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Abstract: This paper considers multi-robot systems, such that each robot has a radar for detecting its
neighbor robots. We consider a practical scenario in which a radar sensor contains measurement noise,
and the environmental disturbance generates process noise in a robot’s maneuvering. We consider a
3D scenario such that the network can be split initially. For instance, complete failures of one or more
robots can split the network. Considering 3D environments, the goal of our paper is to let all robots
rendezvous in a distributed manner so that the network connectivity can be recovered even after the
network is split. Robust distributed rendezvous control is designed so that the network connectivity
is maintained (or recovered) during the maneuvering of a robot. To recover the network connectivity,
we adaptively control the robot’s radar footprint by increasing the transmission power level (adjust
the amplifier in the transmitter). To the best of our knowledge, this paper is novel in applying a radar
with a variable sensing range in order to make all robots rendezvous in 3D environments. We address
MATLAB simulations to demonstrate the outperformance of our rendezvous approach with variable
range radars by comparing it with the state-of-the-art in multi-robot rendezvous controls.

Keywords: networked robots; sensor networks; distributed rendezvous control; network connectivity;
variable sensing range; variable range radar

1. Introduction

Networked robots can perform many tasks, such as formation controls [1–3] or
workspace monitoring [4]. Such robot networks have become feasible due to advances in
communication networking [5–8].

Suppose that each robot does not know its position in the global coordinate system,
i.e., a robot is not localized using global positioning systems (GPS). We require a distributed
controller such that every robot moves based only on relative position measurements.

During the robots’ maneuvering in formation controls, robots need to maintain net-
work connectivity. In order to make all robots gather close to each other, distributed
rendezvous controls can be applied occasionally. In other words, distributed rendezvous
controls are the most basic coordination task for a network of mobile robots. Multi-robot
rendezvous is an initial step for the creation of more complicated formation tasks and can
be particularly useful for autonomous recharging or self-maintenance [9].

This article considers the distributed rendezvous problem of multiple robots, such
that each robot can only measure nearby (neighbor) robots using a radar sensor, and each
robot moves based on radar sensor measurements. Since GPS is not accessible, a robot
cannot move towards a specified rendezvous point directly.

For rendezvous controls, each robot uses a radar sensor, whose footprint is propor-
tional to the signal intensity (power) of the transmitter [10]. Supply modulated transmitters
for variable amplitude radar systems were addressed in [11]. Suppose that a robot, say
A, emits signals for detecting its neighbor robots. Once the signals generated from A are
reflected from a nearby robot, say B, then A can estimate the elevation angle, azimuth
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angle, and range to B using a 3D multiple signal classification (MUSIC) algorithm [12]. In
this way, A can measure the relative position of its neighbor robot B.

Our article considers a practical scenario in which radar has a limited sensing range
while containing measurement noise. Further, the environmental disturbance generates
process noise in a robot’s maneuvering. For instance, currents (for underwater robots) or
wind gusts (for aerial robots) can generate process noise in robots’ maneuvers.

To the best of our knowledge, distributed rendezvous control in the literature assumed
that all robots are initially deployed such that every robot is connected to any other robot
utilizing multi-hop links. This assumption is called the initial connectivity assumption, which
implies that the entire network is not split initially. Our 3D rendezvous control is developed
to cope with a case where this assumption is not satisfied initially.

The initial connectivity assumption may not hold in various scenarios. In practice,
sensing measurement noise or process noise in a robot’s motion can split the initial robot
network. Moreover, complete failures of one or more robots can split the initial network.
For example, Figure 1 plots a scenario where the failure of one robot splits the network. In
this figure, a robot is marked with a dot, and the network connection between two robots
is plotted with line segments. In the left subfigure, the robot with a red dot is completely
broken. In this case, the networked system changes to the network in the right subfigure.
See that the complete failure of one robot (red dot) splits the network.

Figure 1. This figure plots a scenario where the failure of one robot splits the network. In this figure,
a robot is marked with a dot, and na etwork connection between two robots is plotted with line
segments. In the left subfigure, the robot with a red dot is completely broken. In this case, the network
system changes to the network in the right subfigure. See that the complete failure of one robot (red
dot) splits the network.

Considering 3D environments, the goal of our paper is to let all robots rendezvous in
a distributed manner so that the network connectivity can be recovered even in the case
where the network is split. In other words, we develop a 3D distributed rendezvous control
so that all robots become connected to each other even after the network is split.

