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Abstract: As an important branch of machine learning, recommendation algorithms have attracted
the attention of many experts and scholars. The current recommendation algorithms all more or
less have problems such as cold start and single recommended items. In order to overcome these
problems and improve the accuracy of personalized recommendation algorithms, this paper proposes
a recommendation for multi-task learning based on directed graph convolutional network (referred
to as MTL-DGCNR) and applies it to recommended areas for e-commerce. First, the user’s micro-
behavior is constructed and converted into directed graph structure data for model embedding. It
can fully consider the embedding of first-order proximity nodes and second-order proximity nodes,
which can effectively enhance the transformation ability of features. Secondly, this model adopts
the multi-task learning method, and uses knowledge graph embedding to effectively deal with the
one-to-many or many-to-many relationship between users and commodities. Finally, it is verified by
experiments that MTL-DGCNR has a higher interpretability and accuracy in the field of e-commerce
recommendation than other recommendation models. The ranking evaluation experiments, various
training methods comparison experiments, and controlling parameter experiments are designed from
multiple perspectives to verify the rationality of MTL-DGCNR.

Keywords: recommendation algorithm; directed graph convolutional network; soft attention mechanism;
multi-task learning; knowledge graph embedding

1. Introduction

With the rapid development of the network, the recommendation system is born,
and the recommendation algorithm has also become a research hot-spot. Collaborative
filtering recommendation [1] and content-based recommendation [2] are two mainstream
recommendation algorithms. The collaborative filtering algorithm has two modes, the
neighborhood-based model (NBM) [3] and the latent factor model (LFM) [4], but the
collaborative filtering algorithm is affected by key issues such as cold start, sparsity, and
constraints. The content-based recommendation algorithm is based on the introduction
of the commodity characteristics and the records describing the historical interests of
consumers. It can determine what is most in line with consumers’ preferences and push
them to consumers. Like the collaborative filtering algorithm, it does not require grasping
a huge customer base and reviewing records. Even just for a single consumer, it can
create a personalized recommendation list for them. However, these algorithms also have
limitations, such as a low efficiency, difficult semantic processing, and a low novelty of
recommendation results [5–12]. In order to solve the shortcomings of collaborative filtering
algorithms and content-based recommendation algorithms, and to increase the accuracy
of personalized recommendation results, researchers combine these methods and use
hybrid recommendation methods [13] to increase the accuracy of recommendation results.
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Reference [14] fused the recommendation algorithm based on collaborative filtering and
the recommendation algorithm based on content. Reference [15] used multiple models to
calculate the features of users or commodities, respectively, and fused the features. In recent
years, more researchers have paid attention to personalized recommendation technology
based on user sequence behavior. Oren et al. [16] proposed the Item2vec method based
on the user’s click sequence information selected by the user. The Item2vec method is
concise and effective, but it only examines the local information of the ordering and cannot
examine the overall effect of the user behavior sequence on the context. In order to make
up for this deficiency, Session-based Recommendation Systems [17] have emerged quietly
and have received extensive attention. An et al. [18] proposed a robust method based on
dynamic feature weight selection to realize the complex scenes. The other methods are also
proposed to realize recommendation technology [19–24].

With the rapid development of deep learning technology and powerful representation
capabilities, many conversational recommendation algorithms based on deep learning have
been born. In the use of deep learning to deal with the ranking problem, Hidasi et al. [25]
first proposed to apply the recurrent neural network (RNN) to the recommendation of
established sequences and proposed the GRU4Rec model. Compared with the traditional
solution sequence method, this kind of model has a significant improvement in effect, but
it only models the single-item transfer relationship between two proximity items, ignoring
the problem of other item information in the session. Long short-term memory (LSTM) and
gated recurrent units (GRU) networks [26] are often combined with matrix factorization
methods to input user sequences into the network, and the user’s preference is represented
by the hidden state of the network. Zhou et al. [27] provided a set of deep interest setwork
(DIN) training modes. DIN not only provides an adaptive understanding of customer
preferences from historical activities to specific advertisements through a local activation
module, and also provides two practical techniques of mini-batch-aware regularization
and statistical adaptive trigger function to assist in training tens of thousands of network
parameters. An attention mechanism is applied in a neural network as an efficient auxiliary
module to enhance the interpretability of the model. Zhou et al. [28] improved DIN
and established a deep interest evolution network (DIEN) model. By adding an interest
extraction layer to the network and by adding an attention mechanism in the interest
evolution layer to capture the latest evolution process related to the target item, the real-
time preference of the user was captured in the sequence feature representation of the target
user. Tang et al. [29] proposed a recommendation model SASRec based on a sub-attention
mechanism. SASRec can not only capture the long-term semantics of users like the RNN
model, but also achieves recommendation with relatively few operations. Chen et al. [30]
propose an item-level and component-level attention mechanism in the field of multimedia
implicit feedback. Wang et al. [31] proposed an attention mechanism to learn the importance
of each neighbor node, and the collaborative filtering signal was obtained by using the
attention score to improve the recommendation accuracy. Pereira et al. [32] proposed
a Transformers4Rec model, which also achieved excellent performance in the field of e-
commerce based on the transformer architecture. Sánchez-Moreno et al. [33] proposed
an approach to infer user contextual recommendations from the dynamics of social tag
embeddings of music. Song et al. [34] proposed a short-session next-item recommendation
based on a session-based recommendation system (SBRS). In addition, some other deep
learning models are proposed, which can be applied in the recommendation [35–40].

