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Abstract: In engineering practice, numerical simulations of deep tunneling are commonly based
on isotropic linear–elastic perfectly plastic rock models. Rock, however, commonly exhibits highly
nonlinear and distinct direction-dependent mechanical behavior. The former is characterized by
irreversible deformation, associated with strain hardening and strain softening, and the degradation
of stiffness; the latter is due to the inherent rock structure. Nevertheless, the majority of the existing
rock models focuses on the prediction of either the highly nonlinear material behavior or the in-
herent anisotropic response of rock. The combined effects of nonlinear and direction-dependent
rock behavior, particularly in the context of the numerical simulations of tunnel excavation, have
rarely been taken into account so far. Thus, it is the aim of the present contribution to demonstrate
the influence of both effects on the evolution of the deformation and stress distribution in the rock
mass due to deep tunnel excavation on the example of a well-monitored stretch of the Brenner
Base Tunnel (BBT). To this end, the recently proposed gradient-enhanced transversely isotropic rock
damage–plasticity (TI-RDP) model, is employed for modeling the surrounding rock mass consisting
of Innsbruck quartz-phyllite. The material parameters for the nonlinear transversely isotropic rock
model are identified by means of three-dimensional finite element simulations of triaxial tests on spec-
imens of Innsbruck quartz-phyllite, conducted for varying loading angles with respect to the foliation
planes and different confining pressures. Subsequently, the results of the nonlinear 2D finite element
simulations of tunnel excavation are presented for different anisotropy parameters and different
orientations of the principal material directions with respect to the tunnel axis. The capabilities
of the TI-RDP model are assessed by comparing the numerically predicted results with those obtained
by the isotropic version of the RDP model.

Keywords: rock mechanics and rock engineering for infrastructures; rock properties; anisotropy;
transverse isotropy; tunneling

1. Introduction

In numerical simulations of tunnel advance, the constitutive model for the surround-
ing rock mass is a key component for obtaining realistic deformations and stress states.
However, in most of the existing tunneling simulations considered in a practical engi-
neering context, frequently isotropic linear–elastic perfectly plastic material models are
employed, neglecting two essential characteristics of the mechanical behavior of rock:
First, the mechanical behavior of rock is highly nonlinear. This is manifested by a nonlin-
ear response in triaxial compression, irreversible deformation including strain hardening
in the pre-peak regime as well as strain softening, accompanied by a degradation of the ma-
terial stiffness, in the post-peak regime of the stress-strain relations. Second, depending
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on the genesis of a particular rock, inherent structures, such as stratification or foliation
planes, lead to a distinct inherent anisotropic material behavior.

Typical approaches for capturing the nonlinear and potentially anisotropic mechanical
behavior of rock mass can be classified into two main categories: (i) continuum-based
approaches, treating rock mass as an equivalent continuum with smeared properties
of both rock and discontinuities, and (ii) discontinuum approaches, in which discontinuities
between pieces of intact rock are modeled in a discrete manner. The scope of this publication
is on the continuum-based modeling of rock; readers interested in discontinuum modeling
are referred to the literature, e.g., Lisjak and Grasselli [1], Jing and Hudson [2], Jing [3],
Barton [4] or Wittke [5].

In contrast to discontinuum approaches, continuum-based approaches offer an ap-
proximate but computationally more efficient approach for modeling rock mass, as inherent
discontinuities and intact rock are modeled in a smeared manner as a quasi-continuum. For
estimating the mechanical properties, either a homogenization procedure based on a rep-
resentative volume element, or, as an alternative, empirical relations may be employed.
A popular representative of the last category was proposed by Hoek et al. [6,7] for esti-
mating the strength and stiffness of quasi-homogeneous rock mass based on a rock mass
classification system.

Continuum-based modeling approaches assuming quasi-isotropic elasto-plastic be-
havior have been widely used since the 1970s. Most of them use failure criteria according
to Hoek–Brown [8] or Mohr–Coulomb. For a realistic modeling of the highly nonlinear me-
chanical behavior of rock, Unteregger et al. [9] proposed an isotropic rock damage–plasticity
model. It originates from the well-established concrete model by Grassl and Jirásek [10] and
incorporates linear elasticity, hardening plasticity with non-associated plastic flow as well
as strain softening resulting from damage due to micro-cracking. The smooth Hoek–Brown
failure criterion, proposed by Menétrey and Willam [11] is used as an ultimate strength
envelope. For objectively capturing structural failure mechanisms, such as the formation
of shear bands in the context of tunnel excavation or borehole breakout, the model was
extended by an over-nonlocal implicit gradient-enhanced formulation by Schreter et al. [12].

The above mentioned models are restricted to rock types with isotropic material be-
havior. However, inherent anisotropy associated with an oriented microstructure of rock
may have a significant impact on predicting the mechanical behavior. Especially in a strat-
ified or foliated rock mass, e.g., shales or phyllites, often the special cases of orthotropic
or transversely isotropic material behavior arise.

For considering such inherent direction dependence in continuum-based models,
several approaches have been developed in the past: anisotropic yield functions were
proposed by Hill [13], Pariseau [14] and Tsai and Wu [15], amongst others. Ubiquitous
joint models, building upon the single plane of weakness theory by Jaeger [16], in which
failure—in the rock matrix, along oriented joints or in both—may occur, were proposed by
Goodman et al. [17] and Ismael et al. [18,19]. An anisotropic generalization of isotropic
failure criteria by means of scalar anisotropy parameters was proposed by Pietruszczak and
Mroz [20], Gao et al. [21], Chen et al. [22,23] and Parisio et al. [24]. Alternatively, by means
of a linear mapping of the Cauchy stress tensor into a fictitious isotropic configuration,
originally proposed by Boehler [25], a transversely isotropic failure criterion was obtained
as an extension of an isotropic failure criterion. This approach was applied in several
works, e.g., [26–31]. The last three mentioned concepts, i.e., ubiquitous joint models, gener-
alization of isotropic failure criteria by means of scalar anisotropy parameters and linear
mapping into a fictitious isotropic configuration, were part of a comprehensive review
for considering transversely isotropic material behavior by Mader et al. [32]. The mapping
of the Cauchy stress tensor into a fictitious isotropic configuration turned out to be the most
versatile modeling approach. Thus, the transversely isotropic rock damage–plasticity (TI-
RDP) model was proposed by combining the isotropic rock damage–plasticity model [9,12]
and the approach by Boehler [25]. Based on three-dimensional (3D) FE simulations of tri-
axial compression tests, it was shown that the TI-RDP model is well suited for modeling
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the inherent direction-dependent and highly nonlinear behavior of stratified or foliated
rock types in a realistic manner.