In order to handle the case where the initial connectivity assumption does not hold,
our paper assumes that a robot’s radar sensor can enlarge its footprint by increasing the
transmission power level (adjusting the amplifier in the transmitter). In other words, we
consider the case where a robot has a variable range radar, such that its sensor footprint is
adjustable. In our paper, we control the sensing range of each robot adaptively in order to
achieve distributed rendezvous even in the case where the entire network is split initially.
To the best of our knowledge, our paper is novel in applying a radar with a variable sensing
range in order to make all robots rendezvous in 3D environments. The proposed distributed
rendezvous control is novel since we do not require the initial connectivity assumption.

Using computer simulations, we show that our rendezvous control with an adaptive
sensing range can handle the case where the initial connectivity assumption is not satisfied.
We show the superiority of the proposed 3D rendezvous algorithm compared to the state-
of-the-art in multi-robot rendezvous controls [13–15].

The article is organized as follows: Section 2 presents the literature review of this paper.
Section 3 introduces assumptions and definitions. Section 4 introduces our distributed
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rendezvous algorithm. Section 5 presents the computer simulation results of our distributed
rendezvous algorithm. Section 6 provides the conclusions.

2. Literature Review

Considering 2D environments, many papers [16–21] addressed distributed rendezvous
algorithms. Reference [18] addressed distributed rendezvous algorithms, considering lim-
ited visibility of identical robots. Reference [16] addressed connectivity-preserving control
strategies for the rendezvous problem. Considering 2D environments, [17] addressed
distributed rendezvous algorithms considering robots with bounded control inputs. Refer-
ence [13] presented rendezvous controllers based on local sensing measurements of every
robot. Reference [22] presented distributed rendezvous controllers so that multiple robots
rendezvous at multiple rendezvous points simultaneously.

Considering cluttered 3D environments, [23] addressed distributed control laws to
make all spherical underwater robots rendezvous. However, [23] requires that a robot can
be identified using local sensors and that a tree structure is built based on local sensing
measurements. However, the radar sensors considered in our paper cannot be used to
identify one robot from another.

The authors of [9,24,25] proposed a distributed controller to achieve rendezvous, even
when some robots in the system are broken. The references [9,24,25] assumed that a broken
robot does not move or does not follow a prescribed policy. Reference [9] assumed that
probabilities associated with robot failures are available, and their rendezvous algorithms
rely on these probability distributions to compute stochastic optimal control strategies
to maximize performance in an expected sense. However, in practice, robot failure prob-
abilities may not be available. In our paper, we do not use the probabilities associated
with robot failures. Recall [9,24,25] assumed that a broken robot does not move or does
not follow a prescribed policy. However, our paper considers the case where a robot is
completely broken. For instance, enemy attacks can completely destroy a robot, as plotted
in Figure 1. This distinguishes our paper from [9,24,25].

For achieving distributed rendezvous in arbitrary dimensions, circumcenter algo-
rithms were proposed in [13–15] to avoid the loss of existing links between robots. Cir-
cumcenter algorithms do not require that a robot can be identified using local sensors.
Thus, circumcenter algorithms are suitable for distributed rendezvous using radar sensors.
Furthermore, in circumcenter algorithms, a tree structure does not have to be built based
on local sensing measurements.

The proposed rendezvous controls with variable range radars are based on circumcen-
ter algorithms. Similarly to circumcenter algorithms, our rendezvous approach can handle
arbitrary dimensions and does not require that a robot can be identified using local sensors.

As far as we know, other papers on rendezvous controls did not consider sensor
specifications required for multi-robot rendezvous. Our paper is distinct from [13–15] since
we consider robots with specific sensors: variable range radars.

Circumcenter algorithms in [13–15] require the initial connectivity assumption. To the
best of our knowledge, every distributed rendezvous control in the literature requires the
initial connectivity assumption. In our paper, we control the sensing range of each robot
adaptively in order to achieve distributed rendezvous even in the case where the initial
connectivity assumption does not hold.

Considering 3D environments, we design a distributed rendezvous control with a
variable sensing range so that the network connectivity is maintained (or recovered) during
a robot’s maneuvering. Once the rendezvous is achieved, the sensing range of every robot
can decrease in order to reduce the power consumption of its radar.