In practical applications, many data are graph-structured, such as knowledge graphs,
social networks, molecular networks, etc., followed by the emergence of graph neural
networks (GNNs). Berg et al. [41] firstly applied graph convolution network (GCN)
to the contact graph of visits between users and items, and proposed a GC-MC model.
Wang et al. [42] deeply researched and summarized the application of graph neural net-
works in recommendation systems. The IGPL algorithm [43] transforms the score prediction
problem into link prediction by extracting the partially closed sub-graphs of the users and
items and inputting the sub-graphs into the graph neural network for training. It not
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only enhances the explanatory power of the model, but also learns the deep features of
each node. Wu et al. [44] proposed a session-based recommendation with graph neural
networks (SR-GNN), which models all user sequences through directed graphs, and then
uses GNN to learn each the hidden vector representation of the commodity. Then, the
embedding of each session is obtained through the attention architecture model. Finally,
the global prediction is achieved through the softmax layer. KIM et al. [45] proposed a
content-rich graph neural network with attention (CoRGi). It used an attention mechanism.
This algorithm considers the contextual nodes of node neighbors and gives a personalized
attention mechanism as a message delivery. Experiments show that this method is better at
predicting edge values in sparse regions of the graph.

The above recommendation algorithms all have the defects of cold start and single
recommendation items, more or less. In order to solve the problem of only modeling the
single-item transfer relationship between two proximity items, ignoring the information
of other items in the session; in order to effectively deal with the one-to-many or many-
to-many relationship between users and items, obtain a clearer session representation
and reduce the cold start problem; in order to effectively enhance the changing ability of
features, a simpler feature distribution than GCN is obtained. This paper takes advantage
of a directed graph convolutional network, a soft attention mechanism, and multi-task
learning, integrates their related technologies, and proposes a recommendation for multi-
task learning based on directed graph convolutional network (MTL-DGCNR). The main
work contributions are as follows:

(1) In order to solve the problem that the recurrent neural network (RNN) only models
the single transfer relationship of two adjacent items in the recommendation field
and ignores other item information in the session, the MTL-DGCNR model adopts a
directed graph convolutional network.

(2) In order to effectively enhance the changing ability of features and obtain a simpler
feature distribution than GCN, the MTL-DGCNR model adopts the learning em-
bedding of the directed graph, and fully considers the embedding of the first-order
proximity nodes and the embedding of the second-order proximity node.

(3) In order to effectively solve the cold start problem in recommendation and the one-to-
many, many-to-one, or many-to-many relationship between users and commodities,
the MTL-DGCNR model adopts a multi-task learning method, and uses knowledge
graph embedding as auxiliary tasks, and cooperates the DGCNR model to complete
the recommendation task.

(4) Experiments verify that the goal effect achieved by integrating two learning tasks in
one MTL paradigm is better than the effect of two tasks achieving their respective
tasks separately. Utilizing user micro-behavior embedding helps to better capture
user preferences at a fine-grained level. Compared with other deep learning models,
MTL-DGCNR has a higher interpretability and accuracy in the field of e-commerce
recommendation. A more effective commodity recommendation is realized to meet
the personalized needs of users.

2. Related Concepts
2.1. Directed Graph Convolutional Networks

The graph convolutional network (referred to as GCN) has been widely used for its
excellent performance in processing graph result data. However, undirected graphs limit
the application range of GCNs, and the directed graph convolutional networks (referred to
as DGCNs) [46] are proposed for this problem. The graph convolution is extended to the
directed graph by using the first-order and second-order degrees, which not only preserves
the connected property of the directed graph, but also enlarges the receptive field of the
convolution operation. Compared with a traditional GCN, DGCN has a stronger feature
conversion ability. It can obtain simpler feature distribution than GCN, and thus facilitates
the analysis of samples. DGCN takes the directed graph and item feature matrix as input in
the preprocessing stage, constructs the first-order and second-order proximity, and embeds
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them into the proximity convolutional layer. The node feature matrix of the first-order
proximity nodes, second-order in-degree proximity, and second-order out-degree proximity
after convolution operation are obtained. The node feature matrix is aggregated into the
node feature map and input to the fully connected layer, and finally the model output is
obtained through the softmax classifier.

2.2. TransH Algorithm

The TransE algorithm is simple, efficient, and popular in the citation of knowledge em-
bedding, but it has certain flaws. There are certain deficiencies in dealing with one-to-many,
many-to-one, many-to-many, and reflexive relationships, and the TransH algorithm [47]
was proposed to make up for the deficiencies of the TransE algorithm. Given a triple <h,r,t>,
the TransH algorithm introduces a hyperplane Wr for each r and a relation vector dr on Wr,
h⊥ and t⊥ are the projections of h, t on Wr, where the correct triplet is required to satisfy
hr + dr = tr. Only in this way can the difference in meaning of the same entity in different
associations be determined, and the meanings of each entity in the same association are
also consistent. Equivalent entities have a distributed representation, it can help the model
to deal with one-to many, many-to-one, or many-to-many relational model problems.

