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Abstract: This paper presents a novel approach to training a real-world object detection system based
on synthetic data utilizing state-of-the-art technologies. Training an object detection system can be
challenging and time-consuming as machine learning requires substantial volumes of training data
with associated metadata. Synthetic data can solve this by providing unlimited desired training
data with automatic generation. However, the main challenge is creating a balanced dataset that
closes the reality gap and generalizes well when deployed in the real world. A state-of-the-art game
engine, Unreal Engine 4, was used to approach the challenge of generating a photorealistic dataset
for deep learning model training. In addition, a comprehensive domain randomized environment
was implemented to create a robust dataset that generalizes the training data well. The randomized
environment was reinforced by adding high-dynamic-range image scenes. Finally, a modern neural
network was used to train the object detection system, providing a robust framework for an adaptive
and self-learning model. The final models were deployed in simulation and in the real world to
evaluate the training. The results of this study show that it is possible to train a real-world object
detection system on synthetic data. However, the models showcase a lot of potential for improvements
regarding the stability and confidence of the inference results. In addition, the paper provides valuable
insight into how the number of assets and training data influence the resulting model.

Keywords: computer vision; deep learning; domain randomization; object detection; NDDS; PyTorch;
sim2real; synthetic data; Unreal Engine; YOLOv5

1. Introduction

Object detection is a commonly used deep learning application within computer vision
that allows software-based intelligence to classify, localize, and detect objects within an
image. Traditionally, this involves training a model with real data captured and labeled
manually [1]. While this method is reliable and solid, it is also time-consuming and challenging
and has made researchers look for other alternatives. One alternative to collect and annotate
data for training, especially for Convolutional Neural Networks (CNNs), which requires
large numbers of data, is synthetic data. Synthetic data enable users to generate and
annotate large numbers of data in a short time. Furthermore, as the virtual environments
are customized, it also explores opportunities to create and train in edge cases that are
challenging to replicate with real data. The main purpose of this paper was to create an
object detection system based purely on synthetic data.

Despite the perks of using synthetic data over real-world data, some difficulties arise
when trying to close the reality gap. Even with randomization, the data as subject to bias
as real data. As a result, most CNNs do not recommend training on purely synthetic data
as the model tends to fail when generalizing with real data. To navigate the challenges of
utilizing pure synthetic data, we suggest the approach shown in Figure 1 utilizing Unreal
Engine 4 (UE4) and the NVIDIA Deep learning Dataset Synthesizer (NDDS) for synthetic
data generation and You Only Look Once version 5 (YOLOv5) for training and evaluation.
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By combining these technologies, this paper contributes positively toward using purely
synthetic data in object detection systems.

Figure 1. The research approach for creating an object detection system is trained on purely synthetic data.

By successfully utilizing this, labor-intensive tasks can be automated, edge cases
within computer vision can be trained, and progress will be accelerated.

When creating an accurate object detection system, it is necessary to provide a vast
number of data consisting of the preferable objects. The objects of interest must be annotated
with a bounding box for the machine learning software to know what, where, and how
many objects to detect. However, manual annotation of data can be time-consuming and
challenging. One alternative is to utilize existing datasets from different distributors, such
as ImageNet (9.2M images) [2] and Microsoft COCO (328k images) [3]. The traditional way
of annotating a bounding box around an object consists in manually marking the imaginary
corners of the box. Furthermore, the box must be adjusted to eliminate the space between
the object and the box walls. Different systems make it possible to label data faster. One
example is the fast box drawing technique “Extreme Clicking” by Papadopoulos et al. [4].
The system simplifies the annotation process by marking the outer parts of the object (top,
bottom, left, right).

This paper proposes an end-to-end training framework for training object detection
models such as YOLOv5. Our framework uses UE4 for rendering high-quality scenes and
NDDS as a dataset synthesizer for domain randomization. These tools combined create
photorealistic virtual environments with great customization and enable rapid prototyping
and training of object detection algorithms in nearly any industrial setting.

2. Background

The following subsections contain general information surrounding the two leading
technologies used in this paper: synthetic data generation and object detection.

2.1. Synthetic Data Generation with UE4 and NDDS

For synthetic data generation, UE4 is utilized. This platform is open-source, easily
modified, and can provide realistic scenes. It is widely used within several industries,
making high-quality 3D content easily accessible [5]. To create gameplay elements within
a level, developers can utilize blueprint visual scripting, a powerful and complete game
script system made up of code blocks [6]. Furthermore, interaction can also be implemented
using the programming language C++.