To the best of our knowledge, our article is novel in applying radars with a variable
sensing range in order to make all heterogeneous robots rendezvous in 3D environments.
Our distributed rendezvous control is unique since we do not require the initial connectivity
assumption. Using computer simulations, we show the superiority of the proposed 3D ren-
dezvous algorithms compared to the state-of-the-art circumcenter algorithms (in [13–15]).
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3. Assumptions and Definitions

We introduce assumptions and definitions that are utilized in our distributed ren-
dezvous control. G = (V(G), E(G)) is a graph with vertex set V(G) and edge tuple
E(G) [26]. Let min(a, b) denote a small value between a and b.

There are N robots in total. Let ui denote the i-th robot, where i ≤ N. ui ⊂ R3 is the
3D position of robot ui where i ≤ N.

We consider discrete-time systems. Let dt denote the sampling interval. ui(k) denotes
ui at time-step k.

Considering the process noise, such as wind, the motion model of ui is

ui(k + 1) = ui(k) + vi(k) ∗ dt + n, (1)

where n = [randn ∗ D, randn ∗ D, randn ∗ D] where D > 0 is a constant presenting the
process noise strength, and randn generates a Gaussian noise with mean 0 and variance 1.

In (1), vi(k) is the velocity input of ui at time-step k. This simple dynamic model (1) is
commonly used in multi-robot systems [27–33].

This article further considers a practical scenario where a robot moves with a bounded
speed. The maximum speed of ui is Ms. In other words, ‖vi(k)‖ ≤ Ms for all k and i. Ms is
determined by the hardware specifications of a robot.

Each robot has a radar with a limited sensing range in order to measure the relative
position (elevation, azimuth, and range) of a nearby robot. We assume that a robot’s radar
sensor can increase its footprint by increasing the transmission power level (adjust the
amplifier in the transmitter). In other words, we consider the case where a robot has a
variable range radar, such that its sensor footprint is adjustable. Since each robot can change
its radar sensing range, we consider heterogeneous robots with a distinct sensing range.

Let us define Si(k) as the radar sensing range of ui at time-step k. Su is the upper
bound for Si(k) for all i and k.

Suppose that ‖uj(k)− ui(k)‖ ≤ Si(k). In this case, ui can measure uj using its radar.
Note that increasing the footprint of the radar cannot cause a detection in the case of
obstructed LOS.

Let Rj,i(k) denote the relative position (radar) measurement of ui at time-step k. Rj,i(k)
is given as the radar of ui measures uj. Considering the radar measurement noise, we have

Rj,i(k) = uj(k)− ui(k) + nR, (2)

where nR = [randn ∗ DR, randn ∗ DR, randn ∗ DR] where DR > 0 is a constant presenting
the measurement noise strength, and randn generates a Gaussian noise with mean 0 and
variance 1. For instance, nR can be generated due to the shape of a robot, since radar
sensors measure the boundary of a nearby robot.

We introduce the adjacency graph, A = (V(A), E(A)), in which every vertex in V(A)
represents a robot. Every directed edge, say {ui, uj} ∈ E(A), indicates that ui can detect uj
using its radar. {ui, uj} ∈ E(A) implies that ‖uj(k)− ui(k)‖ ≤ Si(k).

See that A is a directed graph with directed edges. {u, v} is distinct from {v, u}, since
an edge is directed. Even in the case where u can measure v using its radar, v may not
measure u using its radar. This is due to the fact that the sensing range of u may be distinct
from that of v.

We say that v is a neighbor of u in the case where u can detect v using its radar. Nu
denotes the set of neighbors of u.

We say that all robots achieved rendezvous in the case where the relative distance
between any two robots is less than a positive constant, say δ > 0. The goal of our paper
is to let all robots rendezvous using distributed control laws, which are based on radar
measurements with a variable sensing range.
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4. Distributed Rendezvous Controllers

Our paper is based on circumcenter algorithms in [13–15]. The original circumcenter
algorithms are as follows.

We need to address one definition beforehand. Let ps denote a set of points inR3. The
center of the smallest-radius circle enclosing ps is called the circumcenter of ps.

In circumcenter algorithms, each robot performs the following tasks at each time-step k:

1. it detects its neighbors using its local sensor (radar in our paper).
2. it computes the circumcenter of the point set comprised of its neighbors and of itself.
3. it moves toward this circumcenter while maintaining connectivity with its neighbors.

