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Abstract: Green communications have witnessed significant attention being paid to the next gen-
eration of wireless systems research and development. This is due to growing use of sensor- and
battery-oriented smart wireless devices. The related literature in green communications for next-
generation wireless systems majorly relies on transmission and sensing power management, but lacks
a fault-tolerant centric approach. In this context, this paper presents a fault-tolerant and reliable green
communications framework for next-generation wireless systems (FRGNWS). Firstly, maximum
node-disjoint routes from all source nodes to the base station are identified based on the hybrid
adapted grey wolf sine cosine optimizer. Secondly, a fault-tolerant and reliable route is selected from
the maximum disjoint routes for each sensor node to the base station based on the hybrid adapted
grey wolf whale optimizer. The performance of our proposed green communications framework
is assessed by simulation experiments considering a realistic implementation scenario and differ-
ent metrics. Simulation results clearly validate the efficacy of the proposed green communications
framework as compared to the state-of-the-art techniques.

Keywords: green communication; wireless sensor network; energy harvesting; whale optimization
algorithm; grey wolf optimization; sine cosine optimization

1. Introduction

The excellent advancements in the field of IoT help in applying the latest smart
technologies of wireless communications towards agriculture, grids, smart homes, smart
industry revolution, military, etc. Currently, researchers are focusing on designing optimal
energy-efficient wireless sensor networks (WSNs) consisting of a large number of tiny
sensor nodes for monitoring/sensing/detecting particular events, which are operated
primarily by limited-capacity batteries [1]. Tiny sensor nodes (SNs) are also known by
the name source nodes (SNs). The main applications of WSNs typically occur in very
harsh environments and due to these circumstances, the battery of SNs drains out very
fast. Therefore, the main reason for node failure in WSNs is due to their deployment in a
harsh environment [2]. Energy harvesting (EH) is the prominent solution for providing an
alternative source of energy to tiny nodes for resolving energy issues but sometimes fluctu-
ations occur in harvested energy due to environmental conditions and energy optimization
again needed for effective utilization in this case [3]. The concept of duty cycle (DC) is also
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used for energy efficiency but in the case of an energy-harvesting wireless sensor network
(EH-WSN), the SNs require a heterogeneous and dynamic DC [4].

Whenever a specific SN involved in routing a data packet to base station (BS) becomes
dead, then this data packet is unable to reach the BS and other SNs are selected to route this
data packet to the BS; now, these other SNs are taking extra load and their battery is more
likely to deplete fast due to the overloaded mechanism and thereby a greater number of SNs
becomes dead. Further, this situation creates multiple network partitions [5]. A disjointed,
partitioned network may be created due to this type of inherent limitation of EH-WSN. In
general terms, this situation is termed as the problem of disjointed networks. If the network
partition condition arises, then, in this case, the communication mechanism happens only
between the SN and those other SNs that belong to that specific respective partition only; for
the remaining part of the network, they are totally cut off [6]. For resolving this condition
and maintaining effective connectivity in the partitioned network, we require the placing
of a special type of node, called a relay node (RN) [7]. Further, they may be different from
traditional SNs in terms of the power of the battery, having the capability of movement,
etc.; also, their uniqueness lies in the fact that, first, they collect data packets from the
SNs, and then they forward the data packets to neighboring RNs, and in this way data
packets finally reach the sink node [8]. Relay nodes contribute towards enhancing the
network life span since they relive the overloaded SNs by distributing their loads [9].
The only limitation in deploying relay nodes is related to increments in the budget of the
network since they may be costly compared with traditional SNs. The relay nodes (RNs)
can be placed by using two approaches, namely, the random approach or pre-determined
approach [10]. The pure random approach is relatively complex since it requires distributed
algorithms as well as a routing framework with self-organizing capabilities [11]. It should
be noted that a controlled random approach with non-uniform nature is the best solution
for the deployment of relay nodes (RNs) [12]. Therefore, for optimal performance with
cost-effectiveness for the EH-WSN, we should place the minimum number of relay nodes
at appropriate optimal positions. Again, this requirement forms the NP-hard problem,
where the relay node optimization problem is having a discrete type nature and a discrete
solution is needed for this NP-hard problem [13].

Next, fault-tolerant routing with awareness of the quality of routing is the only solution
for the optimal performance of EH-WSN. Towards enabling fault-tolerant routing, the first
step is to establish the multi-node/link disjoint routes, comparing these with the previous
route as well as all other alternative routes. In this mechanism, the failure in the previous
route due to the breakdown of any or all nodes/links has no impact on the alternative
routes; this since, in the energy-harvesting environment, the time-varying, unstable, and
random nature of harvested energy may compel the nodes to fail. Furthermore, due to this
random nature of harvested energy, the nodes’ lifecycle frequently switches between alive
and dead, which results in dynamic changes in the quality of the routing. The designing
of effective fault-tolerant routing in EH-WSN is a hard nut to track since it constitutes the
NP-complete problem.

For providing faut tolerant routing, a few research articles recently were published;
e.g., Belkadi et al. [14] proposed a fault-tolerant routing scheme utilizing clustering for
WSN; Abdulrab et al. [15] presented a multipath routing model with features such as
increased reliability, minimum latency, and cost-effectiveness. In the proposed model, there
exists a backup node in each route. The backup node is responsible for storing the data
from the parent node for maintaining the continuity in case of failure. Hao et al. [16] also
proposed an energy-efficient routing scheme based on a greedy strategy. In the proposed
scheme, an energy evaluation model is constructed first for identifying the energy state
of the node. Further, a range judgment framework was designed, and these two schemes
were combined for designing a reception state adjustment scheme.

Researchers are using various techniques based on approximations, heuristics, etc.,
for providing the appropriate solution for the relay node optimization problem, as well
as to solve the NP-complete problem of fault-tolerant routing in EH-WSN. Metaheuristics
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are used currently for providing the solution to these non-deterministic polynomial time
(NP)-hard and NP-complete optimization problems, respectively. The major reason for
using metaheuristics for solving these problems is that these frameworks are efficient
in handling NP-hard as well as NP-complete optimization problems, having non-linear
characteristics. As compared with heuristic algorithms, metaheuristic algorithms have
added advantages since metaheuristic algorithms are intelligent enough and also have
adaptability features; in turn, heuristic algorithms are mainly problem dependent. The
two main pillars of stochastic algorithms are a deterministic component and a random
component. Further, the local optimum can be found by a deterministic component, on the
other hand, with the help of a random component; metaheuristic algorithms also can adopt
various forms by considering random walk and random sampling.

In this research article, a novel framework is proposed, namely, a framework en-
abling fault-tolerant and reliable green communication in next-generation wireless systems
(FRGNWS), considering a single-tiered EH-WSN with constrained RNs deployment. The
proposed novel framework consists of two phases. In the first phase of the proposed
novel framework, maximum node-disjoint routes from all SNs to BS using minimum RNs
are explored based on a hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO)
framework, the HA-GWSCO framework also discovers k-node-disjoint routes from each
SN to BS with k ≥ 2, which enhances the fault tolerance capability in EH-WSN. In the
second phase of the proposed novel framework, out of the k-node-disjoint routes from
each SN to BS with k ≥ 2, the best appropriate reliable route is selected for routing, which
enhances the reliability in routing for EH-WSN based on the hybrid adapted grey wolf
whale optimizer (HA-GWWO).

The salient contributions of this proposed novel research are listed below in a point-
wise fashion.

1. The proposed novel research effectively handles both the NP-hard (relay node op-
timization) as well as NP-complete (fault-tolerant reliable routing) problems, chal-
lenging optimization problems simultaneously in EH-WSN. This salient feature of the
proposed novel research distinguishes it from other existing literature.

2. The first phase of the proposed novel framework (FRGNWS) is dedicated for exploring
the maximum approximate number of node-disjoint routes from all SNs to BS utilizing
the least number of RNs in EH-WSNs based on the hybrid adapted grey wolf sine
cosine optimizer (HA-GWSCO).

3. The first phase of the proposed novel framework (FRGNWS) also provides a novel
approach for discovering k-node-disjoint routes from each SN to BS with k ≥ 2 in
EH-WSN.

4. The second phase of the proposed novel framework (FRGNWS) is dedicated for
finding the best appropriate reliable route from each SN to BS out of the available
k-node-disjoint routes from each SN to BS in EH-WSN based on the hybrid adapted
grey wolf whale optimizer (HA-GWWO).

5. To assess the effectiveness of the proposed novel framework in EH-WSN, we have
considered five metrics, namely, the energy consumption, lifetime of the network,
throughput, delay, and delivery ratio, and analyzed the results by comparing the
proposed novel framework with other metaheuristic frameworks. The simulation
results attest to the claim that the performance of the proposed novel framework is
optimal, and this approach can be adopted for enhancing the capability towards fault
tolerance and reliable green communication in next-generation WSN.

The proposed novel research article is organized into six sections. The research article
is introduced in Section 1; this section briefly narrates the various details, including the
salient contributions, of this research article. Next, all similar works from the literature
are illustrated in Section 2; this section is named Related Works. Further, the proposed
novel research is well explained in Section 3; this section describes both the phases of the
proposed novel framework in detail, and is named The Proposed Approach. The validation
of the effectiveness of the proposed novel framework is carried out in Section 4; this section
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analyzes and explains the evaluated results and is named Results and Discussion. Finally,
in Section 5, a summary of the proposed novel framework is provided, with future research
directions, and this section is named Conclusions.

2. Related Work

There are two types of relay node placement strategies for EH-WSNs, namely, con-
strained and unconstrained approaches. The constrained approach sets specific objectives,
namely, enhancing the network life, improving the coverage, and specific location restric-
tions, etc. The unconstrained approach for relay node placement focuses on generalized
objectives such as connectivity and fault tolerance in EH-WSN. We will first discuss the
unconstrained strategies for relay node placement. The objective of fault tolerance in single-
tiered (ST) as well as two-tiered (TT) EH-WSNs can be achieved by providing k-connectivity
with k ≥ 2. Further, if k = 1, then ultimate objective is internode reachability, with a focus
on generating fully connected EH-WSN. Next, Lloyd et al. [17] have presented an M1tRNP
scheme, which is known as the minimum 1-tiered relay node placement scheme. For
single-tiered (ST), the proposed scheme utilized polynomial-time 7-approximation and on
the other hand for two-tiered networks, 5 + ε (ε > 0). Here, Kruskal’s algorithm is used for
constructing the MST. The sensing radius of the relay nodes is utilized for placing the RNs
on the edges of the tree.

Liu et al. [18] proposed an approximation framework for one connected network with
polynomial time (6 + ε) and two connected networks with (24 + ε). The Steiner minimum tree
is utilized for determining the minimum number of RNs, covering the entire set of SNs for
one connected network. Next, the scheme is further extended for two connected networks;
here, extra relay nodes are deployed for each relay node in one connected network. Next, we
will discuss the constrained strategies for relay node placement. Xu et al. [19] have addressed
the objective of reducing the cost of a network with improvement in network life span. This
problem is NP-hard, also known as the minimum set covering problem. In the proposed
recursive scheme, the divide and conquer strategy is utilized. In the proposed scheme, the relay
nodes are deployed in the locations where the SNs’ ranges intersect. In [19], the focus is on
deploying the minimum number of relay nodes for a two-tiered architecture with the objective
of achieving the load balancing. The locations are identified where ranges of relay nodes
intersect for extra relay node deployment and the focus is on achieving k-connectivity. Next,
there are four classifications of relay node optimization strategies, namely, algorithm-based
frameworks, approximation algorithm-based frameworks, frameworks based on heuristics,
and frameworks based on metaheuristics. We will illustrate each strategy one by one starting
from algorithm-based frameworks.