Modeling the tunnel excavation or borehole breakout was subject of numerous pub-
lications, e.g., [27,33–38]. In Schreter et al. [39], the importance of employing advanced
constitutive models for rock mass and shotcrete for predicting the mechanical behavior
of deep tunnels was demonstrated. In Wang et al. [40], numerical simulations of the failure
mechanism of tunneling in transversely isotropic rock mass were presented. Schuller and
Schweiger [41] investigated the deformation behavior of a tunnel structure using a multi-
laminate model for the surrounding rock mass, considering directional dependencies but
not damaging processes. Pardoen et al. [42] investigated the influence of transversely
isotropic elasto-plastic material behavior on the evolution of shear bands during tunnel
excavation, considering the approach by Pietruszczak and Mroz [20] and including strain
hardening and softening. For regularizing the softening behavior, a local second gradient
model was used.

The combined effect of the highly nonlinear material behavior and the inherent
anisotropic response of rock is inevitable in particular for the numerical analysis of potential
collapse of a tunnel structure in stratified or foliated rock mass.

Thus, in this contribution the influence of both the highly nonlinear and anisotropic me-
chanical behavior of stratified or foliated rock mass on the deformation, stress distribution
and stability during tunnel excavation, will be systematically investigated on the example
of a well-monitored stretch of the Brenner Base Tunnel (BBT), which connects Austria and
Italy through the Eastern Alps (cf. Figure 1). For a more detailed representation of the geol-
ogy, interested readers are referred to, for example, Foderà et al. [43] or Bistacchi et al. [44].
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Figure 1. Geology of the Brenner Base Tunnel (BBT) from Innsbruck (left) to Franzens-
feste/Fortezza (right) and location (red circle) of the considered stretch (cf. [46]).
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Figure 1. Geology of the Brenner Base Tunnel (BBT) from Innsbruck (left) to Franzensfeste/Fortezza
(right) and location (red circle) of the considered stretch (adapted with permission from Ref. [45],
2019, BBT SE).

To this end, the recently proposed continuum-based rock model will be enhanced
for considering the influence of discontinuities, i.e., joints and faults, in rock mass. The
latter are considered by reducing the intact rock parameters independent of the orientation
of the discontinuities in terms of the geological strength index GSI, whereas the anisotropic
mechanical behavior only refers to the stratification or foliation planes of intact rock.
The material parameters will be identified by means of 3D finite element simulations of
triaxial tests on specimens of quartz-phyllite belonging to the Innsbruck quartz-phyllite
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complex according to Figure 1. They were conducted for varying loading angles with
respect to the foliation planes and different confining pressures.

The remainder of the paper is organized as follows: In Section 2, the equations of the TI-
RDP model are briefly summarized and extended for modeling stratified or foliated rock
mass (in contrast to intact rock). In Section 3, the calibration of the material parameters
by means of 3D finite element simulations of triaxial tests on Innsbruck quartz-phyllite with
different loading directions with respect to the foliation planes and different confining
pressures are presented. In Section 4, the influence of the orientation of foliation planes
on the mechanical behavior of the rock mass during tunnel excavation is assessed by means
of 2D finite element simulations, and a comparison with the results from a related study by
Schreter et al. [12], using an isotropic rock damage–plasticity model, is presented. Finally,
in Section 5, the paper is closed with a summary and a discussion on recommended future
research activities.

2. A Transversely Isotropic Damage–Plasticity Model for Intact Rock and Rock Mass

In the following, the transversely isotropic damage–plasticity (TI-RDP) model, pro-
posed by Mader et al. [32], is described briefly and extended for considering the mechan-
ical behavior of rock mass. A description of the used symbols is provided in Table A1
in Appendix A.The TI-RDP model is based on a combination of the isotropic damage–
plasticity model, proposed by Unteregger et al. [9], extended by an implicit gradient-
enhanced regularization scheme in Schreter et al. [12], and the approach by Boehler [25]
for capturing transversely isotropic material behavior.

Based on the theories of plasticity and damage mechanics, the stress–strain relation
of the TI-RDP model, defined in the global coordinate system, reads as

σ = (1−ω)C(ti) :
(

ε− ε(p)
)

. (1)

where σ denotes the nominal Cauchy stress tensor (force per total area), ω is the scalar
isotropic damage variable ranging from 0 (undamaged material) to 1 (completely damaged
material), ε and ε(p) represent the total and the plastic strain tensor, respectively. The fourth-
order transversely isotropic elastic stiffness tensor with respect to the global coordinate
system

C(ti)
ijkl = ami anj apk aql C

′ (ti)
mnpq (2)

is obtained by transforming the transversely isotropic elastic stiffness tensor C′ (ti), aligned
with the principal directions of the material, into the global coordinate system by means
of the orthogonal transformation matrix a. In Voigt notation, C′ (ti) reads as

C′ (ti) = rs



1
E1

− ν12
E2
− ν12

E2
0 0 0

− ν12
E2

1
E2

− ν23
E2

0 0 0

− ν12
E2
− ν23

E2
1

E2
0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 2 (1+ν23)
E2



−1

, (3)

characterized by five independent material parameters, i.e., the Young’s modulus E1
in the direction of the normal vector n to the planes of isotropy (planes with the same mate-
rial parameters in all directions within those planes), i.e, n represents the axis of material
symmetry, as illustrated in Figure 2, the Poisson’s ratio ν12 and the shear modulus G12
in the planes containing the axis of material symmetry, and the Young’s modulus E2 as well
as the Poisson’s ratio ν23, both in the plane of isotropic material behavior.
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As shown in Figure 2, in contrast to intact rock, which is characterized by a stratifica-
tion or a pervasive foliation, the macro structure of rock mass is governed by mechanical
discontinuities like joints and faults, gaps or other fault zones, resulting in a strong
dependence of the material properties of rock mass on the surface conditions of those
discontinuities. Thus, by analogy to the isotropic version of the RDP model, the elastic
stiffness properties of intact rock, i.e., the Young’s moduli E1 and E2 as well as the shear
modulus G12 are multiplied by the empirical stiffness reduction factor

rs = 0.02 +
1 − D/2

1 + exp
(

60 + 15 · D − GSI
11

) +

(
0.98 − 1

1 + exp(−40/11)

)(
GSI
100

)10
(4)

according to Hoek et al. [9]. The latter is expressed in terms of the Geological Strength151

Index (GSI) for considering the geological conditions of rock mass, ranging from 1 (intact152

rock) to 0 (completely disintegrated rock), and the disturbance factor D for taking into153

account the disturbance of the in situ stress in the rock mass due to the excavation154

process with 0 (undisturbed) ≤ D ≤ 1 (significantly disturbed). According to Hoek155

et al. [10], for excellent quality controlled blasting or mechanized tunneling D = 0 is156

recommended.157

2.1. Transversely isotropic plasticity formulation158

The plastic part of the TI-RDP model is formulated in terms of the effective stress
tensor σ̄ (force per undamaged area), which is linked to the nominal stress tensor σ by
σ̄ = σ/(1 − ω). For considering transversely isotropic behavior, a fictitious effective
stress tensor

σ̄∗ = P : σ̄ (5)

is defined by mapping the effective stress tensor into a fictitious isotropic configuration,
denoted by the superscript (•)∗, as originally proposed by Boehler [27] and for instance
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Figure 2. Schematic sketch of (i) the discontinuities in rock mass, (ii) the stratification or foliation
planes in intact rock and its consideration in the TI-RDP model by (iii) the transversely isotropic
equivalent continuum for stratified or foliated intact rock.