The authors of [15] showed that, when implemented over a 1D space, it is not necessary
to enforce the connectivity constraint, as in the third step of the above algorithm. Assuming
that a robot can access its orientation in global coordinate systems (inertial measurement
units on each robot can be used for orientation measurements), we can extend the 1D
algorithm to arbitrary dimensions by means of a circumcenter algorithm implemented in
parallel. The parallel circumcenter algorithm in [15] is as follows.

Each robot performs the following tasks at each time-step k:

1. it detects its neighbors using its local sensor (radar in our paper).
2. it projects the detected neighbor positions to each axis of its frame.
3. it computes the circumcenters of each of the projected sets of positions on each axis.
4. it moves to the point whose coordinates are given by each of those circumcenters

while maintaining connectivity with its neighbors.

The computation of the circumcenter of a bounded set is a strictly convex problem and,
in particular, a quadratically constrained linear program [14]. In the parallel circumcenter
algorithm, a circumcenter is derived over a 1D space, not over a 3D space. Thus, the parallel
circumcenter algorithm is desirable, considering the computational load. Therefore, our
rendezvous approach is based on the parallel circumcenter algorithm.

In the last step of the above algorithm, a robot, say ui, moves to the point whose
coordinates are given by each of those circumcenters while maintaining connectivity with
its neighbors. We next explain this maneuver in detail.

Let T(k) denote the point whose coordinates are given by each of those circumcenters.
Recall that Ms denotes the maximum speed of a robot. We define

Q(k) = ui(k) + Ms ∗ dt ∗ T(k)− ui(k)
‖T(k)− ui(k)‖

. (3)

Q(k) is set such that ‖Q(k)− ui(k)‖ = Ms ∗ dt. In addition, Q(k) is set such that it exists
on the line segment connecting ui(k) and T(k).

Let λ ≤ 1 denote a positive constant. Let

q(λ) = (1− λ) ∗ ui(k) + λ ∗Q(k) (4)

denote a point on the line segment connecting ui(k) and Q(k). As λ changes from 0 to 1,
q(λ) changes from ui(k) to Q(k). Since ‖Q(k)− ui(k)‖ = Ms ∗ dt,

‖q(λ)− ui(k)‖ ≤ Ms ∗ dt (5)

is satisfied as λ changes from 0 to 1.
Let I = [ 1

M , 2
M , ..., 1] denote the equally spaced interval between 0 and 1. There are M

elements in interval I. While changing λ from the first element in I to the last element, we
find q(λ), such that

‖q(λ)−w‖ < Si(k) (6)

for all w ∈ Nui . This implies that q(λ) maintains connectivity with all robots in Nui .
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Once q(λ) is found, which satisfies (6) for all neighbors of ui, we let λ∗ denote the
found λ. Then, q(λ∗) is set as the waypoint of ui at time-step k.

Using (5), we have ‖ui(k)−q(λ∗)‖ ≤ Ms ∗ dt. Thus, ui moves toward q(λ∗) by setting
its velocity command as

vi(k) =
q(λ∗)− ui(k)

dt
(7)

in (1).
In the case where no element in I satisfies (6), then ui stops moving by setting

vi(k) = 0 (8)

in (1).

Updating the Sensing Range Adaptively

The circumcenter algorithm was originally introduced in [13]. Consider the ideal case
where there is no process noise or measurement noise. In addition, assume that the initial
connectivity assumption is satisfied. In this ideal case, ref. [14] proved the convergence of
the circumcenter algorithm for any switching sequence of adjacency graphs that contains a
strongly connected graph every l instants of time, for some fixed l > 0.

In practice, the initial connectivity assumption may not hold. Moreover, process noise,
limited communication range, or measurement noise can disconnect the network frequently.
In order to handle these practical problems, we need to increase network connectivity as
much as possible.

The proposed strategy is to increase the network connectivity by increasing the sensing
range of each robot adaptively. By increasing the sensing range of each robot adaptively,
we can make the switching sequence of adjacency graphs contain a strongly connected
graph more frequently. Then, according to [14], rendezvous can be achieved more robustly.
Once the rendezvous is achieved, the sensing range of every robot can shrink to reduce the
power consumption of its radar.

Recall that Si(k) is the sensing range of ui at time-step k. In addition, recall that Su is
the upper bound for Si(k) for all i and k.