Senturk et al. [20] have proposed two efficient frameworks for the positioning of the
distributed RNs. These two frameworks are aimed at reducing the cost of movement of
the RNs for guaranteed recovery of the network. The first proposed framework focused
on the movements of RNs based on virtual force on the other hand the second proposed
framework utilized the concept of Game Theory among the partitions of the network. Next,
Chang et al. [21] have proposed an efficient framework for jigsaw-based placement of RNs
for indoor WSNs. They aimed at constructing the WSNs, with the minimum number of RNs
and SNs in an indoor space with obstructions. Further, Nitesh et al. [22] have proposed an
enhanced framework for the placement of RNs. They aimed at optimizing the overall cost
by utilizing the least possible RNs. The enhanced framework ensures optimal k-coverage
and s-connectivity with respect to SNs and RNs within the network. The next paragraph will
illustrate the approximation algorithm-based frameworks for relay node optimization.

Mishra et al. [23] have conducted extensive studies for the constrained RN placement
problem (CRNPP) with prior knowledge for candidate locations regarding the potential of
energy harvesting. Further, they have presented the NP-hard problems of connectivity and
survivability in EH-WSNs. They aimed at achieving connectivity or survivability in EH-
WSNs by utilizing the least number of RNs. Next, they proposed the polynomial-time O(1)-
approximation frameworks for solving NP-hard problems of connectivity and survivability
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in EH-WSNs. The proposed approximation frameworks are having low approximation
ratios. Next, Ma et al. [24] have presented an efficient local search approximation framework
for providing the solution to the problem of a RN single cover. The proposed connectivity-
aware approximation framework for the placement of RNs aimed at reducing the system
overhead. Further, Liu et al. [25] have conducted studies for the RN placement problem.
They aimed at achieving the optimal connectivity in ST-WSN by deploying the least possible
RNs. First, they construct the neighbor components by utilizing the Voronoi Graph and
Delaunay Triangle. Next, they utilized the Steiner heuristic with the Spanning tree for
optimizing the placement algorithm. In the latter, all these components are combined for
maintaining effective connectivity. The next paragraph will illustrate the heuristics-based
frameworks for relay node optimization.

Han et al. [26] have proposed frameworks for maximizing the fault tolerance in ST-
WSNs. In the proposed frameworks they assumed sensors having different ranges. Next,
Misra et al. [27] have proposed an efficient framework for achieving effective connectivity
in ST-EH-WSNs. They aimed at deploying the least possible RNs at a subspace of candidate
areas. Further, the constrained deployment RNs constitute the constrained RN placement
problem. Further, Nigam et al. [28] have proposed an efficient framework for deploying
the least possible RNs in ST-WSNs known as the branch-and-cut framework. In the
proposed framework, they assumed a bound of predefined delay in between the SNs and
BS. Furthermore, Izadi et al. [29] have proposed an effective coverage scheme for mobile
SNs in ST-WSNs, which are randomly deployed. The proposed effective self-healing
coverage scheme is based on fuzzy logic. The proposed effective scheme is aimed at
reducing the coverage hole. First, the proposed effective coverage scheme explores the
uncovered areas of the sensing. In the next step, the coverage hole issue is effectively
handled by selecting the best mobile SNs. Besides, Sitanayah et al. [30] have proposed dual
efficient frameworks known as Greedy-MSP and GRASP-MSP for providing the solution to
placement problems related to multiple sinks. Further, the two proposed frameworks are
also used for providing the solution to the problem of RNs’ deployment, with the ultimate
aim of reducing the cost of deployment. Next, the proposed frameworks assure the double-
coverage of each SN. Moreover, Bagaa et al. [31] have proposed an efficient framework for
providing the solution to constrained RN placement problems in ST-WSNs by effectively
handling the deployment of RNs in ST-WSNs. The proposed framework aimed at reducing
the outage probabilities during the construction of the routing tree with the addition of the
least possible RNs for effective connectivity. Also, Djenouri et al. [32] have proposed an
effective heuristic scheme for enhancing the life of the network. The proposed effective
heuristic scheme provides the solution to the constrained RN placement problem. In the
proposed heuristic scheme, the life of the network in ST, as well as TT-WSNs, has been
significantly enhanced with the deployment of extra SNs and RNs. The next paragraph
will illustrate the frameworks based on metaheuristics for relay node optimization.

Zhao et al. [33] have conducted extensive studies for understanding the problem of
optimal deployment. They proposed the framework utilizing the particle swarm algorithm
for integer planning. In the proposed framework, the relay nodes are deployed optimally
and therefore the proposed framework achieves significant energy efficiency in ST-WSNs
by reducing the average length of the route. Next, Perez et al. [34] have proposed a multi-
objective model in ST-WSNs. The proposed multiobjective model focused on optimizing
the RNs as well as energy dissipation simultaneously. Further, they proposed a hybrid
evolutionary framework consisting of two local searches for providing a solution to the
constrained RN placement problem. Further, Gupta et al. [35] have proposed excellent
dual frameworks for RN placement. The proposed frameworks provide k-connectivity
of the SNs. In the proposed dual frameworks, the Genetic Algorithm (GA) is utilized
in the first framework while the greedy approach is used in the second proposed frame-
work. Furthermore, George et al. [36] have proposed an optimal framework utilizing a
modified genetic algorithm for the placement of RNs in ST-WSNs. In this constrained RN
placement approach, the proposed framework aimed at deploying the least possible RNs
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with effective connectivity. Further, the proposed framework assures fault tolerance in
ST-WSNs. Besides, Yu et al. [37] have conducted extensive studies for optimal deployment
of RNs in ST-WSNs. They focused on optimizing the two important metrics, namely, the
average consumption of energy as well as average reliability of the network simultaneously.
They utilized three metaheuristics, such as Archive-Based hYbrid Scatter Search, Particle
Swarm, and Non-dominated Sorting Genetic Algorithm, for addressing this multiobjective
optimization problem. The metaheuristics that are utilized employ varied evolutional
policies. Moreover, Ma et al. [38] have proposed an efficient RN placement framework. The
proposed framework supports network reconfiguration. The proposed framework is based
on Differential Evolution (DE)-based algorithms. Further, the proposed framework assures
a deterministic approximation ratio along with tight time complexity. Rao et al. [39] also
have proposed an optimal RN placement framework that is based on the multiobjective
Firefly Algorithm. The proposed framework aimed at deploying the least possible RNs
with consideration of three constraints, namely, energy, connectivity, and coverage.

Few articles recently have been published for contributing towards fault-tolerant
routing: Chanak et al. [40] proposed a fault-tolerance routing framework for improving the
QoS in WSNs. In the proposed scheme, faulty nodes are identified, and partial faulty nodes
are used to handle the faults in WSN. Sharad et al. [41] presented a multipath fault-tolerant
routing framework utilizing clustering for WSN. In the proposed framework, an enhanced
version of elephant herding optimization is proposed for selecting the multiple routes.
Next, Gurupriya et al. [42] proposed a multipath fault-tolerant routing framework for WSN.
In the proposed framework, clustering is performed by using a modified teaching–learning
optimization scheme. Further, pigeon optimization based on a nonlinear regression is used
for computing the backup node for increasing the fault tolerance. Finally, the optimal path
was calculated using a deep Kronecker neural network. Furthermore, Mansour et al. [43]
presented a fault-tolerant routing scheme in WSN. In the proposed scheme, clustering was
performed using moth flame optimization. Further, the optimal routes were selected using
social spider optimization (SSO) in WSN.

Finally, we have selected two existing frameworks, namely, the artificial bee colony-
based framework and the genetic algorithm-based framework, to compare the effectiveness
of our proposed framework (FRGNWS) against them. In the next paragraph, we briefly
provide the features of these two existing frameworks.

Hashim et al. [44] have proposed the framework for placing the RNs between CHs
and the sink. In the proposed framework, two phases exist, namely, first-phase RNs and
second-phase RNs. In the first phase of the proposed framework, known as first-phase
RNs, connections were established by RNs among the CHs and sink. Further, in the
second phase, extra RNs were deployed randomly and in a dense way for achieving the
desired connectivity level. In the second phase, the aim of the Artificial Bees Colony
(ABC) algorithm is to find the optimal location for further deployment of RNs. This
framework shows effectiveness, but there are few points that need to be highlighted, such
as the constraints, namely, the coverage, energy, and energy-harvesting environment have
not been considered in the proposed framework. Next, Gupta et al. [35] have proposed
a framework for providing k-connectivity of the SNs. They also proposed the Genetic
Algorithm (GA)-based framework for k-connectivity. However, GA is suffering from
the problem of convergence, and extra computational complexity is created to solve the
hierarchical problem.

3. Proposed Approach: Fault Tolerance and Reliable Green Communications in
Next-Generation Wireless Systems (FRGNWS)

In EH-WSNs, the routing framework should use some specific strategies, such as node-
disjoint routes with shorter route characteristics, for maintaining the QoS requirements in
high-traffic scenarios. In these scenarios, multipath routing is the best-suited alternative
compared with the single route between each SN and BS. Even with the multipath routing
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framework, there is a strict requirement of node-disjoint routes so that RN can serve in one
particular route and not others.

Node-disjoint routes in EH-WSNs possess two unique properties, namely, not having
any common SN nor link among all the detected routes. The main advantage of these
characteristics lies in the fact that failure of any SN or link in a group of these routes can
affect the particular route in that when a failure of any SN or link occurs the other routes
are not affected. The second advantage of node-disjoint routes in EH-WSNs is related to
maximizing aggregated network resources. These two advantages make node-disjoint
routes in EH-WSNs a preferred choice as compared with link-disjoint and partially disjoint
routes. Also, it should be noted that it is always a challenging task to explore the large set
of node-disjoint routes between SNs and BS since SNs are usually deployed randomly. On
the other hand, several common SNs may occur in link-disjoint routes but no shared link is
allowed between the routes is the main unique property of these types of routes. Therefore,
any SN failure in these types of routes may affect (deactivate) multiple routes, since a
failed SN may be shared with multiple routes. Furthermore, partially disjoint routes can be
easily constructed since these types of routes have multiple routes in which several links
or SNs between the distinct routes may be shared. Therefore, in these types of partially
disjoint routes, failure of any link or SN in a group of these routes may have an impact
on multiple other routes. For the performance requirements, the density of the network
for the particular application is the key factor in taking the best decision for selecting the
particular category of disjoint routes.

Furthermore, the minimum delay is another requirement for optimal performance
of EH-WSNs that can be achieved with the help of the shortest route, since it uses the
minimum hops. Further, the routing routes should be as short as possible in EH-WSNs
since shorter routing routes result in lower consumption of energy; also, packets delays are
always minimum in shorter routing routes, and consequently the lifetime of the network
as well as data-delivery ratio will be enhanced. In a multipath routing framework with
multiple sources, the density of the RNs should be high towards the BS side compared to
the SN side. Therefore, there is a need for careful selection of the distribution strategies
for RNs, as the most appropriate distribution strategy for RNs is a controlled random
distribution strategy with a non-uniform nature.