2.3. Multi-Task Learning

Multi-task Learning (MTL) is a machine learning technique that integrates several
related tasks for learning based on shared embedding. Multi-task learning is based on
several related tasks with shareable embedding. When there are correlations between
different learning tasks, multi-tasking can improve learning efficiency based on information
sharing between tasks.

3. Multi-Task Learning Recommendation Model for Directed Graph
Convolutional Networks

This section takes advantage of the respective advantages of the directed graph convo-
lutional network, the TransH algorithm, and multi-task learning to propose a multi-task
learning recommendation model for directed graph convolutional network (MTL-DGCNR),
the overall framework of which is shown in Figure 1, including the DGCNR layer, the
knowledge graph embedding layer, and the MTL learning layer. The DGCNR layer is
further divided into an input layer, a preprocessing layer, a DGCN layer, and an output
layer. In the input layer, the user’s micro-behavior mi and feature matrix X are defined
through the interaction information between the user and the product in the user session;
the data source of the preprocessing layer is mi and X, and the first-order proximity and
second-order proximity of each node are defined according to the generated directed graph.
The first-order proximity, the second in-degree proximity, and the second-order out-degree
proximity are used as the input of the DGCN layer; the DGCN layer includes the proximity
convolution module, the mapping Z module, and the attention mechanism module. The
proximity convolution module performs the convolution operation on the output of the
preprocessing layer. The local preference ZL of each node is obtained by Z module’s aggre-
gating, and the attention mechanism is used to assign appropriate weights to each node,
and finally the global session s is generated; the output layer is composed of a multi-layer
perceptron (MLP) and a softmax classifier. The global session s and the user candidate
item set ij are embedded into a multi-layer perceptron (MLP), which calculates the final
score through the softmax classifier to obtain the loss value of the DGCNR model. DGCNR
completes the training of commodity information and operation behaviors involved in the
training samples. In the knowledge graph embedding layer, the knowledge graph of the
product is defined as a triplet <entity, relationship, entity> or <entity, attribute, attribute
value>, and the TransH algorithm is used for learning them. In the MTL learning layer, the
knowledge graph embedding is introduced into the MTL paradigm as an auxiliary task to
assist the recommendation task of DGCNR. Each part is described in detail below.
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3.1. Input Layer of the DGCNR Layer

According to the definition of user micro-behaviors proposed by Wang et al. [47], a
session of an object in a sequence is a micro-behavior, that is, a micro-behavior is a com-
bination of an item and an operation committed to that item. First, the session sequence
s = {m1, m2, ..., mN} of the user’s micro-behavior is constructed, where mi represents
the user’s i-th behavior and is sorted in chronological order. Each user’s micro-behavior
includes a user–item interaction, such as clicking, browsing, purchasing, etc. mi can be
described as a pair of < itemi, operationi >, where itemi represents the commodity corre-
sponding to the i-th behavior operation, and operationi describes the specific characteristics
of the operation behavior. The flow chart of user micro-behavior construction is shown
in Figure 2.
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The statistical feature of the commodity is defined as item feature, and the user’s
behavior attribute is defined as operation feature. The statistical features of commodities
(item feature) describe the characteristics of commodities corresponding to the user’s op-
eration behavior, such as commodity ID, commodity category, commodity brand, and
commodity price. The user’s behavior attribute describes the user’s behavior details for a
certain commodity, including behavior type, behavior scene, and behavior time. Behavior
types include click, browse, add to cart, favorite, and purchase. Behavioral scenarios repre-
sent scenarios in which user actions occur, such as searches or advertisements. Behavior
time indicates the time corresponding to the user’s current behavior. The commodity
features and user behavior attribute features are modeled separately, and then connected
to the user’s micro-behavior. Each user behavior mi is represented by a one-hot vector{

m1
i , m2

i , . . . ., mF
i
}

to represent commodity features (commodity ID, commodity category,
commodity brand, etc.) and behavior attributes (scene, type, time, etc.), where F is the
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number of features for each behavior. All the one-hot vectors corresponding to the micro-
behaviors of all users constitute the user micro-behavior feature matrix, denoted by X.

3.2. Preprocessing Layer of the DGCNR Layer

The session sequence of the user’s micro-behavior is s = {m1, m2, ..., mN}. Let
V = {m1, m2, ..., mN} is the set of all items involved in all user session information with
duplicates removed. Each session sequence s is modeled as a directed graph Gs = (Vs, Es).
Each node represents an item ms,i ∈ V, and each edge (ms,i−1, ms,i) ∈ Es represents the
user’s operation ms,i after the operation ms,i−1 in session s. For example, Figure 3 describes
the user behavior sequence, there are three users in total, namely U1, U2, and U3, and the
corresponding user session graph is shown in Figure 4.
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In the directed graph, we should not only consider the neighbor nodes, but also the
proximity nodes of each node. In Figure 4, the definition [46] of first-order proximity
nodes and second-order proximity nodes is cited, and the corresponding proximity nodes
representation graph is shown in Figure 5. Node m1 and m2 are directly connected by an
edge, and node m2 (m1) is the neighbor node of m1 (m2), as shown in Figure 5a. Node m1
and node m4 have no edge directly connected, but they have a common neighbor m2, and
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edges <m2, m1> and <m2, m4> exist, m4 (m1) is the second-order in-degree neighbor node of
m1 (m4), as shown in Figure 5b; node m2 and node m6 are not directly connected by edges,
but they have a common neighbor m2, and edges <m1, m2> and <m6, m2> exist, m6(m1) is
the second-order out-degree proximity node of m1 (m6), as shown in Figure 5c.

