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Abstract: With the recent advances in deep learning, different approaches to improving pre-trained
language models (PLMs) have been proposed. PLMs have advanced state-of-the-art (SOTA) per-
formance on various natural language processing (NLP) tasks such as machine translation, text
classification, question answering, text summarization, information retrieval, recommendation sys-
tems, named entity recognition, etc. In this paper, we provide a comprehensive review of prior
embedding models as well as current breakthroughs in the field of PLMs. Then, we analyse and
contrast the various models and provide an analysis of the way they have been built (number of
parameters, compression techniques, etc.). Finally, we discuss the major issues and future directions
for each of the main points.
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1. Introduction

Word embeddings (i.e., distributed representations, word vectors) are dense feature
vector representations of words in a specific dimensional space [1], which are usually learned
by an unsupervised algorithm when fed with large amounts of tokens (t1, t2, . . . , tn) [2].
Numerous variations have been proposed: context-free embeddings representation [3–5],
and contextual representation (pre-trained language models) [6]. Traditional context-free word
embedding approaches aim to learn a global word embedding matrix E ∈ RV∗d, where V is
the vocabulary size and d is the number of dimensions. In fact, each row ei of E corresponds
to the embedding of the token ti in the vocabulary V. Alternatively, methods that learn
contextual embeddings can associate to a token ti different vectors (different meanings)
depending on the context in which the token appears [7].

The above studies have tried to improve word representations, but they still have
a key limitation, which is producing one embedding vector for each word in almost all
word embeddings, despite the fact that a word may have different meanings. With the large
amounts of available data (e.g., Wikipedia dumps, news collections, Web Crawl, The Pile,
etc.) and the recent advances in deep learning over recent years such as transformers,
model capacity, and computational efficiency, a different number of methods have been
introduced to overcome drawbacks of word embeddings [8–11].

The rest of this paper is organized as follows. Section 2 provides background concepts
and distinguishes between the different categorizations of word embeddings (frequency-
based and context-free word embeddings). In Section 3, we give a deep review of the dif-
ferent SOTA pre-trained language models. Section 4 describes the application ways, pa-
rameters, and different compression methods used to create PLMs. Section 5 discusses
the current challenges and suggests future directions. Finally, we draw the conclusion of
this research paper.
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2. Language Models and Word Embeddings

There are a variety of pre-training general language representations. We distinguish
two generations of word embeddings: frequency-based word vectors and context-free
embedding representation. An overview of the most popular approaches is presented here.

Latent Semantic Analysis (LSA) is a representation method of word meaning intro-
duced in [12]. It is a fully automated statistical method to extract relationships between
words based on their contexts of use in documents or sentences. LSA is an unsupervised
learning technique (Mathematical details: [13]). Fundamentally, the proposed model is
concretized through four main steps: (1) Term-Document Matrix calculation also known as
the bag of words model; (2) Transformed Term-Document Matrix; (3) Dimension Reduc-
tion [14]; and (4) Retrieval in Reduced Space.

Neural Network Language Model (NNLM)
The Neural Network Language Model (NNLM) [2,15] jointly learns a word vector

representation and a statistical language model with a feedforward neural network that
contains a linear projection layer and a non-linear hidden layer. N-dimensional one-hot
vector that represents the word is used as the input, where N is the size of the vocabulary.
The input is first projected onto the projection layer. Afterwards, a softmax operation is
used to compute the probability distribution over all words in the vocabulary. As a result of
its non-linear hidden layers, the NNLM model is very computationally complex. To lower
the complexity, an NNLM is first trained using continuous word vectors learned from
simple models. Then, another N-gram NNLM is trained from the word vectors.

Max–Margin Loss (MML) Collobert and Westion [16] proposed word embeddings
by training a model on a large dataset. They consider a window approach network. Max
margin or hinge loss is a technique that tries to get a higher score for words that are correct
than for words that are not.

Word2Vec is a model, developed by Google, to build word embeddings [3]. An intrin-
sic difference with previously developed methods is that Word2vec is a predictive model,
while LSA and MML are statistical. The Word2vec architecture is based on a feedforward
neural network language model [2]. Word2vec can be obtained from two different mod-
els (both involving Neural Networks): Skip-Gram and Common Bag Of Words (CBOW).
The Skip-Gram model trains by trying to predict the context words from the target, while
the CBOW model aims at predicting the current word from the sum of all the word vectors
in its surrounding context. Using a contextual window, Word2Vec is able to learn semantic
meaning and similarity between words in a fully unsupervised manner. This means that
words with similar meanings (e.g., king, queen) tend to occur in a semantic space in close
proximity to each other. The CBOW model is quicker as it treats the entire context as one
entity, while the skip-gram model produces various training pairs for each context word.
The Skip-gram model does a great job of capturing rare words due to the way it manages
the context.

After the emergence of Skip-Gram and CBOW-based word embedding models, two
other models based on these methods were announced. In the rest of this section, we will
present global vectors and fastText.

Global vectors (Glove) is an unsupervised learning algorithm, developed by Stanford
University, based on a word-word co-occurence matrix that is used to create the em-
beddings [4]. Each row of the matrix represents a word, while each column represents
the contexts that words can appear in. The matrix values represent the frequency with
which a word appears in a given context. Finally, an embedding matrix where each row
will be a word’s embedding vector for the corresponding word is created by applying
a dimensionality reduction [14].

FastText is a method for learning word embeddings for large datasets [17,18]. It can
be seen as an improvement of Word2Vec. Instead of considering words as distinct entities,
FastText aims to learn vector representations for each word and to exploit the character
and morphological structure of the word by considering every word as a composition of
n-grams character (e.g., “unbalanced” = “un” + “balance” + “ed”). Thus, words can be
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represented by averaging the embeddings of their n-grams (sub-words). While this will
increase the training cost, the sub-word representation permits fastText to represent words
more efficiently, allowing the estimation of out-of-vocabulary (OOV) and rare words since
their character-based n-grams should occur across other words in the training dataset.

