friried applied
e sciences

Article

Absolute Distance Measurement Based on Self-Mixing
Interferometry Using Compressed Sensing

Li Li 230, Yue Zhang %, Ye Zhu 12, Ya Dai '?, Xuan Zhang %> and Xuwen Liang 1-2/3*

check for
updates

Citation: Li, L.; Zhang, Y.; Zhu, Y,;
Dai, Y.; Zhang, X.; Liang, X. Absolute
Distance Measurement Based on
Self-Mixing Interferometry Using
Compressed Sensing. Appl. Sci. 2022,
12,8635. https://doi.org/10.3390/
app12178635

Academic Editor: Alberto Gatto

Received: 24 July 2022
Accepted: 26 August 2022
Published: 29 August 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Innovation Academy for Microsatellites of CAS, Shanghai 201204, China
Shanghai Engineering Center for Microsatellites, Shanghai 201204, China
University of Chinese Academy of Sciences, Beijing 100049, China

China Telecom Research Institute, Shanghai 200122, China

Hefei National Laboratory, Hefei 230088, China

*  Correspondence: 18217631362@163.com

G W N e

Abstract: An absolute distance measurement sensor based on self-mixing interferometry (SMI) is
suitable for application in aerospace due to its small size and light weight. However, an SMI signal
with a high sampling rate places a burden on sampling devices and other onboard sources. SMI
distance measurement using compressed sensing (CS) is proposed in this work to relieve this burden.
The SMI signal was sampled via a measurement matrix at a sampling rate lower than Nyquist’s
law and then recovered by the greedy pursuit algorithm. The recovery algorithm was improved to
increase its robustness and iteration speed. On a distance measuring system with a measurement error
of 60 um, the difference between raw data with 1800 points and CS recovered data with 300 points
was within 0.15 pum, demonstrating the feasibility of SMI distance measurement using CS.

Keywords: self-mixing interferometry; distance measurement; compressed sensing; recovery algorithm

1. Introduction

The self-mixing phenomenon refers to the effect in which an emitted laser beam is
partially reflected by a target and mixed with the light inside the laser cavity, resulting in
modulation of both the output laser power and the optical frequency [1]. The modulated
power or modulated frequency can be used to estimate the target’s properties. A mea-
surement sensor with SMI does not require a beam splitter, reference mirror, and external
photodetector, so it has the characteristics of low cost, simplicity and compact structure.
SMI sensors are widely used in the field of distance [2,3], displacement [4,5], vibration [6,7],
and velocity [8,9] measurements. Moreover, the use of laser diodes as a light source can
further reduce size and weight [2,10]. These benefits make SMI-based sensors suitable for
deployment as nodes in a measurement network. For example, distance measurement
sensors based on SMI can be used to monitor the structural deformation of space opti-
cal communication satellites or quantum satellites, which have strict requirements for
precise structures.

Most already reported methods for SMI distance sensing depend on the beat frequency
of fringes induced by linear current modulation, due to the approximate linear relation
between beat frequency and distance [2]. The fringe-counting method [11] in the time
domain and the spectrum analysis method [12] in the frequency domain are commonly
used to obtain the beat frequency. When compared, the spectrum analysis method achieves
higher measurement accuracy and can adapt to measurements with a lower signal-to-noise
ratio [13,14]; therefore, most signal-processing work for SMI distance measurement focused
on spectrum estimation algorithms to obtain the modulated frequency.

A high sampling rate for distance measurement is set to ensure accuracy and a wide
range of measurements. The high sampling rate places a burden on sampling device
capability, energy consumption, data transmission capability, and data storage capacity,
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which are sensitive to sensor nodes or satellites with limited resources [15]. To address this
issue, compression algorithms are typically applied to satellites to reduce data size [16,17].
However, they do not fundamentally solve the problem. Compression algorithms place an
additional computational burden on satellites, and the demand for sampling devices with
a high sampling rate is not alleviated.

In the traditional sampling approach based on the Nyquist sampling theorem, a
large effort is made to obtain complete information at the sampling stage, and useless
information is discarded at the compression stage. Unlike the traditional approach, the
novel theory of compressed sensing (CS) provides a new approach for data acquisition and
data compression at the same time [18]. In the CS method, fewer data are sampled at the
satellite, reducing the burden on sampling devices and subsequent transmission. No other
complex computations are required at the satellite, and the recovery algorithm for sampled
data is implemented on the ground with ample computing resources. The CS theory works
on the premise that if a signal is sparse in some transform domain, far fewer measurements
are needed to reconstruct the signal compared to the Nyquist sampling theorem [19]. The
SMI signal is cosine-like, with only a few indexes of the spectrum having non-zero values.
When spectrum estimation algorithms are utilized for SMI distance measurement, only the
index corresponding to the maximum amplitude and a few other indexes are concerned [20].
Therefore, the SMI signal can be regarded as a sparse signal in the Fourier domain. In light
of this, we used CS for SMI distance measurement in our work.