The proposed novel framework utilized three metaheuristic optimization algorithms,
namely grey wolf optimizer, sine cosine optimizer, and whale optimizer. It should be noted
that metaheuristic algorithms are considered a specific category of stochastic algorithms and
the unique features of these algorithms are that they are problem-independent techniques.
The names of the two pillars of stochastic algorithms are exploration or diversification,
and exploitation or intensification. Further, the exploration or diversification component
aims at exploring the search space while the exploitation or intensification component
aims at searching a near-optimal solution. These are the main powerful attributes of these
metaheuristic algorithms. There are three classifications of metaheuristics algorithms, such
as swarm intelligence algorithms, physics-based, and evolutionary algorithms. In the stage
of exploration, the complete solution space is covered by the search agents with the help of
their unique style of random walk. Next, at the stage of exploitation, a local search is carried
out with a focused approach for candidate position by covering only a particular part of the
solution space. There does not exist any predefined way in which these algorithms can work
and therefore their approach is similar to the black-box approach in which we do not have
awareness of the internal structure; instead, we give input and get output. Metaheuristic
algorithms such as Ant Colony Optimization (ACO), Moth Flame Optimization (MFO),
Interior Search Algorithm (ISA), Tabu Search (TS), Whale Optimization Algorithm (WOA),
Simulated Annealing (SA), Plant Propagation Algorithm, Genetic Algorithm (GA), Firefly
Algorithm, Grey Wolf Optimization (GWO), Cuttlefish Algorithm, Bat Algorithm, Particle
Swarm Optimization (PSO), Artificial Bee Colony (ABC), Cuckoo Search (CS), Sine Cosine
Algorithm (SCA), and Intelligent Weeds Optimization (IWO), etc., have a discrete nature,
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and therefore these metaheuristics algorithms are suitable for solving discrete-type NP-hard
as well as NP-complete optimization problems.

Next, Figure 1. illustrates the phases of the proposed novel framework with steps
taken in each phase. The proposed novel framework comprises two phases. In the first
phase of the proposed novel framework, maximum node-disjoint routes from all the SNs
to BS using minimum RNs are explored based on the hybrid adapted grey wolf sine
cosine optimizer (HA-GWSCO) framework, utilizing the properly designed efficient fitness
function, and this HA-GWSCO framework also discovers k-node-disjoint routes from each
SN to BS, with k ≥ 2, which enhances the fault-tolerance capability in EH-WSN. The first
phase starts by initializing the EH-WSN. Next, RNs are deployed by adopting the strategy
of a controlled random distribution with non-uniform nature. The efficient fitness function
is designed and then the hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO)
framework is applied. The output of this hybrid framework is the maximum number of
node-disjoint routes from all SNs to BS in EH-WSN using the least number of RNs and
k-node-disjoint routes from each SN to BS. This output is given as input to the second phase
of the proposed novel framework. The aim of the second phase is to discover the most
appropriate reliable route out of k-node-disjoint routes from each SN to BS. In the second
phase of the proposed novel framework, out of k-node-disjoint routes from each SN to BS,
with k ≥ 2, the most appropriate, reliable route is selected from each SN to BS for routing,
which enhances the reliability in routing for EH-WSN based on hybrid adapted grey wolf
whale optimizer (HA-GWWO). Utilizing a novel and efficient fitness function covering
multiple objective functions, the newly designed efficient fitness function consists of six
objective functions, namely, the remaining available energy of the SNs, the distance of the
edge, the energy consumption of the edge, delay in communication for the node, relay
hops, and also the reliability index.
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Figure 1. A proposed framework consisting of two phases.

3.1. System Modelling

There are various advantages to deploying the relay nodes between SNs in EH-
WSNs, namely, network life enhancement by reducing energy consumption, reduced
latency, optimal connectivity, optimal load distribution by relieving the overloaded SNs,
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etc. Further, optimal connectivity can be ensured by verifying the inter-node reachability,
particularly in the disjoint segments of the EH-WSNs. The ultimate aim of deploying the
relay nodes is to enable or improve the reachability in the EH-WSNs, where relay nodes
perform the designated task by relaying the data collected by the SNs. Next, we will discuss
the various components in the system model in pointwise fashion. Table 1 depicts the
various symbols used in the system modeling along with their descriptions.

Table 1. Symbols with descriptions.

SNset
It represents the set of SNs in EH−WSN where SNs stands for source nodes/sensor nodes and

SNset = {SN1, SN2, . . . . . . . . . SNc}

|SNset| The number of SNs in EH-WSN

RSNset The set of node-disjoint routes which are existing between all the SNs and BS.∣∣RSNset

∣∣ The number of node− disjoint routes in EH−WSN. Also,
∣∣RSNset

∣∣ = |SNset| ∗ k with k ≥ 2.

RNset It represents the set of relay nodes and RNset = {RN1, RN2, . . . , RNd), d < c

|RNset| The number of RNs in EH-WSN

SNi One of the sensor node/source node in SNset

BS Sink Node/Base Station in EH-WSN

RNCL A set representing candidate locations for RNs placement

Energymax
harvest Maximum harvested energy by the RN

WeightCL
RN It represents the weight of RN for a particular candidate location and CL ∈ RNCL

SNstate The state information of all the sensor nodes/source nodes in EH-WSN

Rset(SNi , BS) The set of all the node− disjoint routes between sensor node/source node SNi and BS∣∣∣Rset(SNi , BS)

∣∣∣ The number of node− disjoint routes between sensor node/source node SNi and BS and
∣∣∣Rset(SNi , BS)

∣∣∣ ≤ k

k k is an integer and k ≥ 2, node− disjoint routes between each sensor node/source node SNi and BS

Rj(SNi , BS) The jth node−
disjoint route between sensor node/source node SNi and BS and (1 ≤ i ≤ |SNset|), (1 ≤ j ≤ k)

SNe A sensor node in Rj(SNi , BS) and SNe ∈ Rj(SNi , BS)

l The direct edge between any two adjacent sensor nodes in Rj(SNi , BS) and l ∈ Rj(SNi , BS)

RN(BS) Base Station neighboring relay nodes

A(RN(BS)) The approximate number of base station neighboring relay nodes

RN(SNi)
Source Node/Sensor Node (SNi) neighboring relay nodes

A
(

RN(SNi)

)
The approximate number of source node/sensor node (SNi) neighboring relay nodes

CL Candidate Location

EnergyCL Energy harvested at particular candidate location

RangeSN Range of sensor node

RangeRN Range of relay node

CM(SNi , SNj)
Connectivity matrix between ith sensor node SNi and jth sensor node SNj

REAvl Remaining available energy

Energy_Consumptionl Energy

hop(Rj(SNi ,BS)) The hop counts in jth node− disjoint route between ith source node SNi and BS

hop(Rset(SNi , BS))
The hop counts in the set of all the node− disjoint routes between ith source node SNi and BS

delay(SNe) Delay in communication for the sensor node SNe, SNe ∈ Rj(SNi , BS)

delay(SN) Delay in communication for the sensor node SN, SN ∈ Rset(SNi , BS)

RI Reliability Index

Reliabilityl Link Reliability

BSRI Best Suitable Route Index
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The EH-WSN is deployed in a two-dimensional area and the single-tiered network
topology is considered for deploying EH-WSN. The collector node/sink node or base
station is placed at predetermined location in EH-WSN. The positions of the SNs are also
fixed in EH-WSN; we are trying to get the optimal locations by deploying the relay nodes.
Consider RNCL for representing the set of candidate locations for RN placement, and where
Energymax

harvest represents the maximum energy that RN can harvest. Further, we need to
find the weight of RN (WeightCL

RN) considering the particular candidate location (CL) for
optimal placement, as represented by Equation (1).

WeightCL
RN =

Energymax
harvest − EnergyCL

Energymax
harvest

+ 1 (1)

Here, CL ∈ RNCL, 0 ≤ EnergyCL ≤ Energymax
harvest, WeightCL

RN ∈ [1, 2], and EnergyCL

represent the energy harvested at the selected candidate location (CL)
The candidate locations having a higher potential for harvesting the energy should

have lower weights and these candidate locations are selected for optimal placement of
the RNs. Further, the collector node/sink node or base station is designated for accessing
the complete network information through a centralized mechanism, such as the node’s
position, executing the algorithm for finding the optimal locations of the relay nodes, etc.
The deployed EH-WSNs become disjoint after a certain period, and this situation can be
announced after analyzing the aggregate data collected at the BS. RangeSN , RangeRN are the
sensing range of the SN and RN, respectively, with the condition of RangeRN = 2∗ RangeSN .

Let SNset denote the set of SNs that are deployed in a two-dimensional area and
SNset = {SN1, SN2, . . . . . . . . . SNc}. Similarly, RNset represents the set of relay nodes and
RNset = {RN1, RN2, . . . , RNd) that are required for maintaining effective connectivity in
the EH-WSN, with c > d.

The Euclidean distance (euclidean_distance) between the two sensor nodes (SNi, SNj)
can be calculated by using the following equation:

euclidean_distance(SNi , SNj)
=
√(

SNi − SNj
)2

+
(
SNi − SNj

)2 (2)

Furthermore, it is considered that the sensor nodes SNi and SNj are connected if

euclidean_distance(SNi , SNj)
≤ RangeSN (3)

RangeSN represents the range of sensor node.
Similarly, it is considered that sensor node SNi is connected to relay node RNj and

d < c, if
euclidean_distance(SNi , SNj)

≤ RangeRN (4)

RangeRN represents the range of relay node.
Next, the connectivity matrix (CM) can be represented as

CM(SNi , SNj)
=

{
1, i f SNi, SNj are coonected and i 6= j

0, otherwise
(5)

CM(SNi , SNj)
represents the connectivity matrix between the ith sensor node SNi and

jth sensor node SNj.

3.2. Phase 1: Exploring the Maximum Node-Disjoint Routes from All SNs to BS Using the Least
RNs Based on the Hybrid Adapted Grey Wolf Sine Cosine Optimizer (HA-GWSCO) in EH-WSN

In the proposed scheme, we have assumed a controlled random approach that is
used for deploying the sensor nodes in the two-dimensional area, and the locations of
deployment are decided on by collector node (CN), also known as the sink node or base
station (BS). Whenever one or more SN(s) is/are unable to maintain proper communication
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with the BS through intermediate SNs, due to the dead conditions, then the RNs come to the
picture, which are deployed by adopting a control random approach with a non-uniform
nature to maintain the proper flow of data by maintaining the optimal connectivity. In
the first phase of the proposed scheme, we have used two metaheuristic optimization
algorithms, namely, the grey wolf optimizer and sine cosine optimizer, for designing
the hybrid framework, named the hybrid adapted grey wolf sine cosine optimizer (HA-
GWSCO), for exploring the maximum node-disjoint routes from all SNs to BS in the
EH-WSN; this hybrid framework also discovers k-node-disjoint routes from each SN to
BS, with k ≥ 2, which enhances the fault-tolerance capability in EH-WSN. This hybrid
framework utilizes the fitness function as described by Equation (6) below.

In EH-WSN, the maximum approximate number of node-disjoint routes max{A(|RSNset |)}
that exists between all the SNs (|SNset|) and BS utilizing the least number of RNs can be
determined by Equation (6).

max{A(|RSNset |)} ≥ min

{
A(RN(BS)),

|SNset |

∑
i=1

A
(

RN(SNi)

)}
(6)

subject toA
(

RN(SNi)

)
≥ k i f all the SNs are having same number o f k− node disjoint routes

A(RN(BS)) ≥ A
(

RN(SNi)

)
∗ (|SNset|)

(7)

Equation (6) is assumed as the fitness function for exploring all possible maximum
approximate number of node-disjoint routes max{A(|RSNset |)} that exists between all the
SNs (|SNset|) and BS utilizing the least number of RNs.