CoVe (Context Vectors model), introduced by McCann et al. [19] from SalesForce Re-
search, learns contextual vectors using a neural machine language translation system. It is
so viewed as a sequence-to-sequence model. CoVe shows that the learned representations
are transferable to other NLP tasks. In order to obtain contextual embeddings, CoVe uses
a deep LSTM encoder from a sequence-to-sequence model trained for machine transla-
tion. Empirical results revealed that boosting non-contextualized word representations
(e.g., Word2Vec, Glove) with CoVe embeddings (LM + CoVe) improves performance over
a variety of common NLP tasks.

FLAIR embeddings were introduced by Zalando research [20]. FLAIR embeddings are
character-level language models. FLAIR proposed embeddings have the distinct properties
of being trained without any explicit concept of words and thus fundamentally modeling
words as sequences of characters using the BPEmb technique presented by Heinzerling
and Strube [21]. In FLAIR, the same word may have different embeddings depending on
the context.

3. SOTA Pre-Trained Language Models (PLMs)
3.1. List of Recent Pretrained Language Models

With the large amounts of available data (e.g., Wikipedia dumps, news collections,
Web Crawl, and The Pile) and the recent advances in deep learning over recent years, such
as transformers (Figure 1), model capacity, and computational efficiency, a different number
of methods have been introduced to overcome the drawbacks of word embeddings.

Figure 1. An illustration of Transformer Architecture: Figure source [22]..
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Language pre-training has been highly successful, with state-of-the-art models such
as GPT, BERT, XLNet, ERNIE, ELECTRA, and T5, among many others [8,19,20,23–25].
These methods share the same idea, pre-training the language model in an unsupervised
fashion on vast amounts of datasets, and then using this pre-trained model for fine-tuning
for various downstream NLP tasks. Fine-tuning [8,23–26] typically adds an extra layer(s)
for the specific task and further trains the model using a task-specific annotated dataset,
starting from the pre-trained back-bone weights (Figure 2).

Figure 2. Previous vs. recent approaches.

Recently, different unsupervised pre-training objectives have been explored in the lit-
erature (autoregressive (AR) language modelling, autoencoding (AE), Language Model
(LM), Masked Language Model (MLM), Next Sentence Prediction (NSP), Replaced Text
Detection (RTD), etc.). In this section, we will present recent pre-trained language models
that have significantly advanced the SOTA over a variety of NLP tasks.

ELMO, short for the Embeddings from Language Model [27], comes to overcome
the limitations of previous word embeddings. ELMo representations are a function of
the internal layers of the bi-directional Language Model (biLM). While the input is a se-
quence of tokens, the language model learns to predict the probability of the next token
given the previous ones (a task called “Language Modeling”). In the forward pass, the se-
quence contains tokens before the target token. In the backward pass, the history contains
words after the target token. The deep BiLSTM architecture helps ELMo learn more context-
dependent aspects of the meanings of words in the top layers along with syntax aspects
in the lower layers. This leads to better word embeddings and different representations of
a word depending on the context in which it appears. Peters et al. [27] demonstrated that
the biLM-based representations outperformed CoVe in all considered tasks.
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ULMfit (Universal Language Model Fine-tuning). Howard and Ruder [28], from Fas-
tAI, have suggested ULMfit. The core concept behind this model is that a single model
architecture can be used for language pre-training and fine-tuned for supervised down-
stream classification tasks by using the weights acquired through pre-training. Howard
and Ruder [28] demonstrate the importance of a number of novel techniques, includ-
ing discriminative fine-tuning, slanted triangular learning rate, and gradual unfreezing,
for maintaining prior knowledge and ensuring stable fine-tuning.

OpenAI GPT Transformer, short for Generative Pre-training Transformer [24], is
a multi-layer transformer decoder [22]. Its approach is a combination of two existing
ideas: transformers [22] and unsupervised pretraining [28]. GPT is a large auto-regressive
language model pretrained with language modelling (LM), a simple architecture that can
be trained faster than an LSTM-based model. GPT uses the BookCorpus dataset [29], which
contains more than 7000 books from various genres. It is able to learn complex patterns
in the data by using the attention mechanism. The total number of trained parameters is
110M parameters.

BERT (Bidirectional Encoder Representations from Transformers) introduced by De-
vlin et al. [8] is built on a number of clever ideas that have been emerging in the NLP
recently including Semi-supervised Sequence Learning [26], ELMo [27], ULMFiT [28],
the Transformer [22], and the OpenAI transformer [24]. BERT is the first deeply bidirec-
tional, unsupervised language representation, pretrained using only a large text corpus and
jointly conditioning both the left and right context of each token. BERT is pretrained with
a linear combination of two objectives: (1) masked language modelling (MLM) objective,
which randomly masks 15% of the input sequence and tends to predict these masked
tokens. (2) Next Sentence Prediction (NSP) which is given two sentences, does the sec-
ond sentence truly follow the first in the original text? BERT comes in different versions:
a 12-layer BERT-base model (with 12 attention heads and 110M parameters) and a 24-layer
BERT-large model (with 16 attention heads and 340M parameters) [8].

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context [30].
The problem of long-distance dependence is a challenging problem, and it is a task where
RNN fails. Transformer-XL is an auto-regressive pre-trained language model developed
by the Google AI team that introduces architectural modifications enabling transformers
to understand context beyond that fixed-length limitation without disrupting temporal
coherence via segment-level recurrence and relative positional encoding schemes. With its
257M parameters, Transformer-XL is more than 1800 times faster than a typical transformer.
The XL here refers to extra long, which means that it has very good performance on the long-
distance dependency problem in language modelling (80% longer than RNN). At the same
time, it also implies that it was born to solve the problem of long-distance dependence.