Appl. Sci. 2022, 12, 8956 7 of 20 
 

  

m₁ 

m₂ 
m₃ 

m₄ 

m₅ 
m₆ 

(a) (b) (c) 

Figure 5. Proximity nodes representation graph. (a) First-order proximity; (b) In degree proximity; 
and (c) Out degree proximity. 

The proximity relationship between nodes in a directed graph can be described by a 
matrix. The first-order proximity relationship corresponds to the first-order proximity 
matrix, and the second-order proximity relationship corresponds to the second-order in-
degree proximity matrix and the second-order out-degree proximity matrix, they are all 
symmetric matrices. 

The first-order proximity matrix is represented by 𝐴ி, and the value rule for the ele-
ments at (i, j) is as follows. If there is no edge from node 𝑚 to node 𝑚 or from node 𝑚 
to node mi, then 𝐴ி(𝑖, 𝑗) = 0. If there is only one edge from node 𝑚 to node 𝑚, then 𝐴ி(𝑖, 𝑗) = 1. If there is only one edge from node 𝑚 to node 𝑚, then 𝐴ி(𝑖, 𝑗) = −1. 

There may be several items that appear repeatedly in the sequence, and a normalized 
weight needs to be assigned to the bidirectional edge. The elements of 𝐴ி are not limited 
to 0, 1, and −1, Taking the directed graph of Figure 4 as an example, the first-order prox-
imity matrix 𝐴ி can be expressed as: 

⎣⎢⎢
⎢⎢⎡ 0 1/2 −1 0 0 01/2 0 0 1 0 −11 0 0 −1 1 00 −1 1 0 0 10 0 −1 0 0 00 1 0 −1 0 0 ⎦⎥⎥

⎥⎥⎤ 
The element value at (i,j) in the second-order in-degree proximity matrix 𝐴ௌ is cal-

culated by Formula (1), and the element value at (i,j) in the second-order out-degree prox-
imity matrix 𝐴ௌ௨௧ is calculated by Formula (2), where 𝐴, represents the element at ad-
jacent matrix A of directed graph and k, m∈Vୱ. 𝐴ௌ(𝑖, 𝑗) =  𝐴,𝐴,∑ 𝐴,   (1)

𝐴ௌ௨௧(𝑖, 𝑗) =  𝐴,𝐴,∑ 𝐴,   (2)

The output of the input layer is the session sequences of the user’s micro-behavior, 
which is then input into the preprocessing layer. In the preprocessing layer, the session 
sequences are first converted into a directed graph, and then the first-order proximity ma-
trix, the second-order in-degree proximity matrix, and the second-order out-degree prox-
imity matrix are used to describe the various proximity relationships of each node in the 
directed graph. The proximity matrices AF, ASin, and ASout are used as the input data for 
directed graph convolutional network layer. 

3.3. DGCN Layer of the DGCNR Layer 
This section draws on DGCN proposed by Z Tong et al. [46] to define the learning 

process of the node vector in the graph. The user micro-behavior feature matrix X ob-
tained by the input layer and the proximity matrices AF, ASin, and ASout of the directed 
graph obtained by the preprocessing layer are used as the input data of the DGCN layer. 

Figure 5. Proximity nodes representation graph. (a) First-order proximity; (b) In degree proximity;
and (c) Out degree proximity.

The proximity relationship between nodes in a directed graph can be described by
a matrix. The first-order proximity relationship corresponds to the first-order proximity
matrix, and the second-order proximity relationship corresponds to the second-order in-
degree proximity matrix and the second-order out-degree proximity matrix, they are all
symmetric matrices.

The first-order proximity matrix is represented by AF, and the value rule for the
elements at (i, j) is as follows. If there is no edge from node mi to node mj or from node
mj to node mi, then AF(i, j) = 0. If there is only one edge from node mi to node mj, then
AF(i, j) = 1. If there is only one edge from node mj to node mi, then AF(i, j) = −1.

There may be several items that appear repeatedly in the sequence, and a normalized
weight needs to be assigned to the bidirectional edge. The elements of AF are not limited to
0, 1, and −1, Taking the directed graph of Figure 4 as an example, the first-order proximity
matrix AF can be expressed as:

0 1/2 −1 0 0 0
1/2 0 0 1 0 −1

1 0 0 −1 1 0
0 −1 1 0 0 1
0 0 −1 0 0 0
0 1 0 −1 0 0


The element value at (i,j) in the second-order in-degree proximity matrix ASin is

calculated by Formula (1), and the element value at (i,j) in the second-order out-degree
proximity matrix ASout is calculated by Formula (2), where Ak,i represents the element at
adjacent matrix A of directed graph and k, m∈Vs.