Now, we will illustrate the role of the adapted GWO and adapted SCO metaheuristic
optimization algorithms. The natural hunting procedure, as well as the leadership hierarchy
of grey wolves, are the two main pillars of the population-based grey wolf optimization
(GWO) algorithm. In this proposed research, the hybrid framework, having GWO and SCO,
is used for solving the relay node optimization problem, which is considered an NP-hard
optimization problem. This hybrid optimization framework enhances the convergence
performance of the adapted grey wolf optimizer. Further, by boosting the exploitation
stage, the best optimal solution can be found.

The results of this hybrid optimization framework represent excellence in terms
of robustness and ability to solve the NP-hard relay node optimization problem. The
hybrid optimization framework considers the three best candidate solutions as alpha (∝)
(representing the first candidate solution), beta (β) (representing the second candidate
solution), and delta (δ) (representing the third candidate solution) in the course of the
exploitation phase. The positions of the other search agents are modified to conform to
alpha (∝), beta (β), and delta (δ), which are assumed as the positions of the best search
agents. In the subsequent sections, we explain the adapted grey wolf optimizer, sine cosine
optimizer, and then the hybrid version in detail.

3.2.1. Adapted Grey Wolf Optimizer

The natural hunting behavior and leadership hierarchy of grey wolves are the sources
of inspiration for the adapted grey wolf optimization framework [2,45]. This optimizer was
originally proposed by Mirjalili [46].

The mathematical model of the adapted grey wolf optimization framework has five
main components, namely, the leadership hierarchy of grey wolves, method of the prey’s
encircling, the procedure of searching the prey, mechanism of attacking the prey, and finally
the hunting mechanism. We will explain each component one by one in the next paragraph.

The leadership hierarchy of grey wolves consists of three main categories of grey wolves:
the first category is known as alpha (∝), the next category is known as beta (β), and delta (δ) is
known as the third category. Further, the wolves represented as alpha (∝) are considered as the
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leaders of the grey wolf community. The beta (β) wolves are designated as the second-level
leaders of the grey wolves, while the delta (δ) wolves are the third-level leaders.

Grey wolves adopted the mechanism of encircling the prey for hunting, and the
following equations mathematically represent this scenario.

→
Z =

∣∣∣∣→Y .
→
Wprey(t)−

→
W(t)

∣∣∣∣ (8)

→
W(t + 1) =

→
Wprey(t)−

→
O.
→
Z (9)

In the above equation, the position vector of the prey, as well as the grey wolf, is

represented by
→
Wprey and

→
W, respectively; also, in the mathematical model, t represents the

current iteration.
The following equations are used to find the value for two vectors

→
O and

→
N.

→
O = 2

→
g .

→
random1 −

→
g (10)

→
Y = 2.

→
random2 (11)

Here, the random vectors in the range [0, 1] are represented by
→

random1 and
→

random2;
also, parameter

→
g is linearly decreased from 2 to 0.

Further, the hunting procedure of the grey wolves is mathematically modeled in the
below equations.

→
Z∝ =

∣∣∣∣→Y1.
→
W∝ −

→
W
∣∣∣∣, →Zβ =

∣∣∣∣→Y2.
→
Wβ −

→
W
∣∣∣∣, →Zδ =

∣∣∣∣→Y3.
→
Wδ −

→
W
∣∣∣∣ (12)

→
W1 =

→
W∝ −

→
O1.
→
Z∝,

→
W2 =

→
Wβ −

→
O2.
→
Zβ/

→
W3 =

→
Wδ −

→
O3.
→
Zδ (13)

→
W(t + 1) =

→
W1 +

→
W2 +

→
W3

3
(14)

Next, the condition for attacking the prey is
∣∣∣∣→O∣∣∣∣ < 1. Now, the grey wolves start

moving to attack the prey. The condition for searching the prey is
∣∣∣∣→O∣∣∣∣ > 1. Now, the grey

wolves start moving away from the prey to search for more competent prey.

3.2.2. Adapted Sine Cosine Optimizer (SCO)

The adapted sine cosine optimizer (SCO) is based on sine and cosine functions [47].
This optimizer was originally proposed by Mirjalili [48]. It is basically applied in global
optimization functions for phases of exploitation and exploration. Initially, it generates
multiple random solutions and these random solutions show fluctuations, either outwards
or towards the best possible solution. This complete mechanism utilized the sine and cosine
functions-based mathematical model, as shown by Equations (15) and (16).

→
Wi(t + 1) =

→
Wi(t) + ϕ1 ∗ sin(ϕ2) ∗

∣∣∣∣ϕ3 ∗ li(t)−
→
Wi(t)

∣∣∣∣ (15)

→
Wi(t + 1) =

→
Wi(t) + ϕ1 ∗ cos(ϕ2) ∗

∣∣∣∣ϕ3 ∗ li(t)−
→
Wi(t)

∣∣∣∣ (16)

The current position is represented by
→
Wi(t); ϕ1, ϕ2, and ϕ3 are random numbers ∈ [0, 1],

and the targeted global optimal solution is represented by li. The conditions 0.5 ≤ ϕ4 < 0.5 are
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also used in Equations (15) and (16) for representing the phases of exploitation and exploration,
respectively.

→
Wi(t + 1) =


→
Wi(t) + ϕ1 ∗ sin(ϕ2) ∗

∣∣∣∣ϕ3 ∗ li(t)−
→
Wi(t)

∣∣∣∣, ϕ4 < 0.5
→
Wi(t) + ϕ1 ∗ cos(ϕ2) ∗

∣∣∣∣ϕ3 ∗ li(t)−
→
Wi(t)

∣∣∣∣, ϕ4 ≥ 0.5
(17)

3.2.3. Hybrid Adapted Grey Wolf Sine Cosine Optimizer (HA-GWSCO) Framework for
Finding the Maximum Node-Disjoint Routes from All SNs in EH-WSN

The main characteristics of these optimizers, namely, the adapted GWO and SCO, are
the efficient accuracy. These optimizers usually show efficient performance in providing
solutions to various optimization problems when compared with well-known other swarm
intelligence optimization frameworks. Further, various pieces of literature attest to this
claim. The only limitations of these optimizers belong to the fact that these are somehow
not suitable for handling highly complex functions; also, the second limitation belongs
to the phenomenon of getting trapped in local optima. For effectively handling these
limitations, a hybrid version [49] is required. The hybrid version enhances the overall
searching capability of the framework and consequently can provide the best optimal
solutions to complex optimization problems. Now, this hybrid framework is called the
hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO).

In the hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO) framework,
the sine cosine optimizer plays a major role in improving the movement of the alpha (∝)
wolves of the grey wolf optimizer since for the grey wolves community, these wolves are
assumed as the leaders. The beta (β) wolves are designated as the second-level leaders
of the grey wolves, while the delta (δ) ones are the third-level leaders. Therefore, the
hybrid adapted grey wolf sine cosine optimizer (HA-GWSCO) framework has achieved
robust search capabilities, and consequently the mechanism behind the global convergence,
exploration, and exploitation is enhanced.

From the above discussion, it is clear that the ultimate aim of the hybrid adapted
grey wolf sine cosine optimizer (HA-GWSCO) framework is to replace the worst results in
finding a new population based on an individual approach, since this hybrid framework
results in efficient accuracy. There are mainly three procedures (see Equations (18) and (19))
responsible for enhancing the capability of the hybrid adapted grey wolf sine cosine
optimizer (HA-GWSCO) framework for finding the efficient solution of maximum node-
disjoint routes utilizing the minimum RNs from SNs to BS. Next, Figure 2 illustrates Phase
1 of the proposed framework consisting of HA-GWSCO.

Consider the position update equation (Equation (17)) of the adapted SCO; this posi-
tion update equation is applied in enhancing the position, speed, and convergence accuracy
of the alpha (∝) grey wolves of the adapted SCO. This step is taken for maintaining an
effective balance between the phases of exploration and exploitation. Further, this step
also helps in extending the convergence performance of the adapted grey wolf optimizer
framework. The following equations are developed for updating the positions of the alpha
(∝) grey wolves.

→
Z∝ =


ϕ5 ∗ sin(ϕ5) ∗

∣∣∣∣→Y1 ∗
→
W∝ −

→
W
∣∣∣∣, ϕ5 < 0.5

ϕ5 ∗ cos(ϕ5) ∗
∣∣∣∣→Y1 ∗

→
W∝ −

→
W
∣∣∣∣, ϕ5 ≥ 0.5

(18)

→
W1 =

→
W∝ −

→
O1 ∗

(→
W∝

)
(19)
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3.3. Phase 2: Discovering the Most Appropriate and Reliable Route from the k-Node-Disjoint
Routes between Each SN to BS Based on the Hybrid Adapted Grey Wolf Whale Optimizer
(HA-GWWO) Framework

A sustainable and energy-efficient wireless system is the need of the hour for next-
generation green communication since sensors are mainly suffering from limited energy
availability caused by limited battery capacity. Prolonging the network lifetime has been
an evergreen research area for researchers from the last few decades, and efforts are still
ongoing to design energy-efficient frameworks for routing in wireless systems. Energy
harvesting techniques have emerged as a solution for handling energy scarcity issues of
sensors. In this technique, energy is harvested from RF, vibration, thermal, and solar, etc.,
by utilizing an energy-harvesting component. In the energy-harvesting wireless sensor
networks (EH-WSNs), the dead nodes become alive and resume their operation with the
help of harvested energy; in this way the life of the network can be extended without bound.
It is a fact that during real-time applications, many unavoidable incidents may occur due
to difficult environmental conditions, which results in the breakdown of communication
links, malfunctioning of sensor nodes, and partitioning of the network. Therefore, the
network functions can be severely disrupted. In these real-time scenarios, the success of
green communications majorly depends on the fault-tolerance feature, which has become
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a critical issue for next-generation wireless systems. Further, in the energy-harvesting
environment, the time-varying, unstable, and random nature of the harvested energy may
compel the nodes to fail. Furthermore, due to this random nature of the harvested energy,
the nodes’ lifecycle frequently switches between alive and dead, which results in dynamic
changes in the quality of the routing. Fault-tolerant routing with awareness of the quality
of routing is the only solution for the optimal performance of EH-WSN. Towards enabling
fault-tolerant routing, the first step is to establish the multi-node/link disjoint routes,
comparing these with the previous route as well as all other alternative routes. In this
mechanism, the failure in the previous route due to the breakdown of any or all nodes/links
has no impact on the alternative routes. In the proposed framework, we are maintaining the
k-node-disjoint routes from each SN to BS by applying the hybrid adapted grey wolf sine
cosine optimizer (HA-GWSCO) framework in the first phase of the proposed framework.
Furthermore, in the second phase, we have designed the enhanced fitness function, named
the best suitable route index (BSRI), to select the most reliable node-disjoint route from each
SNi to BS out of available k-node-disjoint routes by utilizing the hybrid adapted grey wolf
whale optimizer (HA-GWWO) framework. The fitness function consists of various effective
objective functions, namely, the first function, representing the remaining available energy
of each node in a particular route from SNi to BS; the second function, representing the
distance of the edge between the adjacent nodes; the third function, representing the energy
consumption of the edge between the adjacent nodes; the fourth function, representing the
delay in communication for the node; the fifth function, representing relay hops for the
packet in each route; and, finally, the sixth function, representing the reliability index of the
particular route from SN to BS. The route with the higher best suitable route index (BSRI) is
selected for routing from each SN to BS out of the available k-node-disjoint routes utilizing
the hybrid adapted grey wolf whale optimizer (HA-GWWO) framework. In the proposed
framework, we have estimated the quality of the route by effectively designing the fitness
functions, covering the all-important metrics for assessing the route suitability for routing
that rarely have been considered in the literature for EH-WSN.