NDDS is a plugin made for UE4 that implements, among other things, domain ran-
domization and annotation of large datasets. According to Tobin et al. [7], the aim of
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domain randomization is to “bridge the reality gap”, and to is a tool to combat ineffec-
tive synthetic data. It helps create variability in the training process so that the model
can interpolate to the real world [8,9]. The following list elaborates on the quality of the
synthetic data:

• Distance, orientation, and camera rotation regarding the target object.
• Texture and material of the background.
• Texture, material, and position of objects.
• Size, number, and orientation of distractor objects.
• Position, orientation, and brightness of the light source.

Training images in a static environment will lead to the model learning the specific
characteristics of the environment. To better generalize the model for new data, the training
environment must be randomized with a slow learning curve to approximate the hidden
characteristics of the objects. The following factors were randomized within the synthetic
scene utilizing the NDDS feature of domain randomization and will be further described
in the methods section.

2.2. Object Detection with YOLOv5

The YOLOv5 architecture is split into three parts—the backbone, neck, and head. For
the backbone, bottleneck cross-stage partial (CSP) is utilized. YOLOv5’s version of this is
based on the CSP Networks [10], illustrated in Figure 2. This stage aggregates and shapes
the features by utilizing dense blocks [11].

Figure 2. YOLOv5 backbone architecture processing each input [10].

The Path Aggregation Network (PAN) is utilized for the neck by YOLOv5. This
includes bottom-up path augmentation with Feature Pyramid Network (FPN) and adaptive
feature pooling before aggregating the features, sending the resulting data to classification,
and augmenting mask prediction. The process is illustrated in Figure 3, and the resulting
architecture increases information diversity, resulting in more accurate masks [12].
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Figure 3. Outline of the YOLOv5 network architecture [12,13].

Finally, the head utilizes YOLOv5’s architecture. By placing anchor boxes on the input
images, output vectors are created, bounding boxes are placed, and the confidence and
class probabilities are mapped for the final detection. Figure 4 shows how the image is
divided into an S × S grid, followed by a prediction of B-bounding boxes in each grid and
C-class probabilities. The final result is implemented as a tensor of the form S × S × (B * 5
+ C) [14].

Figure 4. Final stage in the YOLOv5 network [14].

3. Related Work

Previous work shows how combining synthetic data with real-world data improves
the performance of trained CNN models [8,15–17]. Another article concludes that com-
bining synthetic and real data with added noise during training on the synthetic data
enhanced the resulting CNN model [18]. In that particular study, Deep Convolutional Gen-
erative Adversarial Networks (DCGANs), Least-Square Generative Adversarial Networks
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(LSGANs), and Wasserstein Generative Adversarial Networks (WGANs) were utilized to
generate synthetic data. However, it is challenging to bridge the reality gap when creating
a real-world object detection model trained purely on synthetic data [8]. Very few research
papers have accomplished this. For instance, Tobin et al. [7] and Tremblay et al. [19] tried
to accomplish robot grasping to demonstrate the training results from purely synthetic
data. They used UE4 and NDDS to generate synthetic data, but with a modified version of
VGG-16 [20] and Deep Object Pose Estimation (DOPE) [19] as training systems. As a result,
they discovered a good enough performance to accomplish grasping, but this method
lacked reliability and precision.

Contrary to previous research, this paper focused on CNN models trained on purely
synthetic data and evaluated the results in real life.

4. Method

The approach of the method is described in Figure 1 and consists of four main steps; the
generation of the synthetic data, the training and evaluation, and the testing in simulated
and real environments.

4.1. Synthetic Data Generation

Generating synthetic data included designing and building the virtual 3D scene in UE4
with the NDDS. Objects and variables such as background, lighting, and distractors were
adjusted. Figure 5 shows examples of synthetic data generated with distractors and High-
Dynamic-Range Imaging (HDRI) environments (Figure 5a), distractors and randomized
environments (Figure 5b), and HDRI environments without noise or distractors (Figure 5c).
The HDRI backdrop was created by mixing multiple images of the same scene, resulting in
a 360-degree image [21]. This was implemented to create a realistic scene with a dynamic
range for the background image, generalizing the dataset to strengthen the resulting
model [22].