GPT2 [31], OpenAI GPT’s successor, is a large auto-regressive language model.
This large transformer-based language model has 1.5 billion parameters. GPT-2 was
trained on a dataset of 8 million web pages (40 GB of Internet text) called WebText
(10 × larger than GPT), and it was trained simply to predict the next word (Language
Model objective). GPT2 showcased zero-shot task transfer capabilities for various tasks
such as machine translation and reading comprehension.

ERNIE 2.0 [32], a continual pre-training framework for language understanding, is
a pre-trained language model based on Baidu’s own deep learning framework, PaddlePad-
dle, which can incorporate lexical, syntactic, and semantic information at the same time.
We distinguish two general pre-training tasks: word-aware pre-training tasks (which
include the Knowledge Masking Task, Capitalization Prediction Task and the Token-
Document Relation Prediction Task) and semantic-aware pre-training tasks (which include
Sentence Reordering, Sentence Distance, Discourse Relation Task, and IR Relevance Task).
ERNIE was trained for English and Chinese languages. The experimental results show that
significant improvements have been made in different knowledge-driven tasks, and they
are comparable to the existing BERT and XLNET models on other common tasks. ERNIE
2.0 version ranks first in the GLUE rankings (as of January 2020).
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XLNet is proposed by researchers at Google Brain and CMU [33]. It borrows ideas
from Transformer-XL autoregressive language modeling [33] and autoencoding (e.g., BERT).
XLNet avoids the drawbacks of previous techniques by introducing a variant of language
modeling called permutation language modeling (PLM) during the training process, where
the order of the next token prediction can be right to left or left to right (randomly).
This drives the model to capture the bidirectional dependencies (bidirectional contexts)
and make it a generalized order-aware autoregressive language model. With its 340M
parameters, XLNet beats BERT on 20 NLP downstream tasks and succeeds in the SOTA
results on 18 tasks.

RoBERTa: Robustly Optimized BERT Pretraining Approach [34], developed by Face-
book, is built on BERT’s language masking strategy and makes some changes related to
the key hyperparameters in BERT. RoBERTa uses 160 GB of training data instead of the 16
GB dataset originally used with BERT. To improve the training procedure [34], RoBERTa
eliminates the Next Sentence Prediction (NSP) task. It also introduces dynamic mask-
ing so that a new masking pattern is generated each time a sentence is fed into training,
whereas BERT use a fixed masked token during training. It was also trained more itera-
tively (more epochs and larger mini-batch sizes). The total number of parameters reached
355M parameters.

XLM (Cross-lingual Language Model Pretraining) was developed by Facebook [35].
XLM uses a preprocessing technique known as Byte Pair Encoding (BPE) and a dual-
language training mechanism with BERT in order to learn relations between words in dif-
ferent languages without any cross-lingual supervision. Various objectives were used to pre-
train XLM, including the causal language modeling (CLM) objective (next token prediction),
a masked language modeling (MLM) objective (BERT-like), or a Translation Language Mod-
eling (TLM) object (extension of BERT’s MLM to multiple language inputs). The model out-
performs previous models in a multi-lingual classification task and significantly improves
machine translation when a pretrained model is used for the initialization of the translation
model. XLM shows the effectiveness of pretrained representations for cross-lingual lan-
guage modeling (both on monolingual data and parallel data) and cross-lingual language
understanding (XLU).

CTRL (Conditional Transformer Language) is a 1.63B parameter PLM [36]. A research
team at Salesforce trained CTRL on a very large corpus of around 140 GB of text data
with a causal language modeling (CLM) objective. It has a powerful and controllable
artificial text generation function, allowing it to generate syntactically coherent writing
(predicting the next token in a sequence). CTRL can also improve other NLP applications
by fine-tuning specific tasks or transferring the learned representation of the model.

Megatron-ML was proposed by NVIDIA in “Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Parallelism“ [37]. Megatron-LM is an NLP
model released by NVIDIA. They train an 8.3 billion parameter transformer language
model similar to GPT-2 and a 3.9 billion parameter model similar to BERT. It is a huge
model that is over 24× the size of BERT and approximately 6× the size of OpenAI’s GPT-2.
Increasing the size of both GTP-2 and BERT’s models made them faster and more accurate.

ALBERT: In conjunction with the trend of larger and larger models (as with the huge
Megatron, trained on 512 GPUs), it is fascinating to observe how new architecture en-
hancements, such as ALBERT (a lite version of BERT), provide higher accuracy with
substantially fewer parameters [38]. It is the outcome of a collaboration between Google’s
research team and Chicago’s Toyota Technological Institute. The goal is to introduce two
parameter-reduction techniques (decomposed parameterized embedding and cross-layer
parameter sharing) to address the problems of training length and memory restrictions.
When compared to the original version of BERT, this model scales substantially better.
ALBERT has 18× fewer parameters and can be trained about 1.7× faster than BERT-large.
For pretraining, ALBERT utilizes its own training method called Sentence-Order Prediction
(SOP), which differs from the NSP objective for BERT. The problem with NSP, according to
the authors, is that it conflates topic prediction and coherence prediction.



Appl. Sci. 2022, 12, 8805 7 of 19

DistilBERT: Knowledge distillation method, which was initially described in 2006 [39]
and 2015 [40], is a compression technique in which a compact model is trained to replicate
the behaviour of a larger model or an ensemble of models. Developed by HuggingFace [41],
DistilBERT learns a distilled (approximate) version of BERT, retains 95% performance
on GLUE while employing half the number of parameters (only 66 million parameters,
instead of 110M/340M). The idea is that when a large neural network has been trained,
its whole output distributions of the network can be approximated by using a smaller
network. DistilBERT is smaller, faster, cheaper, and lighter compared to BERT, yet its
performance is about equivalent to that of BERT. Sharing the same tokenizer as BERT’s
bert-base-uncased, DistilBERT processes the sentence and passes along some information
to the next model. DistilBERT is a smaller version of BERT developed and open sourced by
the team at HuggingFace.