Next, we are going to explain the six objective functions one by one, as below.
The objective function representing the remaining available energy of each node in

the node-disjoint route Rj(SNi, BS) from SNi to BS

(
f
Energy

Rj(SNi ,BS)

(REAvl )

)
is represented by ( f1)

in Equation (21).

f
Energy

Rj(SNi ,BS)

(REAvl )

=
∑SNe∈Rj(SNi ,BS) EnergySNe

(REAvl)

∑SN∈Rset(SNi , BS)
EnergySN

(REAvl)

(20)

Here, REAvl shows the remaining available energy, Rj(SNi, BS) represents the jth
node-disjoint route between the ith source node SNi and BS, Rset(SNi , BS) reflects the set
of all the node-disjoint routes between the ith source node SNi and BS, SNe is one of the
sensor nodes in the jth node-disjoint route Rj(SNi, BS), i.e., SNe ∈ Rj(SNi, BS), and SN is
one of the sensor nodes in the set of all the node-disjoint routes between the ith source node
SNi and BS, i.e., SN ∈ Rset(SNi , BS).

f
Energy

Rj(SNi ,BS)

(REAvl )

is the ratio of the remaining available energy (EnergySNe
(REAvl)

) of each

node SNe ∈ Rj(SNi, BS) in route Rj(SNi, BS) from SNi to BS to keep the remaining avail-
able energy (EnergySN

(REAvl)
) of each node SN ∈ Rset(SNi , BS) in the set of all node-disjoint

routes from SNi to BS.
f
Energy

Rj(SNi ,BS)

(REAvl )

should be maximum for improved life of the wireless system.

Hence,
f1 = f

Energy
Rj(SNi ,BS)

(REAvl )

(21)
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Next, the second objective function representing the distance of the edge distance(l) be-
tween the adjacent nodes in the node-disjoint route Rj(SNi, BS) from SNi to BS(

f
distance(l)Rj(SNi ,BS)

)
is represented by ( f2) in Equation (23).

f
distance(l)Rj(SNi ,BS) =

∑l∈Rj(SNi ,BS) distance(l)

∑l∈Rset(SNi , BS)
distance(l)

(22)

Here, l ∈ Rj(SNi, BS) reflects the edge in the jth node-disjoint route between ith source
node SNi and BS, l ∈ Rset(SNi , BS) represents edge in the set of all the node-disjoint routes
between ith source node SNi and BS, distance(l) shows the distance of the edge.

f
distance(l)Rj(SNi ,BS) is the ratio of the distance of the edge distance(l) between adjacent

nodes in the route Rj(SNi, BS) from SNi to BS to the distance of the edge distance(l)
between adjacent nodes in the set of all node-disjoint routes Rset(SNi , BS) from SNi to BS.

f
distance(l)Rj(SNi ,BS) should be the minimum for optimal performance of the wireless system.

Hence,

f2 =
1

f
distance(l)Rj(SNi ,BS)

(23)

Further, the third objective function representing the energy consumption of the edge
l (Energy_Consumptionl) between adjacent nodes in the node-disjoint route Rj(SNi, BS)
from SNi to BS ( f

Energy_Consumption
(Rj(SNi ,BS))

l

) is represented by ( f3) in Equation (25).

f
Energy_Consumption

(Rj(SNi ,BS))

l

=
∑

hop(Rj(SNi ,BS))

l=1 Energy_Consumptionl

∑
hop(Rset(SNi , BS))

l=1 Energy_Consumptionl

(24)

Here, hop(Rj(SNi ,BS)) represents the hop counts in the jth node-disjoint route between
the ith source node SNi and BS, and hop(Rset(SNi , BS))

reflects the hop counts in the set of all
the node-disjoint routes between the ith source node SNi and BS.

f
Energy_Consumption

(Rj(SNi ,BS))

l

is the ratio of the energy consumption of the edge

(Energy_Consumptionl) between adjacent nodes in the node-disjoint route Rj(SNi, BS)
from SNi to BS to the energy consumption of the edge (Energy_Consumptionl) between
adjacent nodes in the set of all node-disjoint routes Rset(SNi , BS) from SNi to BS.

f
Energy_Consumption

(Rj(SNi ,BS))

l

should be minimum for optimal performance of the wire-

less system.
Hence,

f3 =
1

f
Energy_Consumption

(Rj(SNi ,BS))

l

(25)

Furthermore, the fourth objective function representing delay in communication for

the node SNe ∈ Rj(SNi, BS) in the route Rj(SNi, BS) from SNi to BS

(
f
delay

Rj(SNi ,BS)
SNe

)
is

represented by ( f4) in Equation (27).

f
delay

Rj(SNi ,BS)
SNe

=
∑SNe∈Rj(SNi ,BS) delay(SNe)

∑SN∈Rset(SNi , BS)
delay(SN)

(26)

Here, delay(SNe) represents a delay in communication for the sensor node SNe,
SNe ∈ Rj(SNi, BS), since SNe is the sensor node in the jth node-disjoint route between the
ith source node SNi and BS. Similarly, delay(SN) reflects a delay in communication for
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the sensor node SN, SN ∈ Rset(SNi , BS), since SN is the sensor node in the set of all the
node-disjoint routes between the ith source node SNi and BS.

f
delay

Rj(SNi ,BS)
SNe

is the ratio of delay in communication for the node SNe ∈ Rj(SNi, BS)

in the route Rj(SNi, BS) from SNi to BS to the delay in communication for the node
SN ∈ Rset(SNi , BS) in the set of all node-disjoint routes Rset(SNi , BS) from SNi to BS.

f
delay

Rj(SNi ,BS)
SNe

should be minimum for optimal performance of the wireless system.

Hence,

f4 =
1

f
delay

Rj(SNi ,BS)
SNe

(27)

Furthermore, the fifth objective function representing relay hops for the packet in the

route Rj(SNi, BS) from SNi to BS
(

f
hopRj(SNi ,BS)

)
is represented by ( f5) in Equation (29).

f
hopRj(SNi ,BS) =

hop
(

Rj(SNi, BS)
)

∑k
j=1 hop

(
Rj(SNi, BS)

) (28)

f
hopRj(SNi ,BS) is the ratio of the relay hops for the packet in the route Rj(SNi, BS) from

SNi to BS to the hops for the packet in the set of all node-disjoint routes Rset(SNi , BS) from
SNi to BS.

f
hopRj(SNi ,BS) should be minimum for optimal performance of the wireless system.

Hence,

f5 =
1

fhop
(29)

The sixth objective function representing the reliability index (RI) of the particular
route Rj(SNi, BS) from SNi to BS

(
f
RI(Rj(SNi ,BS))

)
is represented by ( f6) in Equation (31).

f
RI(Rj(SNi ,BS)) =

∑
hop(Rj(SNi ,BS))

l=1 Reliabilityl

∑
hop(Rset(SNi ,BS))

l=1 Reliabilityl

(30)

Here, hop(Rj(SNi ,BS)) represents the hop counts in the jth node-disjoint route between
the ith source node SNi and BS, and hop(Rset(SNi , BS))

reflects the hop counts in the set of all
the node-disjoint routes between the ith source node SNi and BS.

f
RI(Rj(SNi ,BS)) is the ratio of the link reliability (Reliabilityl) in the route Rj(SNi, BS)

from SNi to BS to the link reliability (Reliabilityl) of the set of all node-disjoint routes
Rset(SNi , BS) from SNi to BS.

Here, link reliability (Reliabilityl) is expressed in terms of the signal-to-noise ratio
(SNR) and fRI should be maximum.

Hence,
f6 = fRI (31)

Finally, the best suitable route index (BSRI) of the particular route Rj(SNi, BS) from
SNi to BS

(
Rj(SNi, BS)BSRI

)
is represented by Equation (32).

Rj(SNi, BS)BSRI =

(
ψ1 ∗ f1 + ψ2 ∗ f2 + ψ3 ∗ f3 + ψ4 ∗ f4 + ψ5 ∗ f5 + ψ6 ∗ f6

6

)
(32)

Further, the best suitable route index (BSRI) of the particular route Rj(SNi, BS)
from SNi to BS is represented as Rj(SNi, BS)BSRI , which is the maximum for the node-

disjoint route, and which is selected as the best suitable node-disjoint route for routing out
of k-node-disjoint routes from SNi to BS.
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Here,

ψ1 = 0.25, ψ2 = 0.10, ψ3 = 0.20, ψ4 = 0.10, ψ5 = 0.10, and ψ6 = 0.25 (33)

are weight factors.
Furthermore,

(ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6) = 1 (34)

Finally, we can define the fitness function ( f f ) as shown by Equation (35) below.

f f =
|SNset |

∑
i=1

{
k

∑
j=1

max
(

Rj(SNi, BS)BSRI
)}

(35)

3.3.1. Adapted Whale Optimizer

The natural social activity of humpback whales is the source of inspiration for the
adapted whale optimization framework [50]. Wales have a unique hunting procedure
known as bubble-net attacking. In this procedure, distinctive bubbles are created along a
circle. This optimizer is originally proposed by Mirjalili [51].

The mathematical model of the adapted whale optimization framework has three main
components, namely, the mechanism of encircling the prey, a unique attacking mechanism
known as the bubble-net method, and the procedure of searching for prey. We will explain
each component one by one in the next paragraph.

The humpback whales start encircling their prey and update their position for find-
ing the best optimal solution during iterations. This is mathematically modeled by the
following equations.

→
Z =

∣∣∣∣→Y .
→
Wprey(t)−

→
W(t)

∣∣∣∣ (36)

→
W(t + 1) =

→
Wprey(t)−

→
O.
→
Z (37)

Further, the humpback whales adopted a bubble-net attacking procedure for attacking
the prey, and this procedure is represented by two approaches in the below paragraph,
which are named the procedure of shrinking encircling and position updating through
spiral movement.

Next, the procedure of shrinking encircling can be achieved by reducing the value of a
in the below equation.

→
O = 2

→
g .

→
random1 −

→
g (38)

→
Y = 2.

→
random1 (39)

The position-updating mechanism of humpback whales through a helix-shaped spiral
movement can be modeled mathematically by Equation (40).

→
W(t + 1) =

→
Z′.e f h. cos(2πh) +

→
W ∗ (t) (40)

→
Z′ =

∣∣∣∣→W ∗ (t)− →W(t)
∣∣∣∣ (41)

Here, h ∈[−1, 1] is a random number, the logarithmic spiral shape is defined by the
constant f , and the position vectors of the prey as well as the humpback whales are

represented by
→
W
∗

and
→
W, respectively. The humpback whales start swimming around the

prey. In this swimming event, the humpback whales swim within the shrinking circle with
a spiral path.
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There exists a probability of 50% for selecting these methods and this can be mathe-
matically formulated by the equation below.

→
W(t + 1) =


→

W∗(t)−
→
O
→
Z i f q < 0.5

→
Z′.e f h. cos(2πh) +

→
W∗(t) i f q > 0.5

(42)

Here, q ∈ [0, 1] is the random number.
The condition for searching the prey is |O| > 1; also, it should be noted that the

random approach is adopted by the humpback whales for searching the prey. This is
mathematically modeled by the following equations.