As shown in Figure 2, in contrast to intact rock, which is characterized by a stratifica-
tion or a pervasive foliation, the macro structure of rock mass is governed by mechanical
discontinuities, such as joints and faults, resulting in a strong dependence of the material
properties of rock mass on the surface conditions of those discontinuities. Thus, by analogy
to the isotropic version of the RDP model, the elastic stiffness properties of intact rock,
i.e., the Young’s moduli E1 and E2 as well as the shear modulus G12 are multiplied by
the empirical stiffness reduction factor

rs = 0.02 +
1−D/2

1 + exp
(

60 + 15 ·D−GSI
11

) +

(
0.98− 1

1 + exp(−40/11)

)(
GSI
100

)10
(4)

according to Hoek et al. [6]. The latter is expressed in terms of the geological strength
index (GSI) for considering the geological conditions of rock mass, ranging from 1 (intact
rock) to 0 (completely disintegrated rock), and the disturbance factor D for taking into
account the disturbance of the in situ stress in the rock mass due to the excavation process
with 0 (undisturbed) ≤ D ≤ 1 (significantly disturbed). According to Hoek et al. [7],
for excellent quality controlled blasting or mechanized tunneling, D = 0 is recommended.

2.1. Transversely Isotropic Plasticity Formulation

The plastic part of the TI-RDP model is formulated in terms of the effective stress
tensor σ̄ (force per undamaged area), which is linked to the nominal stress tensor σ by
σ̄ = σ/(1−ω). For considering the transversely isotropic behavior, a fictitious effective
stress tensor

σ̄∗ = P : σ̄ (5)

is defined by mapping the effective stress tensor into a fictitious isotropic configuration,
denoted by the superscript (•)∗, as originally proposed by Boehler [25] and for instance
applied by Semnani et al. [28], Borja et al. [46] and Bryant [29,47]. P denotes the fourth-order
linear mapping tensor with major and minor symmetry, reading in terms of the Walpole
algebra [48] as

P = E(1) + γ
(
E(2) + F+ δG

)
(6)

with the anisotropy parameters γ and δ. The latter are linked to the uniaxial compressive
strength for intact rock perpendicular to the planes of isotropy f (1)cu , the uniaxial compressive
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strength parallel to the latter f (2)cu , the shear strength in planes perpendicular to the planes
of isotropy f (12)

sh and the shear strength in the plane of isotropy f (23)
sh by

γ =
f (1)cu

f (2)cu

and δ =
f (23)
sh

f (12)
sh

. (7)

γ can be determined by means of uniaxial compression tests with loading directions per-
pendicular and parallel to the planes of isotropy of intact layered rock. δ can be determined
by simple shear tests with loading in planes perpendicular to the planes of isotropy and
in the plane of isotropy of intact layered rock. According to (7), γ and δ are limited to values
greater than 0 for a meaningful physical interpretation. The sub-tensors

E(1)
ijkl = φijφkl , E(2)

ijkl =
1
2

χij χkl , Fijkl =
1
2

(
χik χjl + χil χjk − χij χkl

)
,

Gijkl =
1
2

(
φik χjl + φil χjk + χik φjl + χil φjk

) (8)

describe the influence of the stratification or foliation planes on the material behavior, based
on the microstructure tensor φ = n⊗ n and its orthogonal tensor χ = 1− φ, which are
both defined by the normal vector n of the planes of isotropy.

For delimiting the elastic domain, a direction-dependent yield criterion is formulated
by expressing the yield function of the original isotropic RDP model in terms of the Haigh–
Westergaard coordinates σ̄∗m, ρ̄∗ and θ̄∗ of the mapped effective stress tensor σ̄∗:

f ∗
(
σ̄∗, qh(αp)

)
=

(
1− qh(αp)

f (1)cu
2

(
σ̄∗m +

ρ̄∗√
6

)2

+

√
3
2

ρ̄∗

f (1)cu

)2

+

+
q2

h(αp)

f (1)cu

rm ·m∗0
(

σ̄∗m + r(θ̄∗, e)
ρ̄∗√

6

)
− rc · q2

h(αp) .

(9)

According to (5), the mapped effective stress depends on the mapping tensor P and
thus incorporates the orientation of the principal material directions and the anisotropy pa-
rameters. The parameters of the yield function comprise the uniaxial compressive strength
for loading perpendicular to the planes of isotropy f (1)cu , the friction parameter for intact
rock m∗0 and two empirical reduction factors, rm and rc, for considering the influence of dis-
continuities on the friction and cohesion in rock mass by analogy to the original isotropic
RDP model. Hoek et al. [7] proposed the latter as

rm = exp
(

GSI− 100
28− 14 D

)
(10)

and

rc = exp
(

GSI− 100
9− 3 D

)
, (11)

in terms of the geological strength index GSI and the disturbance factor D. In Figure 3,
the influence of GSI and D on the empirical reduction factors, defined by (4), (10) and (11),
is depicted.



Appl. Sci. 2022, 12, 8532 7 of 24

0 20 40 60 80 100

Geological strength index GSI

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

re
d

u
ct

io
n

fa
ct

o
rs

D
=

0

D
=

1

D
=

0

D
=

1

D
=

0

D
=

1

rs

rm

rc

Figure 3. Illustration of the range of the empirical reduction factors rs, rm and rc for the elastic
stiffness, the friction parameter and the cohesion parameter, respectively, for 0 ≤ D ≤ 1 in terms
of the geological strength index GSI.

The shape of the yield function in deviatoric planes is controlled by the Willam–
Warnke [49] function r(θ̄∗, e), defined by the eccentricity parameter e ranging from 0.5
(triangular shape) to 1 (circular shape). The evolution of the yield function (9) is controlled
by the stress-like hardening variable 0 ≤ qh(αp) ≤ 1, depending on the strain-like harden-
ing variable αp. For e = 0.5, the ultimate strength surface f ∗(σ̄∗, qh = 1) = 0 corresponds
to the smooth version of the Hoek–Brown failure criterion, proposed by Menétrey and
Willam [11].