There are numerous tentative models, such as TinyBERT [42], BERT-48 [43], BERT-
192 [43], MobileBERT [44], MiniBERT [45], and others.

DistilGPT2 is a model that has been pretrained under the supervision of GPT2
(the smallest of the GPT-2 variants) using the OpenWebTextCorpus dataset. With 82M pa-
rameters, DistilGPT-2 is smaller than even the smallest version of GPT-2 (124M parameters).
GPT2 has been compressed into DistilGPT2 using the same approach as the knowledge dis-
tillation technique. DistilGPT2 is approximately twice as fast as GPT2 OpenAI. A primary
goal is to keep the weight down as much as possible.

T5 is a large pre-trained encoder–decoder model that converts all NLP problems,
whether they are unsupervised or supervised, into a text-to-text format [46]. It is trained
using teacher forcing. This means that when we train, we always need an input se-
quence and a target sequence that goes with it. T5 performs well on a wide range of tasks
out-of-the-box by prepending a different prefix to the input corresponding to each task
(e.g., translation: translate, English to Arabic, summarization: summarize, etc.). Various
T5 variants (T5-small, T5-base, T5-large, T5-3b, T5-11b.) can be trained/fine-tuned both
in a supervised and unsupervised fashion.

BART is a type of PLM. Facebook first described it in the paper “BART: Denoising
Sequence-to-Sequence Natural Language Generation, Translation, and Comprehension
Pre-training” [47]. BART is a transformer encoder-encoder (seq2seq) model. It comes
with two main parts: a bidirectional encoder (BERT-like) and an autoregressive decoder
(GPT-like). BART is learned by first corrupting text using an arbitrary noise function
and developing a model to restore the original text. BART is most effective when fine-
tuned for text generation (e.g., summarization, translation), but it is equally effective for
comprehension tasks (e.g., text classification, and question answering).

XLM-R is a new cross-lingual language model from Facebook AI, with the letter “R”
standing for Roberta [48]. XLM-R is a transformer-based multilingual masked language
model that has been pre-trained on a dataset in 100 languages (2.5 TB of newly created
clean Common Crawl data). It outperforms prior released multi-lingual models, such as
mBERT or XLM, on the GLUE and XNLI benchmarks (classification, sequence labelling,
and question answering).

PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization.
Based on Transformer, Google’s PEGASUS is a generative language model capable of
generating words to complete open text tasks [49]. With a new self-supervised objective
called gap-sentence generation (GSG) for Transformer encoder–decoder models, the fine-
tuning performance on abstractive summarization was improved, achieving state-of-the-art
results across a wide range of summarization datasets.

Reformer architecture [50] extends the boundaries of long sequence modeling by pro-
cessing up to 500,000 tokens at once. The Reformer authors came up with four new features
(Reformer Self-Attention Layer, Chunked Feed Forward Layers, Reversible Residual Layers
and Axial Positional Encodings). Many NLP tasks, e.g., summarization and question
answering, can benefit from this model as it is designed to efficiently handle very long
sequences of data.
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MT-DNN (Multi-Task Deep Neural Network), introduced by Microsoft [9], is in-
tended to enable quick customisation for a broad range of natural language understanding
tasks, utilizing a variety of algorithms (classification, regression, structured prediction)
and text encoders (e.g., RNNs, UniLM, RoBERTa, BERT). The adversarial multi-task learn-
ing paradigm is a key aspect of MT-DNN that enables robust and transferable learning.
MT-DNN enables multi-task knowledge distillation, which compresses a DNN model
significantly without sacrificing performance.

REALM model was proposed in REALM: Retrieval-Augmented Language Model
Pre-Training [51]. In this retrieval-augmented language model, documents are retrieved
from a textual knowledge corpus and used to process question–answer tasks.

T-NLG (Turing Natural Language Generation) is a Transformer-based generative
language model developed by the Microsoft Turing team. It is a type of generative language
model [52]. Using its 17B learned parameters (78 transformer layers with a hidden size of
4256 and 28 attention heads), T-NLG can generate words to perform open-ended textual
tasks, enhancing incomplete sentences, producing answers to questions and summarizing
documents. In a nutshell, the goal is to answer as correctly and smoothly as possible, as
humans are capable of doing in any particular situation. T-NLG was the biggest model
ever issued (in early 2020). This research would not have been possible without the use of
the DeepSpeed library and the ZeRO optimizer.

ELECTRA is an acronym that stands for “Efficiently Learning an Encoder that Classi-
fies Token Replacements Accurately” [53]. ELECTRA uses a new pretraining task, called
“replaced token detection” (RTD), to train a bidirectional model (similar to a masked lan-
guage model (MLM)) that learns from all input positions (like a LM). Instead of training
a model to recover masked tokens “[MASK]” such as BERT, ELECTRA trains a discrimina-
tor model to distinguish between “real” and “fake” input tokens (corrupted tokens were
replaced by a generator network: GANs).

TAPAS: Weakly Supervised Table Parsing via Pre-training, is a BERT-like transformer
model using just raw tables and their related texts [54]. More precisely, it was pretrained
with two particular objectives: Masked Language Model (MLM) and Intermediate pre-
training to predict (classify) whether a sentence is supported or refuted by the contents of
a table. In this manner, the model learns an inner representation of the English language
used in tables and associated texts, which can then be used to extract features useful for
downstream tasks such as answering questions about a table or determining whether
a sentence is entailed or refuted by the contents of a table. To fine-tune the pre-trained
model, one or more classification heads were added.

LongFormer model (The Long-Document Transformer) was proposed by Allen AI [55].
Previous models had a significant disadvantage in that they could not handle longer
sequences (e.g., BERT, which is limited to a max of 512 tokens at a time). LongFormer is
suggested to overcome these long sequence issues. Self-attention computing is reformulated
in this transformer-based design in order to decrease model complexity. The long-former
model is better than the Transformer-XL model and better than RoBERTa when it comes to
long document tasks.