2. Theoretical Analysis
2.1. Self-Mixing Interferometry

SMI can be interpreted using a three-facet Fabry—Perot cavity and simplified using
a two-facet Fabry—Perot cavity [10]. Neglecting multiple reflections and under a weak
feedback level, the modulated power P and the modulated frequency vr can be expressed as

4L 4L
%(vo —Vp) = Csin(%vP + arctana), 1)

P="DP1+ mcos(?w)], ()

where L is the distance between the external target and the laser’s front mirror, vy is the
optical frequency without feedback, m is the modulation coefficient, and c is the speed of
light. C is the external feedback strength parameter related to external distance, length of
the laser internal cavity, and reflectivity of the laser front mirror and the external target.
C is an important parameter that affects the dynamics of the laser as well as its output
power P. A weak feedback level (C < 1) gives a single solution in Equation (1) and causes
VF to approximate v [21]. When the laser is linearly modulated above its threshold by a
direct current with a sawtooth wave current, the modulated power P in Equation (2) can be
expressed as

Q
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where 7y means the modulation relationship between lasing frequency and modulation
current with a unit Hz/mA, which is always considered constant in distance measurement.
The parameter r(t) represents the slope of the sawtooth wave current.

Both the frequency and the phase of the SMI power signal contain external distance
L. However, the problem of phase ambiguity occurs when the phase is used to obtain the
distance, so that the accurate distance cannot be distinguished. Therefore, the frequency of
the SMI signal is usually extracted to obtain external distance via

fc
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Because of the excellent properties of the fast Fourier transform (FFT), it is commonly
used to calculate frequency. Given that the accuracy of frequency measurement directly
impacts the accuracy of distance measurement, some spectrum correction methods are
used to overcome the picket fence effect. Interpolated FFT [20] is one of these methods,
and is widely used due to its ease of implementation and high correction accuracy. The
correction method for interpolated FFT using the Hanning window is defined as

s fs ( w | 2Apa1 — Ak*>
= — k :l: _ |, 5

where f; is the sampling rate, N is the number of sampling points, k* is the index of the
maximum peak, and A+ and Ay« are the amplitudes of the maximum peak and lateral
peaks respectively. The sign of the inner sum in Equation (5) depends on the amplitude
of the lateral peaks. The sign “+” is used when A+, is greater than Ay+_1, and when vice
versa, “—" is used.

2.2. Compressed Sensing

A signal x € RN can be expressed as a weighted sum of the columns of an orthonormal
basis matrix ¥ € RV*N via
x=Y¥s, 6)

where s € R is the weight coefficient. This signal can be called K-sparse on a sparse basis
Y if there are no more than K (K < N) nonzero elements in s. The sparse basis can be Fourier
basis, wavelet basis, cosine basis, etc. A suitable sparse basis should be selected to minimize
the number of nonzero elements to obtain the best sparse representation. In CS theory, a
sparse signal can be sampled by a measurement matrix ® € RM*N where M < N to obtain
the signal y € RM. The sampling process can be denoted with

y=Px = ®¥s = Os, )

where matrix @ € RM*N denotes the sensing matrix. The matrix ©® needs to satisfy the
Restricted Isometry Property (RIP) [22] so that the sampled vector y can preserve sufficient
information to fully recover the original signal x. It has been proven that the sensing matrix
O can satisfy the RIP when the measurement matrix ® is a Gaussian matrix, Bernoulli
matrix, Fourier random matrix, or Hadamar matrix [23].

Signal reconstruction will be conducted after measurement and is formulated as an ¢
norm minimization problem. The unknown K-sparse vector can be reconstructed via

msianHO st.y = ®¥s, 8)

where |[o||, = (Z{‘|o|)1/ P denotes the ¢,-norm. The {y-minimization is NP-hard, in general.
There are usually two methods for resolving this issue. The first is £;-minimization and
the second is greedy pursuit algorithms. It has been demonstrated that ¢;-minimization
can replace {y-minimization when the sensing matrix © satisfies the RIP [24]. The main ad-
vantage of /;-minimization is that it is a convex optimization problem, and therefore, liner
programming technologies can be used to solve the function. However, ¢;-minimization
has high computational complexity. In comparison, greedy pursuit algorithms have a
favorable computational profile. The main idea of greedy pursuit is to select the most
valuable columns, called atoms, from the sensing matrix and then gradually reconstruct the
signal. Orthogonal matching pursuit (OMP) [25] is a widely used greedy pursuit algorithm.