ASin(i, j) = ∑
k

Ak,i Ak,j

∑m Ak,m
(1)

ASout(i, j) = ∑
k

Ai,k Aj,k

∑m Am,k
(2)

The output of the input layer is the session sequences of the user’s micro-behavior,
which is then input into the preprocessing layer. In the preprocessing layer, the session
sequences are first converted into a directed graph, and then the first-order proximity
matrix, the second-order in-degree proximity matrix, and the second-order out-degree
proximity matrix are used to describe the various proximity relationships of each node in
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the directed graph. The proximity matrices AF, ASin, and ASout are used as the input data
for directed graph convolutional network layer.

3.3. DGCN Layer of the DGCNR Layer

This section draws on DGCN proposed by Z Tong et al. [46] to define the learning pro-
cess of the node vector in the graph. The user micro-behavior feature matrix X obtained by
the input layer and the proximity matrices AF, ASin, and ASout of the directed graph obtained
by the preprocessing layer are used as the input data of the DGCN layer. The convolution
operation are performed on X, AF, ASin, and ASout is shown in the Formulas (3)–(5).

ZF = D̃−
1
2

F AFD̃−
1
2

F X	 (3)

ZSin = D̃−
1
2

Sin ASinD̃−
1
2

Sin X	 (4)

ZSout = D̃−
1
2

Sout ASoutD̃
− 1

2
SoutX	 (5)

Among them,	 is the linear transformation operation based on the parameters {W, b}
(there is no expression under the activation function). D̃F, D̃Sin, D̃Sout represent the aug-
mented matrices of the first-order degree matrix, the second-order in-degree degree matrix,
and the second-order out-degree degree matrix. ÃF, ÃSin, and ÃSout represent the aug-
mented matrices of the first-order proximity matrix, the second-order in-degree proximity
matrix, and the second-order out-degree proximity matrix. X represents the micro-behavior
feature matrix. Then, the augmented matrix Ãx of the proximity matrix Ax and the aug-
mented matrix D̃x of the degree matrix Dx are defined, as shown in Equations (6) and (7).

Ãx = Ax + Iג (6)

D̃x = Dx + Iג (7)

where x ∈ {F, Sin, Sout}, ג is a parameter, I is the identity matrix. The degree matrix
corresponding to the proximity matrix Ax ∈ Rn×n is Dx, its calculation rule is shown in
Formula (8).

Dx(i, i) =
n

∑
j

Ax(i, j) (8)

It can be seen that ZF, ZSin, and ZSout not only obtain rich first-order and second-order
proximity feature information, but ZSin and ZSout also retain the directed graph structure
information. Based on these facts, we further design a fusion method to integrate the three
signals together, so as to retain the characteristics of the directed structure while obtaining
the surrounding information.

Directed graph fusion operation Γ is a signal fusion function of the first-order prox-
imity convolution output ZF, the second-order in-degree proximity convolution output
ZSin, and the second-order out-degree proximity convolution output ZSout. L is the sum of
the nodes.

ZL = Γ(ZF, ZSin, ZSout) (9)

For a given user micro-behavior feature matrix X and a directed adjacency matrix A,
after taking all the steps above, we can get the final directed graph result ZL = f (X, A).

A good model should consider global preference and local preference [48]. After the
convolution operation, the aggregation result ZL of the proximity nodes of each node is
obtained as the local preference of the session, in order to represent the global preference of
the session and consider that the information in the node embedding may have different
priorities, this paper adopts a soft-attention mechanism [49] (soft-attention) to assign
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appropriate weights to each proximity node embedded in the session. Specifically, for each
node, Zt(1 ≤ t ≤ L), its attention weight calculation formula is shown in (10).

at = βᵀσ(W1ZL + W2Zt + ba) (10)

ba is the bias, β ∈ R3d, W1, W2 ∈ R3d×3d are the weight parameters, then the global
session representation is shown in Formula (11).

sg =
L

∑
t=1

aiZt (11)

ai is the attention weight, and finally, the final representation of the session node is
shown in Formula (12). Among them, W3 ∈ Rd×6d.

s = W3
[
ZL; sg

]
∈ Rd (12)

3.4. Output Layer of the DGCNR Layer

After obtaining the embedding of the global node session s, this paper embeds s and
the candidate item set ij into the MLP layer. Then, the final score ŷsj is calculated by the
softmax classifier, so the calculation formula of ŷsj is (13).

ŷsj = so f tmax
(

MLP
(
s⊕ ij

))
(13)

In order to obtain a better model representation, it must be represented by training
enough training samples to represent <s,j,ysj>. If mj is the user’s next interaction item
after session s, then ysj = 1, otherwise ysj = 0. The binary cross-entropy is used as the loss
function of the session recommendation task, and its loss function is defined, as shown
in Formula (14).

LS = −∑
s∈S

∑
j∈I

{
ysjlog

(
ŷsj
)
+
(
1− ysj

)
log
(
1− ŷsj

)}
(14)

where S and I are the session set and the candidate set of items in the training sample.