For considering the influence of transverse isotropy on the plastic strain tensor ε(p),
the non-associated plastic potential function g∗

(
σ̄∗, qh(αp)

)
is also formulated in terms

of the mapped effective stress tensor, reading as

g∗
(
σ̄∗, qh(αp)

)
=

(
1− qh(αp)

f (1)cu
2

(
σ̄∗m +

ρ̄∗√
6

)2
+

√
3
2

ρ̄∗

f (1)cu

)2

+

+
q2

h(αp)

f (1)cu

(
m∗g1,rm · σ̄∗m + m∗g2,rm

ρ̄∗√
6

)
.

(12)

m∗g1,rm = rm ·m∗g1 represents a reduced dilatancy parameter, calculated by the dilatancy
parameter for intact rock m∗g1, which can be determined from uniaxial compression tests,
loaded perpendicular to the planes of isotropy, and triaxial compression tests, loaded
in the principal material directions of an intact rock specimen. As described in detail by Un-
teregger et al. [50], the parameter m∗g2,rm denotes a dependent dilatancy parameter, which
can be calculated from m∗g1,rm such that the radial plastic strain rate vanishes in uniaxial
tension perpendicular to the planes of isotropy.

For calculating the rate of the plastic strain tensor, the plastic potential function (12) is
employed in the non-associated flow rule

ε̇(p) = λ̇P :
∂g∗
(
σ̄∗, qh(αp)

)
∂ σ̄∗

, (13)

with λ̇ denoting the consistency parameter.
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The stress-like hardening variable

qh(αp) =


f (1)cy

f (1)cu

+

1−
f (1)cy

f (1)cu

 αp

(
α2

p − 3 αp + 3
)

αp < 1

1 αp ≥ 1

, (14)

with the uniaxial compressive yield stress for the loading direction perpendicular to the
planes of isotropy f (1)cy , is formulated in terms of the strain-like hardening variable αp,
the evolution of which is governed by

α̇p = λ̇
rs

x∗h(H : σ̄)

1 + 3
ρ̄∗2

ρ̄∗2 + f (1)cu
2
· 10−8

cos2
(

3θ∗

2

) · ∣∣∣∣∣
∣∣∣∣∣P :

∂ g∗
(
σ̄∗, qh(αp)

)
∂ σ̄∗

∣∣∣∣∣
∣∣∣∣∣. (15)

For controlling the ductility of the hardening behavior, the strain-like hardening
variable depends on a direction-dependent hardening ductility measure x∗h, defined as

x∗h(H : σ̄) =


Eh exp

(
Rh(H : σ̄)

Fh

)
+ Dh Rh(H : σ̄) < 0

Ah − (Ah − Bh) exp
(
−Rh(H : σ̄)

Ch

)
Rh(H : σ̄) ≥ 0

, (16)

with Rh(H : σ̄) = −tr(H : σ̄)/ f (1)cu − Gh and the hardening parameters Ah, Bh, Ch, Dh and
Gh. As described in detail by Mader et al. [32], the dependence of the ductility behavior
in the hardening regime on the material orientation can be different from the transversely
isotropic variation of the yield surface. Thus, a modified mapping tensor

H = E(1) + Hh

(
E(2) + F+G

)
(17)

is defined for controlling the direction dependence of the hardening ductility measure,
introducing an additional anisotropy parameter Hh.

2.2. Transversely Isotropic Gradient-Enhanced Damage Behavior

Damage material behavior is initiated when the yield function (9) attains the ultimate
strength surface, i.e., at qh = 1. The evolution of the damage variable ω is described by
the exponential relation

ω(αd) = 1− exp

(
−αd

ε
(1)
f

)
(18)

as a function of the local damage driving variable αd. It is controlled by the softening
modulus ε

(1)
f for the loading direction perpendicular to the planes of isotropy. The latter

can be calibrated by the specific mode I fracture energy G(1)
fI for loading perpendicular

to the planes of isotropy. The rate equation for the local damage driving variable is given as

α̇d =


0 αp < 1

ε̇
(p)
vol

xs

(
ε̇(p)

) αp ≥ 1
, (19)

with ε̇
(p)
vol = tr

(
ε̇(p)

)
and xs

(
ε̇(p)

)
= 1 + As

(
ε̇
(p)
	,vol/ε̇

(p)
vol

)Bs
denoting the volumetric plastic

strain rate and the softening ductility measure, respectively. ε̇
(p)
	,vol = tr

(〈
−ε̇(p)

〉)
repre-

sents the compressive part of the volumetric plastic strain rate and As and Bs are softening
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parameters, which can be calibrated from uniaxial compression tests, loaded perpendicular
to the planes of isotropy, and triaxial compression tests, loaded in the principal material
directions.

For obtaining mesh-independent results in finite element simulations considering
strain softening, the TI-RDP model is regularized by an over-nonlocal implicit gradient
enhancement, following Schreter et al. [12]. For this purpose, in (18) αd is replaced by
the over-nonlocal softening variable

α̂d = m ᾱd + (1−m) αd. (20)

ᾱd represents the nonlocal counterpart of αd, and m is the weighting parameter. The
nonlocal softening variable ᾱd is implicitly determined by the screened Poisson equation

αd = ᾱd − l2∇2 ᾱd , (21)

with l denoting an internal length scale parameter. The weak form of (21) together with
the weak form of the equilibrium equations yields a coupled system of differential equations
with the displacements u(x) and the nonlocal softening variable ᾱd(x) as the primary
unknowns. A detailed description of the over-nonlocal implicit gradient enhancement can
be found in Schreter et al. [12].

Note that according to (13), the rate of the plastic strain tensor depends on the mapping
tensor P. Hence, the evolution of α̂d and consequently of the damage variable ω are
influenced by the direction-dependent material behavior.

3. Parameter Calibration

In the following, the material parameters of the TI-RDP model are calibrated for Inns-
bruck quartz-phyllite based on experimental results of triaxial compression tests performed
by Blümel [51] on specimens sampled from a construction site of the Brenner Base Tunnel.
The eccentricity parameter e in (9) cannot be calibrated by triaxial compression tests. It is
assumed as e = 0.51 as recommended in [50]. In the experimental study, tests with three
different confining pressures σ0 = 12.5 MPa, 25 MPa and 37.5 MPa and three different
directions of axial loading with respect to the inclination of the foliation planes, i.e., β = 0◦,
60◦ and 90◦, were carried out. The cylindrical specimens with a height of 70 mm and
a diameter of 35 mm were tested in a displacement controlled manner by monotonically
increasing the axial displacement at the top surface of the specimens.

For the parameter calibration, a three-dimensional finite element model of the triaxial
compression tests is employed. Compared to commonly used single-element tests for this
purpose, by the 3D simulations, also the structural effects, such as non-uniform strain
distributions associated with the formation of shear bands, are captured. In Figure 4,
the geometry and boundary conditions of the finite element model are illustrated. To reduce
the number of degrees of freedom, symmetry is exploited. The specimen is discretized by
20-node quadrilateral finite elements with quadratic shape functions, reduced integration
and a characteristic element size of 2.5 mm, resulting in 53,582 degrees of freedom in total.
For triggering strain localization, in a small zone at the center of the specimen, elements
with slightly reduced values for f (1)cu and f (1)cy by 5% are considered, cf. Figure 4.