MPNet (Masked and Permuted Pre-training for Language Understanding) [56] is
a revolutionary pre-training approach that retains the strengths of BERT and XLNet while
avoiding the drawbacks (limitations of Masked Language Modeling in BERT and Permuted
Language Modeling in XLNet), achieving a better level of accuracy.

RAG, short of Retrieval-augmented generation [57], models combine the capabilities
of pre-trained dense retrieval (Facebook AI’s DPR system) with seq2seq (BART model)
generator models to produce a more powerful model. These models perform well on QA
tasks and language generation tasks.

GPT-3, an autoregressive model, developed by researchers at OpenAI [10]. About
3 trillion words were utilized to train GPT-3, including data from the Common Crawl
corpus, as well as data from the web, books, and Wikipedia. In GPT-3, there are 175 billion
parameters. There are ten times more parameters than the MT-NLG language model and
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100 times more parameters than GPT-2. GPT-3 performs effectively in downstream NLP
tasks under zero-shot and few-shot settings due to the huge number of parameters and
large dataset training.

DeBERTa (Decoding-enhanced BERT with disentangled attention) was pre-trained
on vast volumes of raw text using self-supervised learning [58]. As with previous PLMs,
the goal of DeBERTa is to provide generic representations of language that may be used
in a variety of downstream NLU applications. With the help of three advanced techniques,
DeBERTa enhances SOTA PLMs (including BERT, RoBERTa, and UniLM). These techniques
are a disentangled attention mechanism, an improved mask decoder, and a fine-tuning
virtual adversarial training method.

MARGE is a seq2seq model that has been trained with an unsupervised paraphrasing
objective as an alternative to the MLM objective [59]. With a little fine-tuning, this leads
to very good results on a wide range of discriminative and generative tasks in a lot of
different languages.

GShared: introduced in “Scaling Giant Models with Conditional Computation and
Automatic Sharding” [60]. Gshared (a sequence-to-sequence Transformer model with
600B parameters) attempts to improve the training efficiency of large-scale models using
sparsely-gated Mixture-of-Experts (MoE) layers. The Gshared model aids in scaling up
multilingual neural machine translation.

MT5 by Google [61] is a variation of T5 (multilingual T5). It is a massively multilingual,
pretrained text-to-text transformer model. MT5 is trained in a unsupervised manner
on the mC4 corpus [61] following a similar way as T5. MT5 supports a total of 101
languages. MT5 demonstrated that the T5 recipe is easily adaptable to a multilingual
environment and achieved strong performance on a diverse set of benchmarks.

KEPLER is an acronym for Knowledge Embedding (KE) and Pre-trained LanguagE
Representation [62], and it is used to enhance the integration of factual knowledge into
PLMs as well as to develop effective text-enhanced KE with strong PLMs. Experimental
results show that KEPLER achieves state-of-the-art performances on various NLP tasks
and also works remarkably well as an inductive KE model on knowledge graphs (KG) link
prediction. The authors also built Wikidata5M for pretraining and evaluation. KEPLER
does well as an inductive KE model when it comes to predicting KG links. It also does well
on different NLP tasks.

XLM-E [63], released by Microsoft, is an across-lingual language model that has
been pre-trained by ELECTRA-style tasks [53]. It is pretrained with the masked LM,
translation LM, multilingual replaced token detection (MRTD), and translation placed
token detection (TRTD). The XLM-E model beats the baseline models on a variety of
cross-lingual comprehension tests while consuming significantly less computing time
than the baseline models. Furthermore, the results of the investigation reveal that XLM-E
has a higher likelihood of achieving superior cross-lingual transferability.

The Megatron-Turing NLG (MT-NLG) pre-trained language model, a joint effort from
NVIDIA and Microsoft, has 530 billion paremeters [64]. It is trained using Megatron and
DeepSpeed on DGX SuperPod. In comparison to the existing largest model, it has three
times the number of parameters as the current biggest model of this type (Turing-NLG 17B
and Megatron-LM). In zero-, one-, and few-shot situations, the 105-layer transformer-based
MT-NLG outperformed previous state-of-the-art models and established a new benchmark
for large-scale language models in both model scale and quality across a wide range of
natural language tasks (e.g., completion prediction, reading comprehension, commonsense
reasoning, NL inferences, and word sense disambiguation).

T0: Multitask Prompted training Enables Zero-Shot Task Generalization [65]. It is
a variation of the T5 encoder–decoder model that receives textual inputs and generates
target answers. It is trained on a multitask combination of natural language processing
datasets that have been divided into distinct tasks. Each dataset has numerous prompt
templates that are used to structure example instances as input/target pairs. After training
on a varied set of tasks, the T0 model is evaluated on zero-shot generalization to previously
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unseen tasks. This method is an excellent alternative to unsupervised language model
pretraining since it allows the T0 model to achieve exceptional zero-shot performance on
numerous standard datasets and outperform models many times its size.

KnGPT2 [66] is a compressed version of GPT-2 using Kronecker decomposition fol-
lowed by an extremely little pre-training on a tiny percentage of the training data with
intermediate layer knowledge distillation (ILKD). A comparison of KnGPT2’s performance
on benchmark tasks for language modeling and the General Language Understanding
Evaluation reveals that it outperforms its competitor (DistilGPT2).

GLaM (Generalist Language Model), is a series of language models from Google AI [67].
The largest GLaM has 1.2 trillion parameters (7× larger than GPT-3). GaLM scales model
capacity via a sparsely active mixture-of-experts (MoE) architecture, resulting in better
overall zero-shot and one-shot performance across 29 natural language processing tasks.

Gopher: DeepMind trained a series of transformer language models of various sizes,
spanning from 44 million parameters to 280 billion parameters. The goal is to identify
which model size (scale) substantially enhances performance the most (the largest model
named Gopher [68]).