3.5. Knowledge Graph Embedding Layer

Knowledge graph [47] is a knowledge base with a directed graph structure, and there are
one-to-many, many-to-one, or many-to-many relationships between nodes. Use G = (E, R, K)
to represent the complete knowledge graph, where E = {e1, e2,..., e|E|} represents the entity
set, R = {r1, r2,...,r |R|} denotes the relation set, K denotes the triplet set, |E| and |R| denote
the number of entities and relations. In triples K = <i,r,a>, i∈E denotes the head entity, a∈E
represents the tail entity, and r ∈ R represents the relationship between i and a.

In order to effectively learn the many-to-one, one-to-many, or many-to-many rela-
tionships in the knowledge graph, this paper uses the TransH algorithm [47] to learn the
knowledge graph embedding. TransH introduces two new definitions: hyperplane and
relation vector. Given a triple <i,r,a> in the knowledge graph embedding, for each relation r,
the hyperplane wr of relation r is defined, and relation vector dr on the hyperplane wr is
defined. The embedding of i and the embedding of a are projected onto the hyperplane wr,
respectively, denoted as i⊥ and a⊥. If < i, r, a > is defined correctly, and vector i⊥ and a⊥
can be connected in a low-error manner by the translation vector dr on the hyperplane wr.
A scoring function

∣∣∣∣i⊥+ dr − a⊥
∣∣|22 to measure the correctness of triples is established.

Suppose ||wr|| = 1, i⊥ is expressed by wr and i, and is shown in Formula (15). a⊥ is
expressed by wr and a, and is shown in Formula (16).

i⊥ = i− wᵀ
r iwr (15)

a⊥= a− wᵀ
r awr (16)
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The loss function formula of knowledge graph embedding is shown in Formula (17).

LK = ∑
<i,r,a>

||
(
i− wᵀ

r iwr
)
+ dr −

(
a− wᵀ

r awr
)
||22 (17)

3.6. Multi-T0061sk Learning Layer (MTL)

In MTL, the learning result of one task can be used as an auxiliary task to guide
the better learning of another task. The MTL-DGCNR model combines the knowledge
graph embedding task and the prediction recommendation task of DGCNR into one MTL
paradigm, and the knowledge graph embedding is used as an auxiliary task to assist
DGCNR completing the recommended task.

In the scenario of this paper, the goal of MTL is to maximize the posterior probability
of the parameter Φ of the model given the knowledge triple K and the training set Y of
DGCNR. The goal formula is obtained according to the Bayes rule as Formula (18) shown.

maxp(Φ|K, Y) = max
p(Φ, K, Y)

p(K, Y)
= maxp(Φ)p(K|Φ)p(Y|Φ, K) (18)

where p(Φ) is the prior probability of Φ, which is set to follow a Gaussian distribution with
a mean of 0 and a standard deviation of 1. p(K|Φ) is the probability of observing K given
Φ. p(Y|Φ, K) is the probability of observing Y given K and Φ, and they are defined as the
product of Bernoulli distributions. The comprehensive loss function of the MTL target is
shown in Equation (19).

L = LS + λ1LK + λ2

∣∣∣∣∣∣Φ∣∣∣|22 (19)

where
∣∣∣∣Φ∣∣|22 is the regularization term to prevent overfitting, and λ1, λ2 are control

parameters. MTL has two training strategies of alternating training and joint training [29].
The loss function for alternate training is shown in Formula (20).

Lalter = − ∑
s∈S

∑
j∈I

[
ysjlog

(
ŷsj
)
+
(
1− ysj

)
log
(
1− ŷsj

)]
+λ1 ∑

<i,r,a>
||
(
i− wᵀ

r iwr
)
+ dr −

(
a− wᵀ

r awr
)∣∣|22 + λ2 ||Φ||22

(20)

where S and I represent the session set and candidate item set in the training set Y, respec-
tively. The loss function for joint training is shown in Formula (21).

Ljoint = ∑
s∈S
{− ∑

j∈I

[
ysjlog

(
ŷsj
)
+
(
1− ysj

)
log
(
1− ŷsj

)]
+λ1 ∑

<i,r,a>
||
(
i− wᵀ

r iwr
)
+ dr −

(
a− wᵀ

r awr
)∣∣|22+ ||Φ||22 (21)

3.7. Time Complexity Analysis of MTL-DGCNR

The time spent in this model is mainly determined by DGCN, the time spent on a
layer is related to the following quantities:

M represents the output feature matrix size of each convolution kernel;
K represents the side length of each convolution kernel;
Cin represents the number of channels of each convolution kernel, that is, the number

of input channels, that is, the number of output channels of the previous layer;
Cout represents the number of convolution kernels that this convolution layer has, that

is, the number of output channels. The output feature matrix size M is determined by the
input matrix size X, the convolution kernel size K, Padding, and Stride, which are expressed
as follows: M = (X − K + 2 × Padding)/Stride+1.

It can be seen that the time complexity of each convolution layer is completely deter-
mined by the square of the feature matrix output size of each convolution kernel (M2), the
area of the convolution kernel (K2), the number of input channels (Cin) and the number of
output channels (Cout). The time complexity of this layer is: O(M2 × K2 × Cin × Cout).
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The overall time complexity of DGCN is related to the following quantities:
D represents the depth of the neural network;
l represents the l-th convolutional layer of the neural network;
Cl represents the number of output channels Cout of the l-th convolutional layer, that

is, the number of convolution kernels in this layer.
Cl−1 represents the number of input channels Cin of the l-th convolutional layer. Then,

the time complexity of the entire DGCN is: O(∑D
l=1 M2

l × K2
l × Cl−1 × Cl).