Let Nmin > 0 denote a lower threshold for the number of neighbors. Recall that Nu
denotes the set of neighbors of u. In the case where Nui < Nmin, we need to increase the
number of neighbors for ui. In the case where Nui < Nmin, Si(k) increases using

Si(k + 1) = min(Si(k) + β, Su). (9)

Here, β > 0 is a constant. Using (9), the sensing range for ui increases, until it reaches
Su. Note that in the case where Nui ≥ Nmin, (9) is not applied.

In (9), β > 0 is a tuning parameter. As β increases, the sensing range of ui can
increase more rapidly. A large sensing range can increase the network connectivity, which
improves the rendezvous performance. However, a large sensing range increases the power
consumption of a robot.

Moreover, Nmin is a tuning parameter in our controls. As Nmin increases, the network
connectivity increases, which improves the rendezvous performance. However, increasing
Nmin increases the power consumption of each robot since the sensing range of a robot needs
to increase using (9). The effect of changing Nmin is discussed in the Simulation section.

The original circumcenter algorithms in [13–15] require the initial connectivity as-
sumption. For instance, consider the case where a robot is not connected to any other robot
initially. This isolated robot cannot move based on local sensing measurements since it has
no local interaction initially.

In our paper, we can remove an isolated robot by increasing its radar sensing range.
Thus, our paper does not require the initial connectivity assumption. Once the rendezvous
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is achieved, the sensing range of every robot can decrease in order to reduce the power
consumption of its radar.

5. Simulation Results

This section addresses the MATLAB simulation results to demonstrate the effectiveness
of the proposed distributed rendezvous scheme with variable range radars. Using computer
simulations, we show the superiority of the proposed 3D rendezvous algorithm compared
to the original circumcenter algorithms in [13–15].

The simulation settings are as follows. In MATLAB simulations, the radar sensing
noise (2) uses DR = 0.01 km. In addition, we consider the case where u1 is static. Thus all
robots need to rendezvous at u1. Since u1 is static, the motion model of u1 is

u1(k + 1) = u1(k) + n (10)

instead of (1). In our MATLAB simulations, (1) and (10) use n = [randn ∗ D, randn ∗
D, randn ∗ D]. Here, D > 0 is a constant presenting the process noise strength, and randn
generates a Gaussian noise with a mean of 0 and a variance of 1. We use D = 0.05 km.

At time-step 0, we set the maximum sensing range Si(0) as Si(0) = 5 km for all
i ∈ {1, 2, ..., N}. The upper bound for Si(k) is set as Su = 50 km. In addition, (9) uses
β = 5 km, and Nmin = 5.

The sampling interval is set as dt = 1 second. Furthermore, the maximum speed
of each robot is 200 m/s. The rendezvous algorithm is finished when every robot is
within δ = 3 (km) from each other. In the case where the rendezvous is not achieved,
the simulation continues for up to T = 300 seconds.

Initially, robots are randomly deployed in the workspace with size 20× 20× 20 in km.
Since Si(0) = 5 km for all i ∈ {1, 2, ..., N}, the initial connectivity assumption may not hold
depending on the initial position of a robot.

Original circumcenter algorithms in [13–15] require the initial connectivity assumption
for convergence. However, the proposed rendezvous algorithm with an adaptive sensing
range does not require this assumption.

Considering the case where N = 10, Figure 2 plots the movement of each robot under
our distributed rendezvous algorithm. Each robot’s position at every dt seconds is depicted
with a red circle. It takes 95 seconds for all robots to rendezvous at a point.
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Figure 2. Considering the case where N = 10, a blue asterisk plots the final position of every robot
using the proposed rendezvous control. Each robot’s position at every dt seconds is depicted with a
red circle.

Considering the case where N = 10, Figure 3 plots the final position of every robot
using the proposed rendezvous control. See that all robots are positioned close to each
other since multi-robot rendezvous is achieved.
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Figure 3. Considering the case where N = 10, a blue asterisk plots the final position of every robot
using the proposed rendezvous control. See that all robots are positioned close to each other since
multi-robot rendezvous is achieved.

Considering the case where N = 10, Figure 4 plots Si (i ∈ {1, 2, ..., N}), the sensing
range of each robot, when the rendezvous is done. See that the sensing range of a robot can
be distinct from that of another robot.
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Figure 4. Considering the case where N = 10, a blue circle plots Si (i ∈ {1, 2, ..., N}), the sensing
range of each robot, when the rendezvous is done. The sensing range of a robot can be distinct from
that of another robot.