XGLM is a multilingual language models [69] developed by Meta AI. It is trained
using a large-scale multilingual dataset with tokens from 30 different languages, for a total
of 500 billion tokens. XGLM largest release has 7.5B parameters. It is demonstrated that
XGLM7.5B outperforms a GPT-3 model of equivalent size (6.7B parameters), especially
in the less-resourced languages. A variety of reasoning and natural language inference
tests show that XGLM7.5B has high zero and few-shot learning capabilities.

LaMDA is a family of neural language models based on transformers that are op-
timized for dialog applications [70]. It contains around 137B parameters and has been
pre-trained on 1.56T words of public conversation data and online content. Quality, safety,
and groundedness are the three main factors (metrics) used to evaluate LaMDA. Their
findings indicate that model scaling enhances the quality (sensibility, specificity, and inter-
estingness), safety, and groundedness metrics to some extent. On the other hand, combining
scaling with fine-tuning yields significant gains in performance on all metrics.

GPT-NeoX-20B, a collaborative initiative between EleutherAI and CoreWeave in early
2022 [11]. According to its architecture, it is an autoregressive transformer decoder model
that was developed in the same manner as the Generative Pre-trained Transformer 3 (GPT-3).
With its 20 billion parameters trained on a curated dataset of 825 GB named the Pile [71],
EleutherAI aims to make GPT-NeoX-20B the largest publicly available pretrained general-
purpose autoregressive LM. An evaluation of the model was performed using Gao et al. [71],
an open source codebase for language model evaluation, which includes a variety of model APIs.
GPT-NeoX-20B excelled in knowledge-based and mathematical tasks.

Chinchilla (70B Parameter), DeepMind’s new pre-trained language model, contributes
to the development of an effective training paradigm for large auto-regressive language
models with low computational complexity [72]. In order to determine the optimal model
size and training length, three techniques have been presented: experimenting with differ-
ent model sizes and training token numbers, as well as IsoFLOP profiles and parametric
loss functions to fit a model. Chinchilla significantly outperforms Gopher (280B), GPT-3
(175B), and Megatron-Turing NLG (530B).

PaLM: is a Pathways Language Model recently unveiled by Google AI [73]. It is
a 540-billion parameter transformer language model trained using Pathways. Pathways
is a novel ML approach recently presented by Barham et al. [74]. It enables extremely
efficient training of very large neural networks. This pre-trained language model showcases
the impact of scale in the context of few-shot learning.

OPT: Open Pre-trained Transformer Language Models [75]. Proposed by Meta AI, it is
a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters.
OPT-175B is trained on public datasets (CCNewsV2, a subset of the Pile, PushShift.io
Reddit, etc.). Results show that OPT-175B (96 layers, 96 attention heads, 12,288 embedding
size, 2M global battch size) performance is comparable to OpenAI’s GPT-3, while requiring
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only 1/7th of the carbon footprint to develop. To enable researchers to study the effect
of scale alone, Meta AI released a smaller-scale baseline models (125M, 350M, 1.3B, 2.7B,
13B, 30B), trained on the same dataset and using similar settings as OPT-175B (weight
initialization: Megatron-LM, optimizer: AdamW, and a dropout of 0.1 throughout).

3.2. Summary and Comparison

Recent breakthroughs in neural architectures, such as the Transformer, coupled with
the increased availability of large-scale datasets, have revolutionized the field of large
language models. This advanced the state-of-the-art in a variety of NLP tasks and increased
the use of PLMs (BERT, GPT-3, XLNet, GPT-NEO, T5, etc.) in production contexts. Different
architectures with different settings have been proposed. Table 1 lists the settings for
training selected pre-trained language models.

Table 1. Model architecture details in terms of number of layers, number of attention heads,
dimension of contextual embedding and trained parameters.

Model Layers Attention Heads CE Dimension Parameters

GPT 12 12 768 117M
BERT-Large 24 16 1024 340M
GPT-2-1.5B 48 12 1600 1.5B
RoBERTa 24 16 1024 355M

DistilBERT-Base 6 12 768 66M
ALBERT-Base 12 12 768 12M

ALBERT-Large 24 16 1024 18M
XLNet 24 16 1024 340M

ELECTRA 24 16 1024 335M
Megatron-LM 72 32 3072 8.3B

T5-11B 24 128 1024 11B
CTRL 48 16 1280 1.63B

Longformer-Large 24 16 1024 435M
Pegasus 16 16 1024 568M

Turing-NLG 78 28 4256 17.2B
OPT-125M 12 12 768 125M
OPT-175B 96 96 12,288 175B

As previously stated, the availability of public datasets has risen in recent years.
As a result, the size of PLMs training datasets increased. Table 2 contains an overview of
selected PLMs. We have provided all of the datasets used for training, including (Wikipedia,
the Pile, Common Crawl, etc.) of selected language models.

Table 2. Summary of major datasets used in pre-training language models.

Name Lab Param. Dataset Sources Data Size

Megatron
MT-NLG

NVIDIA and
Microsoft 530B

The Pile v1 + more:
OpenWebText2 (Reddit links)
Stack Exchange and PubMed Abstracts
Wikipedia and Books3
Gutenberg (PG-19) and BookCorpus2
NIH ExPorter
Pile-CC
ArXiv, GitHub
Common Crawl 2020 and2021
+ RealNews (120 GB).
+ CC-Stories (31 GB).

>825 GB
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Table 2. Cont.

Name Lab Param. Dataset Sources Data Size

GPT-2 Open AI 1.5B WebText (40 GB) 40 GB

BERT Google 345M BooksCorpus [4] 800M words
Wikipedia 2500M
English Wikipedia (12 GB)
+ BookCorpus (4 GB).

16 GB

Megatron-11B FAIR 11B English Wikipedia (12 GB)
+ BookCorpus (4 GB)
+ CC-News(76 GB).
+ OpenWebText/Reddit upvoted (38 GB).
+ Stories CC (31 GB).