→
Z =

∣∣∣∣→Y .
→
Wrandom −

→
W
∣∣∣∣ (43)

→
W(t + 1) =

→
Wrandom −

→
O
→
Z (44)

3.3.2. Hybrid Adapted Grey Wolf Whale Optimizer (HA-GWWO) Framework

The second phase of the proposed framework aimed at selecting the best reliable node-
disjoint route out of k-node-disjoint routes available from each SNi to BS in EH-WSN. The
hybrid adapted grey wolf whale optimizer (HA-GWWO) framework was used for discovering
the best reliable node disjoint route. Six effective parameters are considered while designing the
efficient fitness function, namely, the first function, representing the remaining available energy
of each node in a particular route from SNi to BS; the second function, representing the distance
of the edge between adjacent nodes; the third function, representing energy consumption of
the edge between adjacent nodes; the fourth function, representing a delay in communication
for the node; the fifth function, representing the relay hops for the packet in each route; and,
finally, the sixth function, representing the reliability index of the particular route from SNi
to BS. The hybrid adapted grey wolf whale optimizer (HA-GWWO) framework consists of
both the adapted grey wolf optimizer as well as the adapted whale optimizer. There exist
certain salient features of both optimizers, motivating us to use them. The basic principle of
the grey wolf optimizer is simple in nature with easy realization; it has the optimal seeking
capability with efficient search precision. The grey wolf optimizer, which has high research
value, can be combined with the large number of distinct engineering problems that exist in
the real world. In the grey wolf optimizer, all the three solutions comprehensively assessed the
position of the best solution during the searching mechanism, since in the grey wolf optimizer,
the leadership hierarchy of the wolves is maintained. This unique property of the grey wolf
optimizer distinguishes it from other swarm intelligence algorithms in which only a single
solution takes the lead for searching the best solution and therefore the grey wolf optimizer
can efficiently handle the issue of trapping in the local optimum and the probability of being
premature is much less. On the other hand, the whale optimizer has unique characteristics
compared with other existing optimization algorithms in terms of having fewer adjustment
parameters along with simple operation. The whale optimizer also effectively handles the issue
of the local optimum by maintaining the efficient balance between exploitation and exploration
capabilities. Therefore, the hybrid adapted grey wolf whale optimizer (HA-GWWO) framework
is capable enough for optimally discovering the most-reliable node-disjoint route out of the
available k-node-disjoint routes between each SNi to BS. Further, this hybrid framework utilized
the newly designed efficient fitness function. Next, Figure 3 illustrates the integrated view of
the proposed optimization framework, consisting of Phase 2.
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In the EH-WSN, the total number of SNs is |SNset|. Each source node is represented
by SNi and BS represents the destination node. The hybrid adapted grey wolf whale
optimizer (HA-GWWO) framework discovers the best reliable node-disjoint route be-
tween each SNi to BS in the EH-WSN out of the available k-node-disjoint routes. Further,
S = {1, 2, . . . . . . . . . ., m} is assumed as the solution vector of the hybrid adapted grey wolf
whale optimizer (HA-GWWO) framework. Furthermore, m = |SNset| ∗ k, with k ≥ 2,
where m is the total number node-disjoint routes from all SNs to BS; the hybrid adapted
grey wolf whale optimizer (HA-GWWO) framework discovers the most-reliable route from
each SNi to BS in the EH-WSN out of the available k-node-disjoint routes based on an
estimation of the effectively designed fitness function.

In the next paragraph, we explain the detailed working of the hybrid adapted grey
wolf whale optimizer (HA-GWWO) framework for selecting the most-reliable node-disjoint
route from each SNi to BS in the EH-WSN.

The hybrid framework starts with the initialization of random solutions.
Wj =

{
S1, S2, . . . , Sj, . . . , |SNset| ), Sj is the jth random solution vector, and |SNset| rep-

resents the total number of random solution vectors.
Next, the fitness of each solution is determined by using the fitness function (35). The

solution that has a fine fitness value (maximum best suitable route index (BSRI)) is assumed
as the best search agent, which is going to be used in the next optimization step.

• Position update based on exploration and the exploitation mechanism.

In the hybrid framework, two optimizers are integrated, namely, the adapted grey
wolf optimizer and the adapted whale optimizer. During each iteration, the best optimal
solutions are determined simultaneously from both optimizers, and these solutions are
further compared to select the best solution. This best solution is again given to both the
optimizers to produce new better solutions as compared to previous solutions obtained.
The cycle is repeated again in the same way.
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• The best search agent update.

During each iteration t, the solution vector gets updated. Next, the fitness of each
solution is determined by using the fitness function (35). The solution that has a fine fitness
value (maximum best suitable route index (BSRI)) is assumed as the best search agent,
which is going to be used in the next iteration.

• Termination

When the maximum iterations are achieved (tmax), the best optimal reliable node-
disjoint route from each SNi to BS is discovered in the EH-WSN. If the maximum iterations
are not achieved, then the cycle is again repeated for finding the better solutions.

From the solution vector, the best solution in terms of the most-reliable node-disjoint
route is selected after several iterations, simultaneously comparing solutions from both
optimization algorithms, namely, the whale optimization and grey wolf optimization
algorithms. The best solution is one of the solutions from the available solutions in the
solution vector, fulfilling all criteria as per the fitness function.

3.3.3. Complexity Analysis

The time complexity of the proposed green communication framework FRGNWS mainly
depends upon three parameters, namely, initialization of the sensor node population size
|SNset| in the network, the fitness calculation time tmax for green route identification, and finally
updating the disjoint routes in the sensor node population |SNset|. Therefore, the complexity of
the FRGNWS framework can be represented as O(|SNset|+ tmaxx|SNset|+ |SNset|xd). Here,
|SNset| denotes the total sensor population size, d presents the dimension of the maximum
node-disjoint route problem, and tmax is the maximum number of iterations in the green route
identification. Further, the time complexity of the proposed framework described in [35] is
O(SNset(|SNset|+ tmaxx|SNset|+ |SNset|xd)). From a comparison point of view, it can be
clearly deduced that the complexity of the proposed framework is SNset times lower than the
considered literature technique.

4. Results and Discussion

In this section, we are illustrating a set of simulation experiments conducted for eval-
uating the efficacy of our proposed novel framework. In the simulation experiments, we
have used network simulator (NS) version 2.34. For illustrating the outstanding perfor-
mance of our proposed novel framework, we present a detailed comparative analysis with
existing schemes, namely, the ABC-based framework [44] and GA-based framework [35].
The detailed setup for the simulation experiments is presented in Table 2.

Next, Figure 4 illustrates the central methodology adopted for conducting the set
of experiments. Broadly, we have divided the set of experiments into four categories,
namely, based on varying the number of SNs, varying the network size, variations in the
supply of harvested energy, and also varying the number of RNs. We have used a total of
five metrics for assessing the effectiveness of our proposed novel framework, namely, the
lifetime of the network, throughput, average hop distance, end-to-end delay, and lastly
the energy consumption. Further, in the first category of experiments, we conducted four
simulation experiments, covering the number of RNs vs. variations in the number of
SNs; the lifetime of the network vs. variations in the number of SNs; the throughput
vs. variations in the number of SNs; and the average hop distance vs. variations in the
number of SNs. Furthermore, in the second category of experiments, we again conducted
four simulation experiments, covering the number of RNs vs. variations in the size of the
network; the lifetime of the network vs. variations in the size of the network; the throughput
vs. variations in the size of the network; and the average hop distance vs. variations in
the size of the network. Next, in the third category of experiments, we conducted two
simulation experiments, covering the lifetime of the network vs. variations in the supply of
harvested energy (uniform); and the lifetime of the network vs. variations in the supply
of harvested energy (random). Furthermore, in the fourth category of experiments, we
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conducted two simulation experiments, covering the end-to-end delay vs. variations in the
number of RNs; and the energy consumption vs. variations in the number of RNs.

Table 2. The parameters along with their respective values used in the simulation.

Simulator Used and Its Version Network Simulator Version 2.34

Variations in the number of SNs (N) 25, 35, 45, 55, and 65

Variations in size of network (L) 400 × 400, 600 × 600, 800 × 800, 1000 × 1000,
and 1200 × 1200

(
m2 )

SNs distribution strategy in EH-WSN Uniform random distribution

Type of Antenna Omni Directional

Propagation model of Radio Two-ray ground

Communication Model Bidirectional

Interface (Queue Type) Drop tail

RNs distribution strategy in EH-WSN Controlled random non-uniform distribution

Location of Sink Node Centrally placed in the network area

Transmission Range (R) 1/5 ofnetwork area (meter)

Rate of Data (K) 125 kbps

Type of Traffic CBR (Constant Bit Rate)

Size of Packet (Packetsize) 512 bytes

Variations in Harvested Energy Supply

(Uniform)
(

Eharvest
uni f orm

) 0.4, 0.8, 1.2, 1.6, and 2.0 mW

Variations in Harvested Energy Supply
(Random)

(
Eharvest

random
) 0.3, 0.5, 0.8, 1.0, and 1.5 mW

SNs′ initial energy (Eo) 2 J

Energy required for transmission (Esend) 92 mJ/packet

Energy required for reception (Ereceive) 45 mJ/packet

Energy consumption in sleep state
(
Esleep

)
15 µJ

Generated voltage every 15 s
(
Vgenerate

)
1.2 V

For RN activation energy (Eactivation) 5.2 V

Inactivity of RN start below 3.5 V

Total time required to charge full (T) 150 s
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Category 1: The first set of simulation experiments were carried out under this cat-
egory. We varied the number of SNs and recorded the outcomes on the number of RNs,
the lifetime of the network, throughput, and, finally, the average hop distance to sink.
Next, Figure 5a–d illustrate the efficacy of the proposed novel framework (FRGNWS) with
existing frameworks, namely, the ABC-based framework and GA-based framework. Fur-
ther, Tables 3–6 give more clarity on the effectiveness of the proposed novel framework by
providing the average % effectiveness with existing frameworks, considering each metric
one by one, namely, the number of RNs, the lifetime of the network, throughput, and,
finally, the average hop distance to the sink.
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Table 3. The average % effectiveness of the proposed novel framework for the number of RNs metric
with variations in the number of SNs.

No. of RNs with No. of SNs % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

No. of SNs ↓ GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

25 10 8 5 37.50 50.00

35 14 12 8 33.33 42.86

45 23 19 13 31.58 43.48

55 27 23 17 26.09 37.04

65 35 28 22 21.43 37.14

Avg. % Effectiveness→ 29.99 42.10
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Table 4. The average % effectiveness of the proposed novel framework for the lifetime of the network
metric with variations in the number of SNs.

Lifetime of Network (Seconds) with No. of SNs. % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

No. of SNs ↓ GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

25 9600 11,900 15,000 20.67 36.00

35 8200 9200 13,000 29.23 36.92

45 5900 7500 10,000 25.00 41.00

55 4200 5800 8000 27.50 47.50

65 2900 4300 6800 36.76 57.35

Avg. % Effectiveness→ 27.83 43.76

Table 5. The average % effectiveness of the proposed novel framework for the average hop distance
to the sink metric with variations in the number of SNs.

Avg. Hop Distance to the Sink with No. of SNs % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

No. of SNs ↓ GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

25 12 11.5 8.5 26.09 29.17

35 11 10 7.5 25.00 31.82

45 9.5 8.5 6.5 23.53 31.58

55 8.5 7.5 4.5 40.00 47.06

65 7.5 5.5 2.5 54.55 66.67

Avg. % Effectiveness→ 33.83 41.26

Table 6. The average % effectiveness of the proposed novel framework for the throughput metric
with variations in the number of SNs.