(a) (b) (c)

Figure 5. Example of data generated in UE4: (a) HDRI and distractors; (b) randomized environment
with distractors; (c) HDRI with no distractors.

4.1.1. Designing and Building 3D Scene

UE4 was installed together with the NDDS following the NDDS’s installation guide
[9]. As the engine ran on C++, Visual Studio 2019 (VS19) was installed for the engine to be
able to compile the environment with blueprints. Within object detection, each object has a
specific class. Assets are referred to as different versions of a class. The UE4 marketplace
provides custom assets made by the community and professionals at different price ranges.
The assets representing objects vary in size, color, shape, and other characteristics as decided
by their respective creators. A more comprehensive guide to designing custom 3D scenes
in UE4 can be found in 3D Game Design with Unreal Engine 4 and Blender [23]. To calibrate
the neural network, the only asset used was a forklift. As the model picked up on the
underlying characteristics, more objects were added to the visual scenes. Below is the list of
classes and assets (i.e., objects) used for the final dataset. A total of 1500 images were used
per asset (Full dataset: https://ieee-dataport.org/documents/synthetic-data-generated-
unreal-engine-4 (accessed on 20 August 2022)):

https://ieee-dataport.org/documents/synthetic-data-generated-unreal-engine-4
https://ieee-dataport.org/documents/synthetic-data-generated-unreal-engine-4
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Forklift—1 asset.
Pallet—8 different assets.
Shipping container—6 different assets.
Barrel—8 different assets.
Human—2 different assets.
Paper box—10 different assets.
Crate—5 different assets.
Fence—4 different assets.

4.1.2. Synthetic Scene Parameters

The HDRI backdrop function is unavailable in the version of Unreal Game Engine
that was used in this paper. A solution to this was creating it manually by first creating
a sky sphere surrounding the environment. Then, a custom material was added to the
sphere with a normalization blueprint. As shown in Figure 6, the image was appended to
this blueprint, resulting in dynamic contrast, brightness, and tint. This backdrop was used
along with more complex backgrounds to create a more varied and robust model.

Figure 6. Creating dynamic HDRI settings for the sky sphere with a blueprint.

A premade virtual camera by NDDS was added to the level with default feature
extracting, including object data, true color, depth, and segmentation. The camera was set
to auto-start, capturing data immediately upon launching the scene and exporting them
to a specified path on the simulating computer. Simultaneously, as the virtual camera
captured data, the camera rapidly re-positioned while revolving the object. The distance
from the origin ranged from 100 cm to 2000 cm, the pitch angle from 0◦ to 60◦, and the yaw
from 0◦ to 360◦.

Random teleportation was implemented into the light source as well. This created
realistic visualizations by simulating different times of the day. The teleportation included a
pitch range around the origin from −10◦ to 90◦ with a 360◦ yaw range, resulting in the light
casting shades from every realistic angle. In addition, the fog was simulated by varying the
occlusion of the scene.

In addition to the objects of interest, random objects were spawned into the scene as
distractors. This included the NDDS’s small random 3D geometrical objects such as cubes,
pyramids, cones, spheres, and cylinders. Adding noise to the scene created a more robust
deep learning model by causing better generalization of the objects in the CNN.

4.2. Training and Evaluation

This paper used the training system YOLOv5, which utilizes transfer and supervised
learning. The following chapter describes how YOLOv5 was set up based on the synthetic
data generated from UE4.
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Building Training Environment

YOLOv5 offers five different pretrained models; this paper focused on the 640-pixel
small and xlarge models [24]. While the small model is fast and accurate, the xlarge model
requires more processing power while yielding better accuracy. Furthermore, both models
were pre-trained to 300 epochs, where 1 epoch is one pass through the entire dataset, with
default settings on the COCO val2017 dataset [3]. As such, the framework utilized transfer
learning to accelerate the learning phase.

For each randomized scene generated in UE4, a folder consisting of a set number of
images with associated metadata was saved in a separate folder. This process was repeated
for each tracked object. A Python script was created for data processing to satisfy the
input data structure of YOLOv5. This script extracted all images from each separate folder,
renamed them from one to the total number of images, and saved them in one folder. The
exact process was executed for the metadata where label ID and normalized coordinates
xcenter, ycenter, width, and height were saved in separate text files associated with their
corresponding image. The process is illustrated in Figure 7.

Figure 7. Data structure for input data. Images with associated metadata are saved in separate folders
for each randomized scene.