161 GB

RoBERTa.-Base Facebook AI and
Univ. of Wash. 125M English Wikipedia (12 GB)

+ BookCorpus (4 GB)
+ CC-News (76 GB).
+ OpenWebText/Reddit (38 GB).
+ Stories CC (31 GB).

161 GB

Megatron-LM NVIDIA 8.3B Wikipedia and OpenWebText
RealNews
+ CC-Stories.

174 GB

Fairseq. Meta AI 13B
English Wikipedia (12 GB)
+ BookCorpus (4 GB)
+ CC-News (76 GB).
+ OpenWebText/Reddit upvoted (38 GB).
+ Stories, 1M story documents from the CC (31 GB).
+ English CC100 (292 GB).

453 GB

GPT-3 Open-AI 175B Wikipedia
Books and Journals
Common Crawl (filtered)
WebText2 and Others.

45 TB

OPT-175 Meta AI 175B
BookCorpus and CC-Stories
ThePile:
+ Pile-CC + USPTO
+ OpenWebText2 + Project Gutenberg
+ OpenSubtitles + Wikipedia
+ DMMathematics
+ HackerNews– Pushshift.io
Reddit dataset + CCNewsV2
CommonCrawl News dataset

800 GB

At the end of this section, we presented a full list of the current state-of-the-art of
key pre-trained language models. Table 3 provides a summary of the PLMs, architectures
and training parameters for each.
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Table 3. Summary of recent PLMs.

Year Resource (PLMs) Team Architecture Parameters

Mar-2018 ELMO AI2 Bi-directional LM 94M
Jun-2018 GPT OpenAI Transformer Dec. 117M
Oct-2018 BERT-base Google Transformer Enc. 110M
Oct-2018 BERT-large Google Transformer Enc. 340M
Jan-2019 Transformer-XL Google AI Transformer 257M
Jan-2019 XLM Facebook AI Transformer 570M
Feb-2019 GPT-2-large OpenAI Transformer Dec. 774M
Feb-2019 GPT-2-medium OpenAI Transformer Dec. 345M
Feb-2019 GPT-2-small OpenAI Transformer Dec. 124M
Feb-2019 GPT-2-XL OpenAI Transformer Dec. 1.5B
May-2019 UNILM Microsoft Transformer Enc. 340M
May-2019 MASS Microsoft Research Asia Transformer 120M
Jun-2019 XLNET Google Brain and CMU Transformer Enc. 340M
Jul-2019 ERNIE 2.0 Baidu Transformer Enc. 114M
Jul-2019 RoBERTa (base) Facebook AI Transformer Enc. 109M
Jul-2019 RoBERTa (large) Facebook AI Transformer Enc. 355M
Sep-2019 ALBERT-B Google and Toyota Transformer Enc. 12M
Sep-2019 ALBERT-L Google and Toyota Transformer Enc. 18M
Sep-2019 CTRL SalesForce Transformer 1.63B
Sep-2019 Megatron-LM Nvidia Seq2Seq 8.3B
Sep-2019 TinyBERT Huawei Transformer Enc. 14.5M
Oct-2019 BART Facebook Transformer 460M
Oct-2019 DistilBERT HuggingFace Transformer Enc. 66M
Oct-2019 DistilGPT2 HuggingFace Transformer Dec. 82M
Oct-2019 T5 Google Transformer 11B
Nov-2019 XLM-R (base) Facebook AI Transformer 270M
Nov-2019 XLM-R (large) Facebook AI Transformer 550M
Jan-2020 Reformer Google research Transformer 149M
Fev-2020 MT-DNN Microsoft Transformer 330M
Feb-2020 T-NLG Microsoft Transformer 17.2B
Mar-2020 ELECTRA Google Brain Transformer Enc. 335M
Apr-2020 Longformer (base) AllenAI Transformer Enc. 149M
Apr-2020 Longformer (large) AllenAI Transformer Enc. 435M
May-2020 GPT-3 OpenAI Transformer Dec. 175B
Jun-2020 DeBERTa (base) Microsoft Transformer Dec. 140M
Jun-2020 DeBERTa (large) Microsoft Transformer Dec. 400M
Jun-2020 DeBERTa (xlarge) Microsoft Transformer Dec. 750M
Jun-2020 DeBERTa (xlarge-v2) Microsoft Transformer Dec. 900M
Jun-2020 DeBERTa (xxlarge-v2) Microsoft Transformer Dec. 105B
Jun-2020 MARGE Facebook AI Seq2Seq 960M
Jun-2020 GShared Google Transformer 600B
Mar-2021 GPT-NEO EleutherAI Transformer Dec. 2.7B
Jun-2021 XLM-E Microsoft Transformer 279M
Oct-2021 MT-NLG Nvidia and Microsoft Transformer 530B
Oct-2021 T0 Researchers Transformer 11B
Dec-2021 GLaM Google AI Transformer 1.2 Trillion
Dec-2021 Gopher Google AI Transformer 280B
Dec-2021 XGLM Meta AI Transformer 7.5B
Jan-2022 LaMDA Google Transformer Dec. 137B
Feb-2022 GPT-NeoX-20B EleutherAI and CoreWeave Transformer Dec. 20B
Mar-2022 Chinchilla DeepMind Transformer 70B
Apr-2022 PaLM Google AI Transformer 540B
May-2022 OPT Meta AI Transformer Dec 175B
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4. PLMs Applications, Parameters, Objectives, and Compression Methods
4.1. PLMs Applications

With the recent advances in deep learning and the large number of pre-trained lan-
guage models, a wide range of NLP tasks can be solved efficiently. PLMs can be taken
advantage of by fine-tuning them for the task, prompting them to execute the intended task,
or reshaping the task as a text generation issue and applying PLMs to solve it appropriately.