So, the time complexity of the entire model MTL-DGCNR is the same as above.

4. Experimental Results and Analysis

In this section, the datasets and experimental settings are first described, and then
experiments are designed to validate the performance of the model MTL-DGCNR, and the
results under different experimental settings are analyzed in detail.

4.1. Experimental Datasets

This paper uses the JData and Retailrocket e-commerce website datasets, and the JData
datasets with cold start items to evaluate the MTL-DGCNR model. The JData dataset is
provided by the JD.com website. It contains the user’s operation behavior of items on this
website within two months, including 3,708,785 behavior times of 105,180 users. Action
types include clicks, purchases, reviews, add to cart, and collect. Item attributes used in the
experiment include id, brand, type, and price. Retailrocket e-commerce website behavior
data is real e-commerce website user behavior data, which includes the behavior data
of users visiting the website within 4.5 months, including 2,756,101 behavior events of
1,407,580 users. User behavior operations are divided into three categories: click, add to
cart, and purchase. Among them, there are 2,664,312 browsing behaviors, 69,332 adding
shopping cart behaviors, and 22,457 purchasing behaviors.

Before the experiment starts, the datasets are briefly processed. The threshold for the
duration of the sessions in the two e-commerce datasets is set to 1 h to separate different
sessions. Sessions with length one and items appearing less than three times in the datasets
are also filtered out. The two datasets are divided into training and test sets in chronological
order, taking the first 90% of user behaviors as the training set and the last 10% of the user
behaviors as the test set. In the model’s test session, the model first computes the matching
function for all items, and then generates a top-k recommendation list based on the scores.

In order to alleviate the cold start problem of commodities, this paper adopts a different
method from the previous sequential recommendation model (SR). This paper adds an
additional operation to the data set to retain the commodities that only appear in the test
set, namely cold start commodities. This results in a larger proportion of cold start items in
sparse datasets. In contrast to previous sequential recommendation models, these cold start
items are randomly initialized with embedding, and since they do not involve any training
samples, they cannot be adjusted during model training. As a result, recommendations
for these items are sometimes less than ideal. The data set statistics table is shown in
Table 1, where (“N”) represents the data set with cold start items, and “new%” represents
the proportion of behaviors designed with cold start items to all behaviors in the test set.
“#” indicates the number.

Table 1. Data set statistics table.

Data Session # Session Length Item #
(New%) Item Frequency Operation #

Retailrocket 28,376 5.172 10,485 16.236 3
JData 41,852 5.372 13,454 18.186 5

JData(N) 42,600 5.383 13,909 (2.63%) 17.654 5
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4.2. Compared Models

This paper compares with the following models one by one and verifies the superiority
of the algorithm proposed in this paper.

FPMC [50] is a sequence recommendation method based on Markov chains and matrix
factorization.

STAMP [51] captures the user’s general interest and current interest in the current
session using an attention network.

GRU4REC [25] uses RNN to model user sequences for session-based proposals.
NARM [52] uses an RNN with an attention mechanism to capture the user’s main

purpose and sequential behavior, and adds an attention mechanism to capture the user’s
general interest and current interest in the current session.

S-POP recommends items with the most user interactions to users, that is, recommend
Top-N frequent items in the training set and the current session.

Item-KNN [53] uses cosine similarity to define the degree of similarity between ses-
sions and recommends items that are similar to previous clicks.

SR-GNN [46] uses graph neural network to capture complex item information trans-
formation and uses attention mechanism to capture long-term and short-term interests.

MKM-SR [34] proposes user micro-behavior, that is, the separation of commodity se-
quence and operation sequence of user interaction. The commodity sequence is constructed
as a conversation graph and embedded in a gated graph neural network (GGNN). The
operation sequence is embedded in a recurrent network of a gating mechanism (GRU)
and merges the two embedding sequences into user micro-behaviors. At the same time,
the knowledge graph is constructed and the TranH algorithm is used to process triples as
auxiliary information to assist the recommendation of the SR model.

4.3. Experimental Parameters

For a fair comparison, the model in this paper adopts the same baseline standard,
which is to set the vector embedding dimension d = 100 for the three datasets. In addition,
all parameters are initialized with a Gaussian distribution with a mean of 0 and a standard
deviation of 1. The DGCNR step size H is set to 1. This model adopts the Adam [54]
optimizer. The learning rate is set to 0.001, and the batch size is set to 128. For other models,
this paper uses their default hyper parameter settings except for the embedding dimension.
The control parameter λ1, with respect to Formula (19), is set to 0.0001, and the penalty λ2
for the L is set as 10−5.

4.4. Experimental Evaluation Metrics

In order to accurately evaluate the performance of each model in the recommendation
task, this paper adopts three evaluation indicators commonly used in the recommendation
field, which are Recall@K, MRR@K, and AUC. This paper sets the parameter as K = 20. The
recall rate (Recall@K) refers to the ratio of the number of relevant results retrieved in the top
K results to the number of all relevant results in the library, and it measures the recall rate
of the retrieval system, the formula is shown as (22).