Throughput (Kbps) with No. of SNs % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

No. of SNs ↓ GA Based
Framework

ABC Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

25 2500 2800 3400 17.65 26.47

35 2900 3300 4100 19.51 29.27

45 3100 4100 5500 25.45 43.64

55 4200 5300 6800 22.06 38.24

65 5800 7200 8400 14.29 30.95

Avg. % Effectiveness→ 19.79 33.71

Further, considering Figure 5a, it was deduced from the figure that the proposed
novel framework outperformed the existing frameworks for the metric number of RNs
with variations in the number of SNs. It is a fact that whenever the number of SNs starts
increasing in the network then the number of RNs also starts increasing, since the RNs are
assisting the SNs in transmitting the sensed data properly to the BS. RNs also cover the
entire network gradually and after achieving a good connectivity level there is no need of
deploying extra RNs in the network and therefore the RN count becomes constant after a
particular level of connectivity. Table 3 depicts the average % effectiveness of the proposed
novel framework, compared to the ABC-based framework and GA-based framework, at
29.99% and 42.10%, respectively.
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Now, we will explain the reason for this outstanding performance of the proposed
novel framework. The proposed novel framework utilized a hybrid adapted grey wolf sine
cosine optimizer (HA-GWSCO) framework with a properly designed objective function
aimed at exploring the maximum number of node-disjoint routes from all SNs to BS using
the minimum number of RNs. The proposed novel framework also ensures k-node-disjoint
routes from each SNs to BS with k ≥ 2. The ABC-based framework considers the two
factors, namely, cost and connectivity. However, this framework lacks consideration of
the energy depletion rate. Therefore, the ABC-based framework results in more RNs
when compared with the proposed framework since additional RNs are required in the
case of disconnected SNs due to energy-depleted RNs. On the other hand, the GA-based
framework considers the connectivity factor, but this framework lacks a consideration of
the energy level along with coverage issues. Hence, the GA-based framework also results
in more RNs, since covering all SNs require more RNs.

Furthermore, considering Figure 5b, we can infer from the figure that there is a gradual
decrement in the lifetime of the network with an increase in SNs. The reason for this gradual
decrement is that, whenever the increase in SNs occurs in the network, there are a few specific
activities that also start increasing in the network that consume lots of energy, namely, the
retransmission of packets, synchronizations, and high traffic between nodes. These activities
result in a high energy depletion rate of the nodes and, consequently, the lifetime of the
network suffers. Again, the proposed novel framework surpasses the existing frameworks.
Table 4 shows the average % effectiveness of the proposed novel framework compared to the
ABC-based framework and GA-based framework as 27.83% and 43.76%, respectively.

The proposed novel framework has two phases: the first phase discovers the maximum
node-disjoint routes from all SNs to BS using the minimum RNs having k-node-disjoint routes
from each SN to BS, therefore providing fault-tolerant capabilities; the second phase is aimed
at selecting the best reliable route out of the available k-node-dis joint routes from each SN
to BS, hence enhancing reliability in the network, and therefore the possibility of selecting
the faulty route is low. Moreover, the routes from each SN to BS utilized the lowest number
of RNs, and therefore less consumption of energy as compared with existing frameworks,
resulting in an efficient lifetime of the network. Further, the ABC-based framework does
not consider the energy-depletion rate of the nodes; the GA-based framework also does not
consider the energy factor, instead focusing on the connectivity factor. Further, the existing
frameworks do not have the capabilities of energy harvesting, so if the level of energy of the
nodes is below a particular level, then network failure will start.

Considering Figure 5c, this figure reflects the efficacy of our proposed novel framework
for the average hop distance to the sink metric with existing frameworks. It is a fact that if
we are going to increase the SNs in the network, then there occurs a gradual decrement
in the average hop distance to the sink. Here also, our proposed novel framework outrun
the existing frameworks. Next, Table 5 shows the average % effectiveness of the proposed
novel framework compared to the ABC-based framework and GA-based framework as
33.83% and 41.26%, respectively.

Minimum RNs are utilized in the proposed novel framework for exploring the maxi-
mum number of node-disjoint routes with k-node-disjoint routes from each SN to BS. Since
the average hop distance to the sink metric depends on the number of RNs, our proposed
framework shows an efficient, steady performance compared to existing frameworks. The
existing frameworks require a higher number of RNs, resulting in a higher average hop
distance to the sink.

Considering Figure 5d, this figure illustrates the fact that throughput increases with an
increase in SNs. The reason is obvious: more SNs in the network try to send the sensed data
to the BS using RNs as far as possible. In this entire mechanism, the existence of RNs plays
a major role. The proposed novel framework outperforms the existing frameworks. Next,
Table 6 shows the average % effectiveness of the proposed novel framework compared to
the ABC-based framework and GA-based framework as 19.79%, and 33.71%, respectively.
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The proposed framework utilized the control random strategy with a non-uniform
nature for deploying the RNs in EH-WSN. The minimum number of RNs is utilized
in discovering the maximum node-disjoint routes in the network from all SNs to BS.
Further, the most-reliable node-disjoint route is selected from each SN to BS. The proposed
framework efficiently utilized the RNs and relieved the burden of SNs; in this environment,
the energy level of the nodes does not deplete fast, which results in high throughput.
The existing frameworks show poor results for the throughput metric. First, the existing
frameworks do not have energy-harvesting capabilities. Second, the energy depletion rates
of the nodes are higher in the existing frameworks.

Category 2: The second set of simulation experiments were carried out under this
category. We varied the network size and record the outcomes on the number of RNs,
the lifetime of the network, throughput, and, finally, the average hop distance to the
sink. Figure 6a–d illustrate the efficacy of the proposed novel framework (FRGNWS) with
the existing frameworks, namely, the ABC-based framework and GA-based framework.
Further, Tables 7–10 give more clarity on the effectiveness of the proposed novel framework
by providing the average % effectiveness compared to the existing frameworks, considering
each metric one by one, namely, the number of RNs, the lifetime of the network, throughput,
and, finally, the average hop distance to the sink.
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Figure 6. The outcomes of the set of simulation experiments conducted with variations in the network
size: (a) number of RNs with variations in the network size; (b) lifetime of the network with variations
in the network size; (c) average hop distance to the sink with variations in the network size; and
(d) throughput with variations in the network size. Tables 7–10 are given below.
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Table 7. The average % effectiveness of the proposed novel framework for the number of RNs metric
with variations in the network size.

No. of RNs with Variations in the Size of the Network % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

Size of
Network ↓

GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

400 × 400 7 5 3 40.00 57.14

600 × 600 13 9 5 44.44 61.54

800 × 800 18 13 8 38.46 55.56

1000 × 1000 23 16 11 31.25 52.17

1200 × 1200 28 21 16 23.81 42.86

Avg. % Effectiveness→ 35.59 53.85

Table 8. The average % effectiveness of the proposed novel framework for the lifetime of the network
metric with variations in the network size.

Lifetime of Network (Seconds) with Variations in the
Size of the Network

% Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

Size of
Network ↓

GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

400 × 400 13,590 16,250 18,000 9.72 24.50

600 × 600 10,600 13,120 15,500 15.35 31.61

800 × 800 8100 11,000 13,800 20.29 41.30

1000 × 1000 6500 8900 11,900 25.21 45.38

1200 × 1200 4930 7200 9825 26.72 49.82

Avg. % Effectiveness→ 19.46 38.52

Table 9. The average % effectiveness of the proposed novel framework for the average hop distance
to the sink metric with variations in the network size.

Avg. Hop Distance to the Sink with Variations in the Size of the Network % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

Size of
Network ↓

GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

400 × 400 6.5 4 2 50.00 69.23

600 × 600 9 7.5 4.5 40.00 50.00

800 × 800 12.75 10.5 7.5 28.57 41.18

1000 × 1000 15.7 14 10.4 25.71 33.76

1200 × 1200 17.5 16.5 13.5 18.18 22.86

Avg. % Effectiveness→ 32.49 43.40

Considering Figure 6a, this figure clearly shows that our proposed novel framework
again outperforms the existing frameworks for the number of RNs metric with variations in
the network size. The network usually consists of nodes having a particular fixed range of
communication; furthermore, if we are going to vary the network size, then, definitely, we
require the deployment of extra RNs in order to effectively cover the entire network area.
The proposed novel framework shows gradual increments in RN count and this reflects its
efficient coverage capabilities. Table 7 exhibits the average % effectiveness of the proposed
novel framework compared to the ABC-based framework and GA-based framework as
35.59% and 53.85%, respectively.
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Table 10. The average % effectiveness of the proposed novel framework for the throughput metric
with variations in the network size.

Throughput (Kbps) with Variations in the Size of the Network % Effectiveness of Proposed FRGNWS Framework with
Existing Frameworks

Size of
Network ↓

GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of FRGNWS
Framework with

ABC-Based Framework

% Effectiveness of FRGNWS
Framework with

GA-Based Framework

400 × 400 2500 2600 2800 7.14 10.71

600 × 600 2800 3120 3650 14.52 23.29

800 × 800 3100 4000 4980 19.68 37.75

1000 × 1000 4050 4930 5760 14.41 29.69

1200 × 1200 4740 5270 6980 24.50 32.09

Avg. % Effectiveness→ 16.05 26.71

The proposed novel framework is energy efficient. Minimum relay nodes are deployed
for maintaining the effective coverage in the proposed framework. The remaining available
energy of each node in the route along with the energy consumption of the edge between
adjacent nodes in the route are the two main factors out of a total of six factors considered
while selecting the best reliable node-disjoint route from each SN to BS. Therefore, the
proposed novel framework show efficacy in effective utilization of energy in the network
and results in lower energy consumption compared with existing frameworks, the latter
lacking energy efficiency.

In the proposed novel framework, the maximum node-disjoint routes from all SNs
to BS are explored using a minimum number of RNs. Next, from each SN to BS, k-node-
disjoint routes use the minimum number of RNs. Further, the best reliable node-disjoint
route is selected out of the k-node-disjoint routes from each SN to BS for routing. The
existing frameworks lack in providing efficient coverage capabilities, since the ABC-based
framework considers only two factors, namely, cost and connectivity; this framework
thus lack consideration of the energy-depletion rate. On the other hand, the GA-based
framework considers the connectivity factor, although this framework lacks considering
the energy level along with coverage issue.

Furthermore, considering Figure 6b, this figure shows the excellent performance of
the proposed novel framework for the network lifetime metric with existing frameworks.
Table 8 exhibits the average % effectiveness of the proposed novel framework compared to
the ABC-based framework and GA-based framework as 19.46% and 38.52%, respectively.

Although the network lifetime gradually decreases with an increment in the network
size, due to the higher consumption of energy, the proposed novel framework still shows
excellency in these circumstances. Multiple objective functions are considered while de-
signing an efficient, novel fitness function for selecting the most-reliable node-disjoint route
from each SN to BS, namely, the remaining available energy of each node in the route, the
distance of the edge between adjacent nodes in the route, the energy consumption of the
edge between adjacent nodes in the route, delay in communication for the node in the
route, relay hops for the packet in the route, and finally the reliability index (RI) of the
particular route. Therefore, energy consumption is lower in the proposed novel framework
when compared with the existing frameworks.