2.3. SMI Distance Measurement Using CS

In comparison to the traditional sampling method, the CS method employs non-
uniform sampling based on the measurement matrix and incorporates a signal recovery
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process. Figure 1 depicts block diagrams of the traditional sampling method and the CS
method for SMI distance measurement.

Hanning

window Interpolated
N y FFT N correction
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SMI signal
Recovery Interpolated
s oM o y correction _
(b) » AD —rY ER sER — »lrequency —»Distance
SMI signal T )
Measurement matrix with Sen 5_' ng
Hanning window matrix

Figure 1. Block diagrams for SMI distance measurement: (a) Traditional method; (b) CS method.

In the traditional spectrum estimation method, the SMI signal is acquired by analog-to-
digital (AD) conversion. Following that, FFT and interpolated correction are applied to the
sampled signal with the Hanning window added. The modulated frequency in Equation (3)
can be obtained, and the external distance calculated, according to Equation (4). In the
CS method, signal y with fewer points than in the traditional method is sampled through
control of the measurement matrix, which can be implemented by a demodulator [26]. To
reduce spectral leakage as in traditional methods, a Hanning window is multiplied on each
row of the measurement matrix. After that, the recovery coefficient vector s’ can be solved
using the recovery algorithm. The following steps in the CS method are consistent with
the traditional method. In our work, the widely used Gaussian matrix was selected as
measurement matrix to facilitate analysis, and the CS sampling process was simplified into
the multiplication of the original signal and the measurement matrix. The OMP algorithm
was used as the signal recovery algorithm for SMI distance measurement.

When the Fourier basis is used as a sparse matrix and OMP is selected as the re-
covery algorithm, two improvements were made in our work regarding acceleration
and robustness.

e  Acceleration

Conjugate symmetry is present in the Fourier transform of real numbers. This feature
can be used to accelerate the OMP recovery algorithm. When a column in the sensing
matrix achieves its largest inner product with the residual vector during an iteration, not
only the index of that column but also the symmetrical index is added to the selected atom
index matrix.

e Robustness

The correction method in Equation (5) is concerned with the amplitudes of the main
peaks and lateral peaks. However, the OMP algorithm selects the atoms on which the
residual vector achieves maximum projection. This strategy does not guarantee that the
lateral peaks are selected. To address this issue, an additional iteration is applied in the
OMP algorithm. This finds the index of the maximum peak and adds the atoms at the
lateral peaks to the selected matrix if they are not selected.

The steps of the improved OMP for SMI signals are shown in Algorithm 1, and the
differences from OMP are marked in red font.
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Algorithm 1 The steps of improved OMP

Input: Sensing matrix ® € RM*N; Sampling vector y; Maximum number of iterations 1.
Initialization: Number of iterations ¢ = 0; Residual vector ry = y; Selected atom matrix )y = @;
Selected index matrix Ag = @.

Iteration:
1: While t <m
2: t=t+1
3 ki = arg max 7‘<R"‘8;ﬁ”>‘

n=12,..,N
4 | Al = [Ap1 ki kis]
5: A =[O 1 0, O]
6: S = arg min|| (%S —Y||,

S
7 R;=Y— S,
8 end while
9:  S(A;)=S8;
10: h= argmax | S|,
n=1,2,..,N

11: if (11+1)¢Af0r(h‘1>¢[\t
12: At+1:[Atl’l+l}OI’A[+1:[A2L]/Z—1}
13: Q1=[Q Oy 11 Jor QO 1=[0 01 ]
14: St+1 :argsmin\l Q; 11S-Y|,
15:  end if

Output : S(Ayy1) = Sip1.

The improved OMP has the same input and initialization as the original OMP. The
index k; of a column called atom in the sensing matrix © that maximizes projections on the
residual R is selected in Step 3. The index of the atom k; and the atom itself @, are added
to the selected index matrix () and selected atom matrix A separately in Steps 4 and 5. In
the improved algorithm, information concerning the symmetric atoms @y, in the Fourier
domain is also recorded. The recovered coefficient vector s is calculated in Step 6 by solving
a least-squares problem with the selected atoms, and the residual is calculated in Step 7.
The operation from Step 2 to Step 7 repeats until the iteration index t reaches the maximum
number of iterations m. To ensure that the atoms used for interpolated FFT in Equation (5)
are all selected, the operations of Step 9 to Step 15 were added to the improved algorithm.
The purpose is to judge whether the atom adjacent to the main peak has been selected; if
not, it is added to the selected matrix, and the least-squares method is used to calculate the
recovery coefficient again.

3. Experimental Results

To demonstrate the feasibility of using CS in SMI distance measurement, experi-
ments to evaluate the difference between the traditional method and the CS method were
implemented. The experimental setting used in this study was the same as the experi-
mental equipment used in our previous study [10], which showed that when utilizing
the conventional approach with interpolated FFT in the 3 to 20 cm range, a resolution of
approximately 60 um could be achieved at a signal-to-noise ratio of 30 dB. Figure 2 depicts
the experimental setup.