The material parameters E1, E2, ν12, ν23, G12, f (1)cu , f (1)cy , m∗0 , m∗g1, Ah, Bh, γ, δ and Hh
of the TI-RDP model are calibrated such that a best fit with the experimentally determined
deviatoric stress–strain curves is obtained from tests with identical values of σ0 and β. For
this purpose, the sum of nonlinear least-squares is minimized by using the trust-region
constrained algorithm available within the framework of the scipy.optimize module [52]
of Python. The calibrated material parameters are constrained to positive values, i.e.,
the lower bounds are set to zero. In addition, f (1)cu is restricted to an upper bound of 200 MPa
and f (1)cy < f (1)cu is applied as a linear constraint. This way, a unique local minimum could
be found within the prescribed physically meaningful range of the material parameters
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for Innsbruck quartz-phyllite. The axial strain is taken as the top displacement divided by
the initial length of the specimens. The hardening parameters Ch, Dh, and Gh, the softening
parameters As and Bs and the eccentricity parameter e are chosen as recommended by
Unteregger et al. [50]. The softening modulus ε

(1)
f perpendicular to the foliation planes and

the internal length parameter l are chosen such that a characteristic value of the specific
mode I fracture energy G(1)

f for uniaxial tension perpendicular to the foliation planes
of 0.15 N/mm, as suggested by Schreter et al. [39], is obtained. The calibrated parameters
and the hardening and softening parameters are listed in Table 1.

Version July 19, 2022 submitted to Appl. Sci. 9 of 22

specimen is discretized by 20-node quadrilateral finite elements with reduced integration205

and a characteristic element size of 2.5 mm, resulting in 53 582 degrees of freedom in206

total. For triggering strain localization, in a small zone at the center of the specimen207

elements with slightly reduced values for f (1)cu and f (1)cy by 5% are considered, cf. Figure208

3.209

e′(1) =̂ n

h
=

70
m

m

d/2 = 17.5 mm

e′(3)

e′(2)

e(2)

e(1)

e(3)

β

weakened zone

displacement u3

σ0

Figure 3. Illustration of the geometry of a specimen together with the orientation of the stratifica-
tion planes β and the boundary conditions (prescribed top displacement u3; confining pressure
σ0).

Using a nonlinear least-squares optimization algorithm, the material parameters210

E1, E2, ν12, ν23, G12, f (1)cu , f (1)cy , m∗
0 , m∗

g1, Ah, Bh, γ, δ and Hh of the TI-RDP model are211

calibrated such that a best fit with the experimentally determined deviatoric stress-212

strain curves is obtained from tests with identical values of σ0 and β. The axial strain213

is taken as the top displacement divided by the initial length of the specimens. The214

hardening parameters Ch, Dh, and Gh, the softening parameters As and Bs and the215

eccentricity parameter e are chosen as recommended by Unteregger et al. [47]. The216

softening modulus ε
(1)
f perpendicular to the stratification planes and the internal length217

parameter l are chosen such that a characteristic value of the specific mode I fracture218

energy G(1)
f for uniaxial tension perpendicular to the stratification planes of 0.15 N/mm,219

as suggested by Schreter et al. [40], is obtained. The calibrated parameters and the220

hardening and softening parameters are listed in Table 1.221

Figure 4 shows the computed maximum deviatoric stress σdev = σ33 − σ0 in terms222

of the confining pressure σ0 and the inclination angle β of the stratification planes,223

compared to the respective peak values of the experimental data. From Figure 4 follows224

for a particular confining pressure a strong direction-dependence of the maximum225

deviatoric stress.226

Figure 5 shows the computed deviatoric stress-strain curves of the triaxial compres-227

sion tests together with the corresponding results from the experiments by Blümel [2].228

Despite of the large scatter of the experimental results, for the considered confining pres-229

sures of σ0 = 12.5 MPa, 25 MPa and 37.5 MPa and inclination angles of the stratification230

planes β = 0◦, 60◦ and 90◦, the numerically predicted strength exhibits good agreement231

with the corresponding mean values of the experimentally determined strengths.232

Figure 4. Illustration of the geometry of a specimen together with the orientation of the foliation
planes β and the boundary conditions (prescribed top displacement u3; confining pressure σ0).

Table 1. Material parameters of the TI-RDP model for intact Innsbruck quartz-phyllite.

E1 (MPa) E2 (MPa) ν12 (- ) ν23 (-) G12
(MPa)

f (1)cu
(MPa) m∗0 (-) e (-)

45,000 39,000 0.254 0.165 17,000 63.91 19.98 0.51

m∗g1 (-) f (1)cy
(MPa) Ah (-) Bh (-) Ch (-) Dh (-) Gh (-) Hh (-)

6.77 25.5 9.5×10−3 1.0×10−3 8.817 1.0×10−6 0.0 1.529

γ (-) δ (-) As (-) Bs (-) ε
(1)
f (-) l (mm) GSI (-) D (-)

1.529 1.201 20 1 3.4×10−4 2.5 100 0
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Figure 5 shows the computed maximum deviatoric stress σdev = σ33 − σ0 in terms
of the confining pressure σ0 and the inclination angle β of the foliation planes, compared
to the respective peak values of the experimental data. From Figure 5 follows, for a particu-
lar confining pressure, a strong direction dependence of the maximum deviatoric stress.Version August 25, 2022 submitted to Appl. Sci. 11 of 23
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Figure 5. Computed maximum deviatoric stress σdev in terms of the inclination angle of the foliation
planes β and the confining pressure σ0 together with the experimental data, reprinted with permission
from Ref. [51], 2014, Blümel.

Figure 6 shows the computed deviatoric stress-strain curves of the triaxial compression
tests together with the corresponding results from the experiments by Blümel [51]. Despite
of the large scatter of the experimental results, for the considered confining pressures
of σ0 = 12.5 MPa, 25 MPa and 37.5 MPa and inclination angles of the foliation planes
β = 0◦, 60◦ and 90◦, the numerically predicted strength exhibits good agreement with
the corresponding mean values of the experimentally determined strengths.

Furthermore, in the top row of Figure 7, the computed distribution of the displacement
magnitude is shown for an advanced stage of the simulation corresponding to a vertical
top displacement of u3 = −1 mm, already indicating the predicted failure mode for the con-
fining pressure of 12.5 MPa and the respective inclination angles β. In the bottom row
of Figure 7, the corresponding observed failure mechanisms in the experiments are depicted.
A comparison of the observed and computed failure modes confirms good agreement for all
three inclination angles of the foliation planes.

