distortion. The contrast of the fixed pattern can be obtained by:

D =
Nmax − Nmin

Nmax + Nmin
× 100% (8)

where Nmax and Nmin are the number of photons in the peak and valley region of an anode
period, respectively. Three centroiding algorithms are compared in terms of resolution,
periodic distortion, complexity, and computation speed, and the results are shown in
Table 4. It is clear that MCoG has the best performance.

Table 4. Performance comparison of different centroiding algorithms.

Centroidings Resolution Distortion(D) Speed Complexity

G3S 55.7 µm 34.3% fast low
G5S 49.6 µm 26.2% slow high

MCoG 44.2 µm 25.8% fast low

5. Conclusions

In this paper, an XS imaging detector with high resolution and low gain requirement
is designed and developed by combining the charge induction readout mode with an XS
anode. Through theoretical analysis, it is determined that the resistance of the resistance
layer is 50 MΩ and the ceramic substrate thickness is 0.5 mm. The charge distribution
and inter-electrode capacitance calculation model of an anode are established to study the
effects of anode strip width and insulation thickness on anode charge distribution and
inter-electrode capacitance. Based on this relationship, the parameters of the anode are
designed. The widths of the top and bottom strips are 253 µm and 475 µm, respectively,
the period width is 690 µm, and the insulation thickness is 100 µm. The small difference
between the simulation and the measurement proves the reliability of the model. With
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signal processing electronics and decoding software, a complete XS detector test system is
established. The XS detector is characterized to have a spatial resolution of 44.2 µm and
a periodic distortion of 25.8%, decoding with MCoG, which is proved to have the best
overall performance. In summary, the combination of charge induction readout and XS
anode gives superior performance and higher integration, and the developed XS imaging
detector has broad applications in electron, thermal neutron, X-ray, ultraviolet, and visible
light detection and imaging.
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