5.1. Monte-Carlo Simulations

Table 1 shows the comparison results. In this table, [P] presents the proposed ren-
dezvous algorithm. [R] presents the original circumcenter rendezvous algorithms in [13–15].
In MATLAB simulations, the radar sensing noise (2) uses the noise parameter as DR = 0.01
km. The motion model (10) uses the process noise parameter as D = 0.05 km.

At each MC simulation, we check whether the rendezvous succeeds or not. Consid-
ering the j-th MC simulation (j ∈ {1, 2, ..., J}), let S(j) denote whether the rendezvous
succeeds or not. S(j) = 1 when the rendezvous succeeds at the j-th MC simulation. In
addition, S(j) = 0 when the rendezvous does not succeed at the j-th MC simulation. Let
m(S) = 1/J ∗∑J

j=1 S(j).
At each MC simulation, we check how much time it takes to let all of the robots

rendezvous. Considering the j-th MC simulation (j ∈ {1, 2, ..., J}), let Tr(j) denote the time
it takes to let all robots rendezvous. In the case where the rendezvous is not achieved in the
j-th MC simulation, Tr(j) is set as T. Let m(Tr) = 1/J ∗∑J

j=1 Tr(j).
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Furthermore, we check how much time (in seconds) it takes to run each MC simulation
under MATLAB. Considering the j-th MC simulation (j ∈ {1, 2, ..., J}), let Tc(j) denote the
computational time of the j-th MC simulation. Let m(Tc) = 1/J ∗∑J

j=1 Tc(j).
Table 1 shows that increasing N (the number of robots) increases both the rendezvous

time m(Tr) and the computational load m(Tc). Table 1 shows that only the proposed ren-
dezvous algorithms can succeed in the rendezvous process. Under the proposed control [P],
m(S) = 1 regardless of N. This is due to the fact that Si = 5 (km) is rather short for network
connectivity, considering random deployment in the workspace. Original circumcenter
rendezvous algorithms [R] cannot handle the case where the initial connectivity assumption
does not hold.

Table 1. Comparison results.

Alg. N m(S) m(Tr) m(Tc)

[P] 5 1 70 0.1
[P] 10 1 85 1
[P] 15 1 91 3
[P] 20 1 94 3
[R] 5 0 300 0.1
[R] 10 0 300 1
[R] 15 0 300 1
[R] 20 0 300 1

5.2. The Effect of Changing the Radar Sensing Measurement Noise DR

Table 2 shows the effect of changing the radar sensing measurement noise DR in
(2). We use Nmin = 5 in this table. Table 2 shows that increasing DR up to 1 km does
not degrade the rendezvous performance significantly. This shows that the proposed
rendezvous approach is robust to sensing measurement noise.

Table 2. The effect of changing the sensing measurement noise DR.

DR (km) N m(S) m(Tr) m(Tc)

0.01 10 1 85 1
0.1 10 1 88 1
1 10 0.9 113 1

6. Conclusions

This article introduced a robust distributed rendezvous algorithm in 3D environments.
In our paper, we control the sensing range of each robot adaptively, in order to achieve
distributed rendezvous even in the case where the entire network is split initially. To the
best of our knowledge, this paper is novel in applying radars with a variable sensing range
in order to make all robots rendezvous in 3D environments. Computer simulations are
utilized to demonstrate the superiority of the proposed robust rendezvous approach. In the
future, we will verify the effectiveness of the proposed distributed rendezvous algorithm
using real robots with variable range radars.

The proposed approach can be applied to underwater robots as well as aerial robots.
Aerial robots can use radar sensors to achieve the rendezvous proposed in our paper. On
the other hand, underwater robots can use active sonar sensors to achieve the rendezvous
addressed in this paper.

In this paper, we handle the case where a robot can measure the relative position
(elevation, azimuth, and range) of its neighbor robot using its radar. In practice, a robot
may have range-only sensors for measuring the relative distance to its neighbor robot [34].
The authors of [34] addressed multi-robot rendezvous with range-only measurements. In



Appl. Sci. 2022, 12, 8535 10 of 11

the future, we will apply range-only radars with variable sensing ranges in order to make
all robots rendezvous at a point.
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