• Fine-tuning: involves performing general-purpose pre-training with a large unla-
beled corpus, then adding an extra layer(s) for the specific task and further training
the model using a task-specific annotated dataset, starting from the pretrained back-
bone weights. PLMs are now being used to solve a wide range of NLP tasks (e.g.,
sentiment analysis, textual entailment, question answering, common sense reasoning,
translation, summarization, named entity recognition [8,24–26], stance detection [76],
semantic keyphrase extraction [77], etc.);

• Prompt-based learning: reducing an NLP challenge to a task comparable to the PLM’s
pre-training objective (e.g., word prediction, textual entailment, classification, etc.).
Few-shot/one-shot/zero-shot approaches can be achieved with prompting since they
can better utilize the knowledge stored in PLMs [78,79];

• Text generation: reducing an NLP challenge to a text generation task in order to
exploit knowledge encoded in generative language models such as GPT-3 [31], T5 [46],
and GPT-Neox-20B [11].

4.2. PLMs Parameters

PLMs have advanced rapidly in recent years due to the availability of large-scale
computers and datasets. At the same time, recent research has demonstrated that large
language models are excellent few-shot learners, achieving high accuracy on a wide range
of NLP datasets. As a result, the number of cutting-edge NLP models has increased at
an exponential rate (e.g., T5: 11B parameters, GPT-3: 175B parameters, LaMDA: 137B
parameters, MT-NLG: 530B parameters, GShard: 600B parameters, etc.). Figure 3 shows
some of the most popular large pre-trained language models.

Figure 3. PLMs vs trained parameters (log parameter).

4.3. Compression Methods

State-of-the-art PLMs are often made up of millions or even billions of parameters.
This requires a substantial amount of memory and compute (GPUs and TPUs infrastruc-
ture). The topic of model compression emerges as a result of the obvious need to minimize
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the size and complexity of neural networks for deployment. Variant strategies have been
used to compress models and determine the ideal mix of model sizes versus accuracy.
Pruning [80] (weights, neurons, heads and layers, blocks), quantization, knowledge dis-
tillation [81–84] (DistilBERT, TinyBERT), parameter sharing (ALBERT), matrix (tensor)
decomposition, weight squeezing [85], and dynamic inference acceleration are among
the emerged techniques. For further information, please see details here [86,87].

5. Challenges, and Future Directions

Though PLMs have proven their power for various NLP tasks, challenges still exist
due to complexity of languages and the need of computation. In this section, we discuss
some challenges and expose future research directions.

5.1. More Data, More Parameters

Currently, PTMs have not yet reached their upper bounds. The introduction of the GPT-
3, or Megatron-Turing NLG, has proved that the more data a model is trained on, the better
the representations are at transferring to other NLP problems. We think that in the future,
big companies such as Nvidia, Google, and Open-AI will keep working on the huge model
as a research goal, but that it will be out of reach for most people.

5.2. Others Compression Alternatives

Model compression (in size and/or latency) has been widely adopted to obtain light-
weighted models without significantly diminished accuracy. There are a number of well-known
methods, including pruning, quantization, low-rank approximation, knowledge distillation,
and neural architecture search (NAS). This line of research should be looked into more deeply
to come up with powerful ways to make light-weight models from heavier ones.

5.3. New Architectures of PLMs

For pre-training purposes, the transformer has been shown to be a highly successful archi-
tectural solution in capturing contextualised representations and encode relations. The primary
restriction on the transformer, on the other hand, is the complexity of its computations.

Most transformer models are inefficient at processing long sequences. The limit is
derived from the transformer architecture’s positional embeddings, for which a maximum
length must be set (The magnitude of such a size is related to the amount of memory needed
to handle texts; most PLMs are trained to handle sequences up to 512 tokens). However,
the model is requested to analyze lengthier sequences for a variety of NLP tasks. The model
will only process 512 tokens at a time, truncating anything longer to be processed later or
in parallel (if memory allows. A Titan RTX with 24 GB of GPU RAM, for example, can
barely fit 24 samples of 512 tokens in length at the same time). This issue arises due to
the computation and memory complexity of the self-attention module: attention layers
scale quadratically with the sequence length, posing a problem with long texts. As a result,
the use of more GPUs and TPUs is compulsory in order to have enough memory to speed-
up training (Table 4). Large PLMs, such as GPT-3, T5, Megatron-LM, and Turing-NLG,
for example, require roughly 10,000 GPUs for training and may potentially cost tens of
millions of dollars (to my knowledge, exact numbers are not available).

To overcome this restriction, the transformer’s architecture must be improved in up-
coming PLMs. Moreover, it is critical to investigate more efficient non-transformer architec-
tures for PLMs.
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Table 4. Training parameters vs Training duration.

Model Comparison Number of Parameters Hardware Training Time

ELMo 94M P100 × 3 14 days
BERT-Base 110M 8 × V100 12 days

BERT-Large 340M 64 TPU Chips 4 days
RoBERTa-Large 340M 1024 × V100 1 day
DistlBERT-Base 66M 8 × V100 3.5 days
XLNET-Large 340M 512 TPU Chips 2.5 days
GPT-2-Large 570M TPUv3 × 32 7 days

5.4. Responsible Compute and GreenAI

In the field of PLMs, significant progress has been made. With the increased availability
of large-scale datasets (Wikipedia, the Pile, Common Crawl, etc.) and computational
capabilities (GPUs, TPUs), the energy consumed by large PLMs (GPT-3, Megatron-LM, T5,
GlaM, LaMDA, PaLM, etc.) is becoming a growing concern [88]. An empirical study [89] has
estimated the carbon footprint of several NLP models and concluded that this trend is both
environmentally unfriendly and prohibitively expensive [90]. To summarize, it is critical to
use data-centric techniques to make AI greener, more inclusive, and to democratize Green
AI [88–90].

6. Conclusions

This paper presents an overview of the recent advances achieved in pre-trained lan-
guage models for NLP. For the most part, we compiled a thorough list of current PLMs,
including their architectures, number of parameters, training data, training objectives, com-
pression methods, application strategies, etc. Additionally, we reviewed several challenges
and suggested several possible future research directions for PLMs.
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