As noted from Figure 7, the experimentally obtained crack does not necessarily pass
through the center of the specimen as predicted by the numerical simulations. This discrep-
ancy in the prediction of the location of the crack is traced back to the location of the intro-
duced artificial imperfection in the numerical model. However, investigations of Desrues
and Viggiani [53] concluded that the location of imperfections, e.g., weak elements, does not
influence the resulting global stress-strain curves. Thus, it is assumed that the calibration
of the material parameters is not affected by the eccentric crack paths.
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Figure 5. Computed deviatoric stress-strain curves of the triaxial compression tests for confining
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Figure 6. Computed deviatoric stress-strain curves of the triaxial compression tests for confining
pressures of σ0 = 12.5 MPa (top), 25 MPa (middle) and 37.5 MPa (bottom).
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Figure 7. Computedfailure modes for σ0 = 12.5 MPa for the three inclination angles of the foliation
planes β = 0◦, 60◦ and 90◦ compared to the experimentally determined failure modes according
to Blümel [51] (Images of experiments reprinted with permission from Ref. [51], 2014, Blümel).

4. Numerical Simulation of Tunnel Excavation

The application of the gradient-enhanced transversely isotropic RDP model is demon-
strated by predicting the formation of the complex pattern of shear bands due to the excava-
tion of a deep tunnel. To this end, two-dimensional simulations of the excavation of a stretch
of the Brenner Base Tunnel, constructed by the drill and blast method, are performed. In
a previous publication [12], the respective stretch was already the subject of a mesh study
for investigating the capabilities of the gradient-enhanced regularization of the isotropic
version of the rock damage-plasticity model ensuring mesh-independent response. Com-
pared to the results of the latter, the impact of different orientations of the principal material
directions of foliated rock mass will be demonstrated.

The finite element mesh together with the initial and boundary conditions is illustrated
in Figure 8. The tunnel profile is characterized by a circular cross section with a diameter
of 8.5 m and an overburden of 950 m at the tunnel axis. To ensure a negligible influence
of the boundary conditions (cf. Figure 8 left) on the stress distribution in the vicinity
of the tunnel, the considered area of the surrounding rock mass is chosen as 200 m × 200 m.
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The model is discretized by 48,980 8-node finite elements with quadratic shape func-
tions and reduced integration, resulting in 589,508 degrees of freedom. For triggering
localized behavior, randomly chosen 20% of the elements in the near field of the tun-
nel cross section are weakened by reducing the uniaxial compressive strength f (1)cu and
the uniaxial yield strength f (1)cy perpendicular to the foliation planes by 5%. For obtaining
a high resolution of the localized shear bands in the vicinity of the tunnel, a finer mesh (cf.
Figure 8) with a typical element size of ∼0.05 m is chosen in this region.

Due to the high overburden, a spatially uniform distribution of the geostatic stress
state, characterized by the hydrostatic pressure of p(0)i = 25.5 MPa is assumed. It is
determined from the density of Innsbruck quartz-phyllite of 2739 kg/m3. For the same
reason, gravity is not active in the numerical model. For obtaining the most unfavorable
excavation conditions, full-face excavation is assumed. At the beginning of the simulation,
the initial stress state is represented by applying the hydrostatic pressure as initial stress
in the discretized domain and the surface pressure pi = p(0)i at the excavation boundary
as shown in Figure 8 right. The latter is released continuously for modeling the excavation
process in the 2D numerical simulation of tunneling. The excavation is completed upon
full release of the surface pressure. Failure of the rock mass in the vicinity of the tunnel is
indicated, if full release of the surface pressure is not possible in the numerical simulation.

Since the focus of this contribution is on the influence of directional-dependent be-
havior of rock mass on the stress redistribution during the excavation process, supporting
measures, such as a shotcrete shell or rock anchors, are neglected.

The material parameters for Innsbruck quartz-phyllite are adopted from the calibrated
parameters for intact rock as listed in Table 1. For considering the effects of present joints
and discontinuities in the rock mass, the geological strength index is set to GSI = 40
as reported in [12]. In contrast to Table 1, the internal length parameter is increased to
l = 50 mm in view of the considerably larger dimensions of the tunnel model. Accordingly,
the softening modulus in the direction perpendicular to the foliation planes is determined as
ε
(1)
f = 7× 10−4, thus preserving the mode I fracture energy of the triaxial compression tests.

4.1. Influence of the Anisotropy Parameters

For investigating the influence of the transversely isotropic behavior predicted by
the TI-RDP model on the mechanical response due to tunnel excavation, a parameter
study based on the variaton of the two anisotropy parameters γ and δ (7) is performed. γ
and δ represent the ratio of the uniaxial compressive strength perpendicular and parallel
to the foliation planes and the ratio of the shear strength in the planes of isotropy and
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in planes perpendicular to the latter, respectively. A horizontally foliated rock mass (β = 0◦)
is considered.

As a benchmark for assessing the influence of the anisotropy parameters γ and δ
serves the simulation with the isotropic RDP model. For the latter, the parameters γ = 1,
δ = 1 and the isotropic elastic stiffness tensor in the stress-strain relation (1) with a Young’s
modulus of E = E1 = E2 =45,000 MPa, a Poisson’s ratio of ν = ν12 = ν23 = 0.254 and
a shear modulus of G = G12 = E/(2 (1 + ν)) are employed.

Figure 9 shows the distribution of the damage variable ω (left) and the displace-
ment magnitude (right) in the final stage of the simulation before failure, i.e., for a release
of the surface pressure of 97.5%. Due to the excavation, for a release of the surface pres-
sure exceeding ∼90%, the rock mass is subjected to softening, which leads to localization
of strains into multiple distinct shear bands, cf. Figure 9 left. In the simulation, strain local-
ization is triggered by the weakened elements, mentioned in Section 4, breaking the other-
wise expected axisymmetric behavior. A similar shape of the damage pattern was observed
in experiments performed, for example, by Papamichos et al. [54] or Meier et al. [55].Version July 19, 2022 submitted to Appl. Sci. 14 of 22
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In Figure 10, the distribution of the damage variable ω (left) and the displacement
magnitude (right) is shown for two different values of the anisotropy parameter γ = 1.25
(top) and γ = 0.75 (bottom) and a constant value of δ = 1 in the final stage of the simulation
before failure, at a release of the surface pressure pi of 96%. From Figure 10A,B follows that
for γ = 1.25 the highly damaged zones are concentrated around the side walls of the tunnel,
where the surface pressure pi acts in the direction parallel to the foliation planes. This is
attributed to the lower uniaxial compressive strength parallel to the foliation planes, f (2)cu ,
compared to the uniaxial compressive strength perpendicular to the foliation planes, f (1)cu .