A VCSEL HVS6003-001 laser diode with an integrated phototransistor was utilized
in the experiment. It was modulated by a sawtooth current with amplitude of 2 mA and
frequency of 50 Hz. The target was mounted on a translation stage, and the external
distance between the target and the laser could be changed by adjusting the stage. The
SMI signal was collected with the phototransistor and sampled using a data acquisition
(DAQ) device after amplification and filtering. The sampling rate was set to 100 kHz. In
this setting, 2000 data points could be extracted from each sawtooth period and 50 sets
of data could be obtained in 1 s. Distance measurement was carried out at 10 different
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positions in the range of 4 cm to 10 cm. The SMI signal of the laser modulated with the
sawtooth wave is shown in Figure 3a, and the SMI signal extracted from the sawtooth edge
is shown in Figure 3b.

phototransistor Amplifiers
Target Laser ﬁ ﬂers

. ~ //
ye=ll— | /

s /
Translation / 4 PC
stage / L
aser
. » DA >
driver Q
L
Figure 2. Schematic diagram of the experimental setup.
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Figure 3. SMI signal: (a) Signal with sawtooth current; (b) Extracted SMI signals.

The cosine-like signal on the sawtooth wave in Figure 3a is the self-mixing signal,
which could be extracted by subtracting the modulated sawtooth signal. The distance
could be obtained via Equation (4) after calculating the frequency of the signal. In signal
processing, 100 points in the dashed box at the beginning and end of each sawtooth period
were removed to eliminate distortion in the SMI signal caused by the sudden change in the
sawtooth signal.

In this experiment, a Gaussian random matrix was multiplied by the SMI signal to
simulate the CS sampling process. For the CS method, the sampling size M was set to 300,
and the maximum number of iterations m in the recovery algorithm was set to 50. The
spectrum of the raw data s and the spectrum of the CS recovered data s’ are shown in
Figure 4a. The details of the non-zero values in the dashed box are shown in Figure 4b and
the details of the zero values are shown in Figure 4c.

The results in Figure 4 show that most of the amplitudes of the SMI signal in the
frequency domain were so small that they could be considered zero. In other words,
the SMI signal could be regarded as sparse in the Fourier domain. Indexes with larger
amplitudes were reconstructed and others were treated as zero in the recovery signal.

At each distance measurement, the data from 50 sawtooth cycles within one second
was analyzed. The distance was calculated using both raw and recovered data. The
difference between the calculated distances from two data sources was recorded. Figure 5
depicts the average difference and standard deviation of 50 measurements.
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1x1077

1.5

1.0

0.5 1

0.0 4

Difference /m

-1.0 T T T
5 6 10

Samples

Figure 5. Differences in distance between raw data and CS recovery data.

The results in Figure 5 illustrate that the differences in distance between the CS method
and the traditional method in the experiment were within 0.15 um. Compared with the
measurement errors of approximately 60 um in the distance measurement system using the
traditional method, the differences caused by CS sampling were much smaller. Moreover,
there were 300 points sampled to recover the SMI signal in the CS method, which was
one-sixth of the original signal, with 1800 points. This means that the CS method is
a promising technology in SMI distance measurement, achieving fewer samples at the
expense of minor errors.

Some additional experiments were carried out to evaluate acceleration in the improved
algorithm. The maximum number of iterations m was set to 100 and the residuals’ norm
IR||, with and without acceleration were recorded. The change in residual is depicted in
Figure 6.

Figure 6 shows that as the iteration index increased, the residual values became smaller.
Residuals with acceleration dropped faster, indicating that the improved algorithm could
recover the signal more quickly. The tendency of the residual values slowed down when
the iteration index was greater than 50, so this value was used as the maximum number of
iterations in our experiments.
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Figure 6. Change in residual versus iteration index.

4. Conclusions

An approach to distance measurement based on SMI using compressed sensing is
proposed in this work. Compared with traditional methods, compressed sensing requires
far fewer sampling points. Acceleration based on the symmetry of the Fourier spectrum
was added to the recovery algorithm for faster convergence. In addition, considering the
need for interpolated correction, atoms at specific positions were selected to guarantee the
robustness of the algorithm. Distance measurements were carried out for assessing the
feasibility of the proposed method. The results showed that the differences in distance
between the traditional method with 1800 data points and the CS method with 300 data
points were within 0.15 pm, which is minor when compared to the system measurement
error of 60 pm. Further experiments will be carried out to verify the practical application of
using the CS method on satellites. To sum up, the proposed approach provides a promising
idea for SMI distance measurement using limited resources.
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