Considering Figure 6c, this figure elaborates the fact that the average hop distance to
the sink increases with an increase in the network size, since the large network size requires
more RNs to effectively cover the entire area. The proposed novel framework dominates
the existing frameworks for the average hop distance metric. Table 9 exhibits the average %
effectiveness of the proposed novel framework compared to the ABC-based framework
and GA-based framework as 32.49% and 43.40%, respectively.

The proposed novel framework is has excellent coverage capabilities. The minimum
number of RNs is utilized for exploring the maximum number of node-disjoint routes from
all SNs to BS. The existing frameworks do not have effective coverage capabilities and a
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higher number of RNs are required for covering large network areas. Therefore, existing
frameworks result in a higher average hop distance to the sink.

Considering Figure 6d, this figure displays the fact that throughput increases with an
increase in the network size, and our proposed novel framework outrightly performs well,
considering the throughput metric compared to existing frameworks. Table 10 exhibits
the average % effectiveness of proposed novel framework compared to the ABC-based
framework and GA-based framework as 16.05% and 26.71%, respectively.

Throughput depends on various factors in the network, but the primary factor is the
remaining energy level of the nodes in the network. This factor is effectively considered
in the proposed novel framework while selecting the best reliable route from each SN to
BS. The proposed novel framework shows energy efficiency, and therefore the throughput
gradually increases with an increment in the network size, even though a large network area
results in a higher consumption of energy. The existing frameworks lack energy efficiency,
and therefore show poor results when comparing with the proposed novel framework.

Category 3: The third set of simulation experiments were carried out under this category.
We vary the harvested energy supply uniformly and also randomly both ways. Further, we
recorded the outcomes on the lifetime of the network metric. Figure 7a,b illustrate the efficacy
of the proposed novel framework (FRGNWS) with the existing frameworks, namely, the
ABC-based framework and GA-based framework. Tables 11 and 12 give more clarity on
the effectiveness of the proposed novel framework by providing the average % effectiveness
compared to the existing frameworks, considering the metric the lifetime of the network.
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energy supply (randomly). Tables 11 and 12 are given below.

Considering Figure 7a, this figure tries to narrate the effectiveness of the proposed
novel framework with existing frameworks, considering the network lifetime metric under
variations in the harvested energy supply uniformly. Table 11 exhibits the average %
effectiveness of the proposed novel framework compared to the ABC-based framework
and GA-based framework as 15.01% and 23.47%, respectively.

The network lifetime increases gradually when a uniform supply of harvested energy
is considered. The reason for this outstanding performance of the proposed novel frame-
work is the optimal energy efficiency of this framework. Although the energy-harvesting
capability in the network maintains a continuous supply to nodes, optimization of energy
use is needed for enhanced network lifetime, and the proposed novel framework shows this
efficacy. The existing frameworks are unable to show strength towards energy efficiency
and results in a lower network lifetime in this case.



Appl. Sci. 2022, 12, 8870 30 of 35

Table 11. The average % effectiveness of the proposed novel framework for the lifetime of network
metric with variations in the harvested energy supply (uniformly).

Lifetime of the Network (Seconds) with Variations in the Harvested Energy Supply
(Uniform) (mW)

% Effectiveness of Proposed FRGNWS Framework
with Existing Frameworks

Harvested Energy Supply
(Uniform) (mW) ↓

GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of
FRGNWS Framework

with ABC-Based
Framework

% Effectiveness of
FRGNWS Framework

with GA-Based
Framework

0.4 8000 8800 10,000 12.00 20.00

0.8 9100 9790 11,700 16.32 22.22

1.2 10,450 11,500 13,950 17.56 25.09

1.6 12,340 14,230 16,450 13.50 24.98

2 14,987 16,870 20,000 15.65 25.07

Avg. % Effectiveness→ 15.01 23.47

Table 12. The avg. % effectiveness of the proposed novel framework for the lifetime of the network
metric with variations in the harvested energy supply (random).

Lifetime of the Network (Seconds) with Variations in the Harvested Energy Supply
(Random) (mW)

% Effectiveness of Proposed FRGNWS Framework
with Existing Frameworks

Harvested Energy Supply
(Random) (mW) ↓

GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of
FRGNWS Framework

with ABC-Based
Framework

% Effectiveness of
FRGNWS Framework

with GA-Based
Framework

0.3 5400 6700 8600 22.09 37.21

0.5 6730 8340 10,200 18.24 34.02

0.8 8760 10,230 12,780 19.95 31.46

1 10,450 12,300 15,790 22.10 33.82

1.5 13,870 15,450 18,970 18.56 26.88

Avg. % Effectiveness→ 20.19 32.68

Considering Figure 7b, although the network lifetime also increases under variations
in the harvested energy supply (randomly), the results are somewhat lower when compared
with the uniform supply of harvested energy. Table 12 exhibits the average % effectiveness
of the proposed novel framework compared to the ABC-based framework and GA-based
framework as 20.19% and 32.68%, respectively.

The proposed novel framework unveils the efficacy for the network lifetime metric
with existing frameworks due to energy efficiency capabilities that are lacking in the
existing frameworks.

Category 4: The fourth set of simulation experiments were carried out under this
category. We varied the number of RNs and recorded the outcomes on the end-to-end delay
and energy consumption. Figure 8a,b illustrate the efficacy of the proposed novel frame-
work (FRGNWS) compared to the existing frameworks, namely, the ABC-based framework
and GA-based framework. Tables 13 and 14 give more clarity on the effectiveness of the
proposed novel framework by providing the average % effectiveness compared to the
existing frameworks, considering each metric one by one, namely, the end-to-end delay
and energy consumption.
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Figure 8. The outcomes of the set of simulation experiments conducted with variations in the number
of RNs: (a) end-to-end delay with variations in the number of RNs; (b) energy consumption with
variations in the number of RNs. Tables 13 and 14 are given below.

Table 13. The average % effectiveness of the proposed novel framework for the end-to-end delay
metric with variations in the number of RNs.

End to End Delay (ms) with Variations in the No. of RNs % Effectiveness of Proposed FRGNWS Framework
with Existing Frameworks

No. of RNs ↓ GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of
FRGNWS Framework

with ABC-Based
Framework

% Effectiveness of
FRGNWS Framework

with GA-Based
Framework

6 197 192 182 5.21 7.61

12 183 176 161 8.52 12.02

18 166 149 124 16.78 25.30

24 145 104 83 20.19 42.76

30 92 49 22 55.10 76.09

Avg. % Effectiveness→ 21.16 32.76

Table 14. The average % effectiveness of the proposed novel framework for the energy consumption
metric with variations in the number of RNs.

Energy Consumption(nJ/bit) with Variations in the No. of RNs % Effectiveness of Proposed FRGNWS Framework
with Existing Frameworks

No. of RNs ↓ GA-Based
Framework

ABC-Based
Framework

FRGNWS
Framework

% Effectiveness of
FRGNWS Framework

With ABC-Based
Framework

% Effectiveness of
FRGNWS Framework

with GA-Based
Framework

6 13.4 10.9 4 63.30 70.15

12 17.6 13.8 7.5 45.65 57.39

18 25.9 18.9 9.4 50.26 63.71

24 35.8 22.8 11.5 49.56 67.88

30 48.7 33.5 13.6 59.40 72.07

Avg. % Effectiveness→ 53.64 66.24

Considering Figure 8a, the proposed novel framework once again outperforms the
existing frameworks for the delay metric. Further, the role of RNs in reducing the delay is
crucial in the network. As the number of RNs are increasing in the network, the data packets
can quickly reach the BS. Table 13 exhibits the average % effectiveness of the proposed
novel framework compared to the ABC-based framework and GA-based framework as
21.16 and 32.76%, respectively.

The proposed novel framework explores the maximum number of node-disjoint routes
from all SNs to BS using the minimum number of RNs. The proposed framework provides
reliability in routing by selecting the best reliable node-disjoint route from each SN to BS out
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of the available k-node-disjoint routes from each SN to BS. Therefore, the proposed novel
framework represents efficient coverage along with effective connectivity in the network
and consequently results in a lower delay when compared with existing frameworks.

Furthermore, considering Figure 8b, though the energy consumption increases with
an increase in the number of RNs, our proposed novel framework demonstrates efficacy
compared to the existing frameworks for the energy consumption metric. More RNs in the
network result in an increment in the energy utilization in the network, since the traffic
increases in the network and this further results in various different activities inducing
higher energy utilization. Table 14 exhibits the average % effectiveness of the proposed
novel framework compared to the ABC-based framework and GA-based framework as
53.64 and 66.24%, respectively.

The proposed novel framework is energy efficient. Minimum relay nodes are deployed
for maintaining the effective coverage in the proposed framework. The remaining available
energy of each node in the route along with the energy consumption of the edge between
adjacent nodes in the route are the two main factors out of a total of six factors considered
while selecting the most-reliable node-disjoint route from each SN to BS. Therefore, the pro-
posed novel framework shows efficacy in effective utilization of energy in the network and
results in lower energy consumption compared to existing frameworks, the latter lacking
energy efficiency. Some recent studies [15,16] critically investigated the theoretical analysis
aspects and found that the proposed framework still outperforms the related research
works. The effective performance of the proposed framework is due to its ability to handle
NP-hard and NP-complete optimization problems simultaneously using metaheuristic
optimization algorithms, which was not considered in the recent literature.

5. Conclusions

In this research article, a novel framework is proposed considering single-tiered EH-
WSN with constrained RN deployment. Next, the problem of relay node optimization is
considered an NP-hard optimization problem. Further, the designing of effective fault-
tolerant routing in EH-WSN constitutes the NP-complete problem. In the proposed novel
framework, we have used metaheuristic optimization algorithms, namely, adaptive grey
wolf optimizer, adaptive sine cosine optimizer, and adaptive whale optimizer, to provide
solutions to the NP-hard and NP-complete problems. The proposed novel framework
consists of two phases. In the first phase of the proposed novel framework, maximum node-
disjoint routes from all SNs to BS using minimum RNs are explored based on the hybrid
adapted grey wolf sine cosine optimizer (HA-GWSCO) framework, utilizing a properly
designed fitness function; this HA-GWSCO framework also discovers the k-node-disjoint
routes from each SN to BS, with k ≥ 2, which enhances the fault-tolerance capability in
EH-WSN. In the second phase of the proposed novel framework, out of k-node-disjoint
routes from each SN to BS, with k ≥ 2, the most-appropriate reliable route is selected
from each SN to BS for routing, which enhances the reliability in routing for EH-WSN
based on the hybrid adapted grey wolf whale optimizer (HA-GWWO), utilizing a novel
and efficient fitness function covering multiple objective functions. The effectiveness of
our proposed novel framework was assessed by considering five metrics, namely, energy
consumption, the lifetime of the network, throughput, delay, and the delivery ratio, and the
simulation results clearly validate the efficacy of our proposed novel framework. In this
way, we finally got the fully connected EH-WSN, ensuring the maximum network life, low
latency, efficient distribution of the load for relieving the overloaded sensor nodes, and with
minimum energy consumption due to the high connectivity. The proposed novel research
effectively handles both the NP-hard (relay node optimization) as well as NP-complete
(fault-tolerant reliable routing) optimization problems simultaneously in EH-WSN. This
salient feature of the proposed novel research distinguishes it from others existing in the
literature. As a future research direction, we would like to implement this novel framework
on a real-time EH-WSN, for real-time analysis of the outcomes, by utilizing the optimal
number of heterogeneous RNs for maintaining k-connectivity.
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