Further on, initialization was carried out with a custom Jupyter Notebook where
the processed synthetic data were dispersed into 80% training data and 20% validation
data. Both models were set for 36 epochs for better comparison and used a batch size of 4.
YOLOv5’s source code was modified to save inference results from each frame in a CSV file
to evaluate the models. These CSV files were saved in a separate folder where MATLAB
executed a custom script that processed the data to evaluate the resulting inference.

The models were trained on a computer with an Nvidia RTX 3080 graphic card (GPU),
an AMD Ryzen 7 5800X processor (CPU), and 32 GB of memory. The computer used the
Ubuntu 18.04 operating system with GPU driver Nvidia 470, CUDA 11.3, cuDNN 8.2.4, and
associated PyTorch. The environment was containerized in Conda and run with Python 3.7
in the Jupyter Notebook.

4.3. Testing

The training was tested in two environments; one virtual and one experimental (real
world). The trained model was first deployed in a virtual environment to observe how the
model detected data comparable to the input training data. Later, the training model was
tested in the real world to observe how the model generalized to new data.

4.3.1. Simulated Environment

Before real inference, the small and xlarge models were executed on synthetic data
within UE4. This allowed for rapid testing of the trained models. Inference in the simulated
environment was set up using a virtual camera in OBS Studio. In UE4, the synthetic data
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included some new UE4 assets and the same assets used for training. For variation, the
model was also run on YouTube videos with no similarities to the training data. An alterna-
tive approach would be to extract the video directly from the scene capturer within UE4,
but setting up a fixed virtual camera allows for more flexibility in running inference on any
input image or video. The final setup is illustrated in Figure 8.

Figure 8. Inference while operating the UE4 environment.

4.3.2. Real-World Environment

A portable device using a Jetson Nano single-board computer and a RealSense Depth
Camera D435i was prototyped to enable live inference. As the Jetson Nano was built with
neural networks in mind, the setup was straightforward, but with ARM64 architecture in
mind. The Jetson Nano environment was run in Archiconda with Torch 1.9, TorchVision
0.9, Python 3.6, and Cython. Figure 9 shows the completed housing.

(a) (b)
Figure 9. Complete wiring diagram and housing (a,b) consisting of 3D printed components, NVIDIA
Jetson Nano, 5 V/2 A Power bank, Intel RealSense D435i, and a 7-inch display.

5. Results

The following sections present the results obtained by the proposed method. First, the
training results of one small and one xlarge model are presented. Second, the real-world
experimental results are addressed. We have chosen only to include the results of the
real-world inference as this better visualizes the reality gap.

5.1. Training

Figure 10 shows the result of training on both models. The small model achieved an
inference time of 4.1 ms with 0.2 ms for the preprocessing after training for 40 min. The
xlarge model achieved an inference time of 15.2 ms with 0.2 ms for the preprocessing after
3 h of training. Both graphs show the results from each of the 36 epochs. During training,
the xlarge network approximated higher confidence faster, as expected for a more extensive
network with more intensive training.
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(a) (b)

Figure 10. Comparing resulting precision, recall, and mAP scores during training: (a) small model;
(b) xlarge model.

The resulting losses followed the same pattern in both models and exhibited underfit-
ting, as shown in Figure 11 [25]. This was a direct indication that the dataset might have
been too small.

(a) (b)

Figure 11. Comparing training versus validation losses: (a) small model; (b) xlarge model.

Precision and recall are metrics used to evaluate how many false positives and false
negatives a model exhibits. The F1 score (Figure 12) represents the harmonic mean between
these metrics—a number between zero and one, where higher is better [26]. It’s desirable
for both metrics to have as low an error as possible. Hence, the F1 score was evaluated.
Both scores followed the same pattern, with the xlarge score being slightly higher than
that of the small model, as shown in Figure 12. Theoretically, the xlarge model should
have achieved more precise and robust detection during inference. However, both models
exhibited similar patterns for each object, and a conclusion could not be drawn from this
alone before analyzing further.
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(a) (b)

Figure 12. F1 score comparison at various confidence values: (a) small model; (b) xlarge model.

Comparing evaluation measurements between the small and the xlarge model in
Figure 13 shows that the xlarge model provided better results than the small model.

(a) (b) (c) (d)

Figure 13. Comparison of training results between the small and xlarge models. (a) precision;
(b) recall; (c) mAP over 0.5; (d) gradual mAP 0.5:0.05:0.95.