In Figure 10C,D the damage distribution and displacement pattern are shown for
γ = 0.75, resulting in a lower value for f (1)cu compared to f (2)cu . Compared to the side walls,
this results in a concentration of the highly damaged zones and consequently larger dis-
placements at the top and the bottom of the tunnel cross section. Here the surface pressure
at the excavation boundary acts in the direction perpendicular to the foliation planes.



Appl. Sci. 2022, 12, 8532 16 of 24

Version July 19, 2022 submitted to Appl. Sci. 14 of 22

0 20 40 60 80
damage ω in %

0
displacement magnitude in mm

20 40 60 80 100 12099

Figure 8. Distribution of the damage variable ω (left) and the displacement magnitude (right)
(displacement scale factor 3) in the final stage of the tunnel simulation using the isotropic RDP
model.

0 20 40 60 80
damage ω in % displacement magnitude in mm

γ
=

1.
25

|
δ
=

1.
0

γ
=

0.
75

|
δ
=

1.
0

0 20 40 60 80 100 130120

β = 0◦

99

(A) (B)

(C) (D)

β = 0◦

β = 0◦

Figure 9. Distribution of the damage variable ω (left) and the displacement magnitude (right)
(displacement scale factor 3) in the final stage of the tunnel simulation using the transversely
isotropic RDP model with values of γ = 1.25 (top) and 0.75 (bottom) and a constant value δ = 1.

Figure 10. Distribution of the damage variable ω (left—A,C) and the displacement magnitude (right—
B,D) (displacement scale factor 3) in the final stage of the tunnel simulation using the transversely
isotropic RDP model with values of γ = 1.25 (top—A,B) and 0.75 (bottom— C,D) and a constant
value δ = 1.

Figure 11 shows the distribution of the damage variable ω (left) and the displacement
magnitude (right) obtained for different values of δ = 1.25 (top) and 0.75 (bottom) and
a constant value of γ = 1.0 in the final stage of the simulation before failure at a release
of the surface pressure pi of 97.5%. For the considered horizontally foliated rock mass
β = 0◦, due to the transversely isotropic linear elastic material behavior, the magnitude
of the principal normal stresses has the most unfavorable effect in the horizontal and
vertical planes. For this reason, at the top, bottom and sidewalls of the tunnel the damage
variable and the displacement magnitude exhibit maximum values. In the present case
of a two-dimensional analysis, δ represents a scale factor of the shear strength f (12)

sh in planes
perpendicular to the foliation planes. Thus, by comparison of the results for δ = 0.75 (cf.
Figure 11C,D) and δ = 1.25 (cf. Figure 11A,B), it can be seen that due to the higher shear
strength predicted for δ = 0.75 compared to δ = 1.25, the highly damaged zones become
smaller and, hence, the displacement magnitude is reduced significantly by a factor of 0.37.
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By comparing the results obtained by the isotropic RDP model, shown in Figure 9,
and by the TI-RDP model, shown in Figures 10 and 11, the influence of the anisotropy
parameters can be summarized as follows: For a horizontally layered rock mass, depend-
ing on the ratio between the uniaxial compressive strength parallel and perpendicular
to the foliation planes, failure at either the side walls or at the tunnel crown and invert
is predicted. This is in contrast to the simulations with the isotropic RDP model, where
several highly damaged zones are distributed around the tunnel perimeter. Furthermore,
it was shown that a smaller shear strength influences the mechanical behavior significantly
in the highly damaged zones due to larger shear deformations as well as in zones where
the predominant loading direction is inclined to the foliation planes.

4.2. Influence of the Inclination of the Foliation Planes

The influence of the inclination of the foliation planes on the mechanical response
of the 2D tunneling simulation is investigated by considering four different values of the in-
clination angles of the foliation planes β = 0◦, 30◦, 60◦ and 90◦.

In Figure 12, the distribution of the damage variable ω is shown for the four inclina-
tion angles β in the final stage of the simulation before failure at a release of the surface
pressure pi of 97.5%. It can be seen that the failure pattern, manifested by the distribution
of the highly damaged zones, strongly depends on the inclination angle of the layered
rock mass. Considering the mechanical properties of Innsbruck quartz-phyllite, cf. Table 1
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(γ = 1.529, δ = 1.201, E2/E1 = 0.87), it can sustain higher loads for loading perpendicular
to the foliation planes compared to loading parallel to the foliation planes. Thus, the highly
damaged zones are localized where the predominant loading direction, i.e., the direction
of the acting surface pressure, is aligned with the foliation planes (cf. Figure 12A–D). Note
that for the present axisymmetric tunnel geometry and the hydrostatic initial geostatic
stress, the damage patterns for the different inclinations of the foliation planes are not
only obtained by a rotation around the tunnel center but are also slightly affected by
the randomly distributed weakened zones.Version July 19, 2022 submitted to Appl. Sci. 17 of 22
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Figure 12. Distribution of the damage variable ω in the final stage of the simulation, determined by
the transversely isotropic RDP model with the calibrated material parameters of Section 3 for four
different inclination angles β of the foliation planes, i.e., β = 0◦ (A), β = 30◦ (B), β = 60◦ (C) and
β = 90◦ (D).

In Figure 13, the release of the normalized surface pressure pi/p(0)i is depicted in terms
of the displacement magnitude for three characteristic points, i.e., top (M1), left (M2) and
right side wall (M3) of the tunnel (cf. Figure 12A) and the four inclination angles β = 0◦, 30◦,
60◦ and 90◦. In addition, the corresponding results from the simulation using the isotropic
RDP model are shown.

Up to a stress release of 90%, i.e., pi/p(0)i = 10%, the influence of the inclination
of the foliation planes on the displacement magnitude is negligible for the three considered
points M1 to M3. However, from the onset of softening behavior, i.e., for a stress release
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exceeding 90%, the displacement magnitude varies significantly since the strains localize
into narrow zones of the rock mass, leading to the formation of shear bands in the vicinity
of the tunnel. Since no securing measures are considered in this study, equilibrium is lost
beyond the stress release of approximately 97.5%.
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Figure 12. Normalized surface pressure pi/p0
i as a function of the displacement magnitude umag

for three characteristic points, i.e., Top: M1 (top), Left: M2 (middle) and Right: M3 (bottom) and
the four inclination angles of the stratification planes β = 0◦ (orange), 30◦ (red), 60◦ (grey) and 90◦

(blue) compared to the isotropic (dashed) simulation.

Figure 13. Normalized surface pressure pi/p(0)i as a function of the displacement magnitude umag

for three characteristic points, i.e., Top: M1 (top), Left: M2 (middle) and Right: M3 (bottom) and
the four inclination angles of the foliation planes β = 0◦ (orange), 30◦ (red), 60◦ (grey) and 90◦ (blue)
compared to the isotropic (dashed) simulation.

By employing the isotropic RDP model (dashed line), the displacement magnitude
in the final stage of the simulation is in the range of 117 to 120 mm at the top and the side
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walls of the tunnel cross section (cf. Figure 13 (M1) to (M3)). The slight deviations of the lat-
ter are explained by the formation of shear bands due to the randomly distributed weak
zones in the near field of the tunnel.