The small model had a size of 14 MB and the xlarge a size of 689 MB, which made the
xlarge model almost 50 times larger than the small model. Additionally, the small model
had an inference time of 4.1 ms and the xlarge model 15.2 ms, which made the small model
almost four times faster than the xlarge model in computation time. Table 1 shows the
differences between the models as percentages.
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Table 1. Results from the small model displayed as the difference in percentage from the xlarge
model.

Class Precision Recall mAP@0.5 mAP

All −0.81% −0.21% −0.41% −1.40%
Forklift 0.10% 0.00% 0.00% −0.71%
Pallet −0.41% 0.10% 0.61% 6.70%

Container 0.50% 0.70% 0.00% −0.30%
Barrel 0.71% 0.00% 0.10% −0.65%

Human −0.30% −0.70% −0.10% −0.65%
Paperbox 0.10% 0.71% 0.10% −1.22%

Crate −0.40% 0.00% 0.20% −0.51%
Fence −6.65% −2.93% −4.70% −8.43%

5.2. Real-World Experimental Results

Figure 14 displays results from live inference in a local environment. The results show-
case that both models performed well enough for general detection but showed a tendency
towards poor generalization. Figure 14a,d show great examples of bad generalization. This
was the main barrier to training models on synthetic data. However, during the procedure
testing, we found that the xlarge model performed exceptionally well with this in mind.

(a) (b) (c)

(d) (e) (f)

Figure 14. Live inference in a local environment: (c,e) small model; (a,b,d,f) xlarge model.

While neither of the models managed to detect the fences with decent confidence, as
illustrated in Figure 14b, they exceeded expectations based on the low confidence from
training, as shown in Table 1. The detections were occasional, with the smaller model
performing better than the xlarge model. During inference in the real world, the fences
had zero false positives, unlike inference on synthetic data where fences had frequent
false positives.

Despite the models’ confidence measurements within real-world object detection,
stability was not appropriately showcased. The remaining frames could have been detection
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failures and misleading representations, as only a few images were included in the result.
The confidence of both models on the same object was plotted to show how the stability
can vary and influence the average confidence.

The first object was the forklift trained on one asset and evaluated on both models over
309 frames, as illustrated in Figure 15. The confidence of the small model in Figure 15a was
lower and more unstable than the xlarge model in Figure 15b. Table 2 shows the statistics
of the graphs. The small model varied more with less overall detection, unlike the xlarge
model, which demonstrated higher stability and precision.

(a) (b)

Figure 15. Stabilization graph of a forklift over 10 s: (a) small model; (b) xlarge model.

Table 2. Stabilization results from forklift detection over 10 s with small and xlarge model.

Model Average
Confidence

Confidence
0.4–0.6

Confidence
0.6–0.8

Confidence
0.8–1.0 False Positives False

Negatives

Small 0.2779 112/432 frames 44/432 frames 15/432 frames 149/432 frames 261/432 frames
xlarge 0.5754 98/230 frames 102/230 frames 7/230 frames 0/230 frames 23/230 frames

Small in % 27.79% 25.92% 10.19% 3.47% 34.49% 60.41%
xlarge in % 57.54% 42.61% 44.35% 3.04% 0.00% 10.00%

The second object was a paper box, as presented in Figure 16. Similar to the inference
on the forklift, the xlarge model performed significantly better than the smaller one in
every instance, as shown in Table 3. It is worth noting the small model’s performance on
the paper box in contrast to the forklift, implying that the number of assets significantly
affects the resulting generalization.
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(a) (b)

Figure 16. Stabilization graph of a paper box over 10 s: (a) small model; (b) xlarge model.

Table 3. Stabilization results from paper box detection over 10 s with a small and an xlarge model.

Model Average
Confidence

Confidence
0.4–0.6

Confidence
0.6–0.8

Confidence
0.8–1.0 False Positives False

Negatives

Small 0.5115 110/327 frames 76/327 frames 35/327 frames 3/327 frames 106/327 frames
xlarge 0.6498 57/326 frames 123/326 frames 70/326 frames 5/326 frames 76/326 frames

Small in % 51.15% 33.64% 23.24% 10.70% 0.92% 32.42%
xlarge in % 64.98% 20.07% 43.31% 24.65% 1.76% 11.98%

6. Conclusions

The main objective of this paper was to investigate if it was possible to achieve an
accurate real-world object detection system trained purely on synthetic data using UE4,
NDDS, and YOLOv5. We also wanted to examine how the number of assets influenced the
detection results. Throughout this paper, we have tested and evaluated the functions of
domain randomization and dataset synthesizing through the game engine UE4 and the
plugin NDDS. We trained an object detection model from the generated synthetic dataset
utilizing transfer and supervised learning in the CNN-based YOLOv5.

The findings of this paper show that it is possible to realize a real-world object detection
system trained purely on synthetic data. However, more parameters can be adjusted to
create more stability and confidence in the model. We found that the xlarge model achieved
more robust detection with better generalization than the small model. Our results also
provide valuable insight into how the number of assets impacts the training results. Classes
with few different assets tended to be undergeneralized and harder to detect in the real
world. Classes with 5-10 assets tended to be overgeneralized; further research needs to
consider each object’s complexity when selecting assets for their dataset. The training
results manifest good precision and accuracy given synthetic data, proving the potential
for further research.

Future work will consist in closing the reality gap even further. Finding a balance in the
number of assets, evaluating results with different batch sizes regarding generalization, and
conducting further research around parameters such as the learning ratio for synthetic data
will be a good starting point. While the dataset utilized in this article yielded promising
results, research into using more than 1500 synthetic images per object should also be
conducted. We hope this paper can provide valuable insight for academic and professional
peers exploring this field.
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Abbreviations
The following abbreviations are used in this paper:

ARM64 Advanced RISC Machines 64 (bit)
CNN Convolutional Neural Network
CPU Central Processing Unit
CSP Cross-Stage Partial
CSV Comma-Separated Values
DCGAN Deep Convolutional Generative Adversarial Networks
DOPE Deep Object Pose Estimation
FPN Feature Pyramid Network
GPU Graphics Processing Unit
HDRI High-Dynamic-Range Imaging
JSON JavaScript Object Notation
LSGAN Least-Square Generative Adversarial Networks
NDDS NVIDIA Deep Learning Dataset Synthesizer
PAN Path Aggregation Network
SPP Spatial Pyramid Pooling
UE4 Unreal Engine 4
VGG-16 Visual Geometry Group 16 (convolutional layers)
VS19 Visual Studio 19
WGAN Wasserstein Generative Adversarial Networks
YOLOv5 You Only Look Once version 5

References
1. Hao, S.; Jia, D.; Li, F.-F. Crowdsourcing annotations for visual object detection. In Proceedings of the Workshops at the

Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–23 July 2012.
2. Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin, I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.; Kolesnikov, A.; et al.

The open images dataset v4. Int. J. Comput. Vis. 2020, 128, 1956–1981. https://doi.org/10.1007/s11263-020-01316-z.
3. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Cham, Switzerland, 2014; pp. 740–755. https://doi.org/10.1007/978-3-319-10602-1_48.

4. Papadopoulos, D.P.; Uijlings, J.R.; Keller, F.; Ferrari, V. Extreme Clicking for Efficient Object Annotation. In Proceedings
of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4940–4949.
https://doi.org/10.1109/ICCV.2017.528.

5. Qiu, W.; Yuille, A. Unrealcv: Connecting computer vision to unreal engine. In Proceedings of the European Conference
on Computer Vision, Amsterdam, The Netherlands, 8–10 October 2016; Springer: Cham, Switzerland, 2016; pp. 909–916.
https://doi.org/10.1007/978-3-319-49409-8_75.

6. Blueprint Overview—Unreal Engine Documentation. Available online: https://docs.unrealengine.com/4.27/en-US/
ProgrammingAndScripting/Blueprints/Overview/ (accessed on 7 February 2022).

7. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 23–30. https://doi.org/10.1109/IROS.2017.8202133.

https://ieee-dataport.org/documents/synthetic-data-generated-unreal-engine-4
https://ieee-dataport.org/documents/synthetic-data-generated-unreal-engine-4
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/


Appl. Sci. 2022, 12, 8534 15 of 15

8. Prakash, A.; Boochoon, S.; Brophy, M.; Acuna, D.; Cameracci, E.; State, G.; Shapira, O.; Birchfield, S. Structured Do-
main Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data. In Proceedings of the 2019 In-
ternational Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7249–7255.
https://doi.org/10.1109/ICRA.2019.8794443 .