Employing the transversely isotropic RDP model, for a horizontally layered rock
mass, i.e., β = 0◦, the displacement magnitude at the top (cf. Figure 13 (M1)) is about
2/3 of the respective value predicted at the side walls (cf. Figure 13 (M2) and (M3)).
This is attributed to the lower strength in the direction parallel to the foliation planes
compared to the perpendicular direction. For a vertically layered rock mass, i.e., β = 90◦,
the mechanical response is identical to β = 0◦ apart from a rotation by 90◦: the displacement
magnitude at the top is by a factor of 1.5 larger than the one on the side walls of the tunnel.
For β = 30◦ and 60◦, strongly varying values of the maximum displacement magnitude are
obtained at the considered points (cf. Figure 13 (M1) to (M3)), underlining the significant
influence of the direction dependence. Hence, a distinct asymmetric deformation pattern
of the tunnel cross section is obtained.

It is concluded that the direction-dependent material behavior in combination with
softening rock mass behavior, accompanied by localization of deformations into narrow
zones and the formation of shear bands, has a significant influence on the deformation
pattern of the tunnel cross section.

5. Conclusions

This contribution is focused on the influence of direction-dependent and nonlinear
material behavior of stratified or foliated rock mass on the mechanical response in deep
tunneling. For this purpose, the transversely isotropic rock damage plasticity (TI-RDP)
model, recently proposed by Mader et al. [32], was used for modeling the combined effects
of nonlinear and direction-dependent rock mass behavior in finite element simulations
of tunnel advance of a well-monitored stretch of the Brenner Base Tunnel.

The TI-RDP model was formulated by a combination of (i) the isotropic RDP model
proposed by Unteregger et al. [9], considering strain hardening, strain softening and
the degradation of the material stiffness due to damaging processes and (ii) the approach
by Boehler [25] for considering the transversely isotropic material behavior of strati-
fied or foliated rock. For obtaining mesh-insensitive results for the softening behavior,
the TI-RDP is regularized by an implicit over-nonlocal gradient-enhancement according
to Schreter et al. [12]. For considering discontinuities such as joints or faults, which are
typical for rock mass, an extension of the TI-RDP model from stratified or foliated intact
rock to rock mass, following the approach by Hoek et al. [6], was presented in this paper.

The material parameters of the TI-RDP model for Innsbruck quartz-phyllite were cali-
brated by means of triaxial compression tests. To this end, 3D finite element simulations
of intact rock specimens were conducted for different angles of the foliation planes with
respect to the loading direction and different confining pressures. The parameters were iden-
tified by means of the experimentally determined load-displacement curves by Blümel [51].
It was shown that in spite of the varying loading angles and confining pressures, good
agreement of both the load-displacement curves and the failure modes was obtained.

Next, a 2D finite element model considering tunnel excavation in Innsbruck quartz-
phyllite was set up for a stretch of the Brenner Base Tunnel. Studies on the influence
of the anisotropy parameters of the TI-RDP model in a horizontally layered rock mass and
the influence of the orientation of the foliation planes on the mechanical response of the rock
mass were presented. The results of the latter were compared to the results predicted by
the isotropic RDP model. It was demonstrated that the ratio between the uniaxial com-
pressive strength perpendicular and parallel to the foliation planes significantly influences
the location of the highly damaged zones. However, it has only a little effect on the maxi-
mum displacement magnitude for a horizontally layered rock mass. In the 2D simulations,
the ratio between the shear strength in the plane of isotropy and the shear strength in planes
perpendicular to the latter had no impact on the location of the highly damaged zones
and thus did not influence the direction-dependent behavior. However, it significantly
influenced the predicted displacement magnitude along the tunnel perimeter.
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For determining the influence of the orientation of the foliation planes on the me-
chanical response of the rock mass, 2D finite element simulations of tunnel excavation
were performed for different angles of the foliation planes β = 0◦, 30◦, 60◦ and 90◦. As
the formation pattern of shear bands depends on the orientation of the foliation planes,
a strongly direction-dependent deformation pattern of the tunnel cross section was ob-
tained. Thus, consideration of the direction-dependent material behavior, particularly with
nonlinear stress–strain relations, including strain hardening and softening, is indispensable
for predicting the mechanical response of stratified or foliated rock mass in numerical
simulations of tunnel excavation.
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Appendix A

Table A1. List of symbols.

General notations

a′ quantity a with respect to the local coordinate system

a∗ quantity a with respect to the fictitious isotropic configuration

ȧ rate of a quantity a

a(1)|a1 quantity a in direction perpendicular to the planes of isotropy

a(2)|a2 quantity a in direction parallel to the planes of isotropy

a(12)|a12 quantity a in planes perpendicular to the planes of isotropy

a(23)|a23 quantity a in planes of isotropy

arm quantity a of rock mass

a(0) initial state of a quantity a

Scalar quantities

σm Pa mean stress mg2 - dependent dilatancy parameter

ρ Pa deviatoric radius λ̇ - consistency parameter

θ ◦ lode angle γ|δ|Hh - anisotropy parameters

ε
(p)
vol - volumetric plastic strain qh - stress-like hardening variable

ε
(p)
	,vol - compressive part of ε

(p)
vol αp - strain-like hardening variable

ω - damage variable Ah - Gh - hardening parameters

E Pa Young’s modulus As|Bs - softening parameters

ν - Poisson’s ratio αd - local softening variable

G Pa shear modulus ᾱd - nonlocal softening variable

GSI - geological strength index α̂d - over-nonlocal softening variable
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Table A1. Cont.

D - disturbance factor m - weighting parameter

rs - empirical stiffness reduction factor l m internal length scale

rm - empirical friction reduction factor GfI N/m mode I fracture energy

rc - empirical cohesion reduction factor εf - softening modulus

fcu Pa uniaxial compressive strength σ0 Pa confining pressure

fcy Pa uniaxial compressive yield stress σdev Pa deviatoric stress

fsh Pa shear strength β ◦ inclination angle

e - eccentricity parameter u3 m displacement component in x3-direction

m0 - friction parameter pi Pa surface pressure

mg1 - independent dilatancy parameter

Vectors

n - unit normal vector of the planes of isotropy

e - unit base vectors

Second-order tensors

σ Pa Cauchy stress tensor a - orthogonal transformation matrix

σ̄ Pa effective Cauchy stress tensor φ - microstructure tensor

ε - linearized strain tensor χ - orthogonal tensor to φ

ε(p) - plastic part of the linearized strain tensor

Fourth-order tensors

C(ti) Pa transversely isotropic elastic stiffness tensor

P - mapping tensor

H - modified mapping tensor

E|F|G - sub-tensors of P and H
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