9. To, T.; Tremblay, J.; McKay, D.; Yamaguchi, Y.; Leung, K.; Balanon, A.; Cheng, J.; Hodge, W.; Birchfield, S. NDDS: NVIDIA Deep
Learning Dataset Synthesizer. 2018. Available online: https://github.com/NVIDIA/Dataset_Synthesizer (accessed on 20 January
2022).

10. Wang, C.Y.; Mark Liao, H.Y.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A New Backbone that can Enhance Learning
Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203.

11. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243.

12. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
https://doi.org/10.1109/CVPR.2018.00913.

13. Ravi, N.; El-Sharkawy, M. Real-Time Embedded Implementation of Improved Object Detector for Resource-Constrained Devices.
J. Low Power Electron. Appl. 2022, 12, 21. https://doi.org/10.3390/jlpea12020021.

14. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
https://doi.org/10.1109/CVPR.2016.91.

15. Alvey, B.; Anderson, D.T.; Buck, A.; Deardorff, M.; Scott, G.; Keller, J.M. Simulated Photorealistic Deep Learning Framework
and Workflows to Accelerate Computer Vision and Unmanned Aerial Vehicle Research. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 3882–3891.
https://doi.org/10.1109/ICCVW54120.2021.00435.

16. Borkman, S.; Crespi, A.; Dhakad, S.; Ganguly, S.; Hogins, J.; Jhang, Y.C.; Kamalzadeh, M.; Li, B.; Leal, S.; Parisi, P.; et al. Unity
Perception: Generate Synthetic Data for Computer Vision. arXiv 2021, arXiv:2107.04259.

17. Grundberg, M.; Altintas, V. Generating 3D Scenes From Single RGB Images in Real-Time Using Neural Networks. 2021.Available
online: http://mau.diva-portal.org/smash/get/diva2:1563044/FULLTEXT02.pdf (accessed on 3 March 2022).

18. Dewi, C.; Chen, R.C.; Jiang, X.; Yu, H. Deep convolutional neural network for enhancing traffic sign recognition developed on
Yolo V4. Multimed. Tools Appl. 2022, 1–25. https://doi.org/10.1007/s11042-022-12962-5.

19. Tremblay, J.; To, T.; Sundaralingam, B.; Xiang, Y.; Fox, D.; Birchfield, S. Deep Object Pose Estimation for Semantic Robotic
Grasping of Household Objects. In Proceedings of the 2nd Conference on Robot Learning, Zürich, Switzerland, 29–31 October
2018; Billard, A., Dragan, A., Peters, J., Morimoto, J., Eds.; PMLR: Cambridge, MA, USA, 2018; Volume 87, pp. 306–316.

20. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
https://doi.org/10.48550/ARXIV.1409.1556.

21. Zaal, G. Blue Lagoon HDRI—Poly Haven. Available online: https://polyhaven.com/a/blue_lagoon (accessed on 5 May 2022).
22. HDRI Backdrop - Unreal Engine Documentation. Available online: https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/

LightingAndShadows/HDRIBackdrop/ (accessed on 7 July 2022).
23. Plowman, J. 3D Game Design with Unreal Engine 4 and Blender. Available online: https://books.google.no/books?id=

oQFwDQAAQBAJ (accessed on 8 August 2022).
24. YOLOv5 Documentation—Train Custom Data. Available online: https://docs.ultralytics.com/tutorials/train-custom-datasets/

(accessed on 22 April 2022).
25. Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. https://doi.org/10.1088/1742-

6596/1168/2/022022.
26. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. https://doi.org/10.1186/s12864-019-6413-7.

https://github.com/NVIDIA/Dataset_Synthesizer
http://mau.diva-portal.org/smash/get/diva2:1563044/FULLTEXT02.pdf
https://polyhaven.com/a/blue_lagoon
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/LightingAndShadows/HDRIBackdrop/
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/LightingAndShadows/HDRIBackdrop/
https://books.google.no/books?id=oQFwDQAAQBAJ
https://books.google.no/books?id=oQFwDQAAQBAJ
https://docs.ultralytics.com/tutorials/train-custom-datasets/

	Introduction
	Background
	Synthetic Data Generation with UE4 and NDDS
	Object Detection with YOLOv5

	Related Work
	Method
	Synthetic Data Generation
	Designing and Building 3D Scene
	Synthetic Scene Parameters

	Training and Evaluation
	Testing
	Simulated Environment
	Real-World Environment


	Results
	Training
	Real-World Experimental Results

	Conclusions
	References