Recall@K =
1
M ∑ Ihit (22)

Among them, M represents the total number of recommendations, and Ihit represents
the indicator function. If the target item appears in the current recommendation list, the
value of the indicator function is 1, otherwise it is 0.

The mean reciprocal rank (MRR) reflects whether the items we found are placed in a
more obvious position for users, emphasizing the positional relationship and order, the
formula is shown as Formula (23).

MRR@K =
1
N

N

∑
i=1

1
ranki

(23)
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where N is the total number of users, and ranki is the position of the i-th user’s real visit
value in the recommendation list. If this value does not exist in the recommendation list,
then ranki → ∞ .

A positive sample and a negative sample are randomly given, the true representative
meaning of AUC is the probability that the predicted score of the positive sample is greater
than the predicted score of the negative sample. The larger the AUC, the higher the
probability that the model predicts the sample to be a positive sample than the probability
that the model predicts that the sample is a negative sample, the formula is shown as
Formula (24).

AUC =
∑i∈PositiveClass ranki −

M(1+M)
2

M× N
(24)

Among them, M represents the number of positive samples. N represents the number
of negative samples, and ranki represents the serial number of the i-th sample.

4.5. Evaluation Index Values Analysis

In order to prove the practical significance of the model MTL-DGCNR, this paper will
carry out comparison experiments on the same eight existing recommendation models
listed in Section 4.2 on three different datasets. The evaluation index values of the ten
models on the three datasets obtained through experiments are shown in Table 2.

Table 2. Evaluation index values for ten models on three datasets.

Model
Retailrocket JData JData(N)

Recall@20 MRR@20 Recall@20 MRR@20 Recall@20 MRR@20

FPMC 0.2372 0.1104 0.3548 0.1253 0.2647 0.1454
STAMP 0.3524 0.1275 0.4165 0.1554 0.3855 0.1479

GRU4REC 0.6048 0.2982 0.7076 0.4381 0.6382 0.3115
NARM 0.3417 0.1202 0.4217 0.1596 0.3769 0.1388
S-POP 0.5036 0.2081 0.5913 0.2284 0.5458 0.2247

Item-KNN 0.0671 0.0165 0.1528 0.0955 0.1357 0.0165
SR-GNN 0.6802 0.3584 0.7242 0.4114 0.7154 0.4013
MKM-SR 0.7024 0.3692 0.7346 0.4116 0.7187 0.4117

MTL-DGCNR 0.7096 0.3788 0.7513 0.4206 0.7376 0.4155

Overall, according to the evaluation index values in Table 2, the MTL-DGCNR model
proposed in this paper achieves the best results on three different datasets, which shows
that the method proposed in this paper is feasible and effective.

4.6. Visualization of Experimental Results

This paper visualizes the training results of each model’s Recall@20 in order to observe
the change process of the model recall rate (Recall@K) more intuitively. The recall rate
change curve of each model in the JData datasets is shown in Figure 6. The recall rate
variation curve of the model in the Retailrocket datasets is shown in Figure 7. The recall
rate variation curve of each model in the JData (N) datasets with cold start items is shown
in Figure 8.

Observing Figures 6 and 7, it can be seen that the iteration speed of the four models
MTL-DGCNR, MKM-SR, SR-GNN, and GRU4Rec is significantly higher than other models.
This also verifies that MTL-DGCNR has a stronger representation learning ability than other
models. Potential node features are continuously mined through iterations at each layer to
obtain a more complete feature representation. This learning method is obviously superior
to models that utilize hand-extracted features, such as Item-KNN, FPMC, NARM, etc. In
addition, the late learning ability of the MTL-DGCNR model is better than other neural
network hybrid models. This shows that the importance of considering the second-order
proximity nodes in the directed graph. After continuous iteration, the characteristics of
proximity nodes between each node are constantly enhancement. This makes it easier for
samples to be classified, thereby obtaining better iterative effects.
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and MKM-SR is better than that of SR-GNN. This shows that adding knowledge graph
learning as auxiliary training can effectively alleviate the cold start problem. In addition,
although the iteration of the GRU4Rec model is faster in the early stage, there are obvious
shortcomings in the later stage. This means that the GRU model only models the single-
item transfer relationship between two proximity items, easily ignoring other items in the
session, and through the multi-layer neural network, the front hidden layer will affect
the later hidden layer, and the propagation of the multi-layer neural network to the front
hidden layer will affect the subsequent hidden layers. Therefore, it is difficult to accurately
estimate each user representation from each session. In summary, the RNN model is not as
effective as the GNN model in dealing with the cold start problem.

4.7. Comparative Analysis of Alternating Training and Joint Training

In order to prove the superiority of using alternating training in this paper, this paper
uses the learning curves of the two training strategies to compare the applicability of
the MTL-DGCNR model. In addition, this paper also includes pretrained variants for
comparison. The item embedding is first pretrained by TransH, then they are input into the
MTL-DGCNR model and are done parameter tuning only by the loss LS of the equation.
This paper measures the pros and cons of the three training methods through the changes
of the MRR@20 curve on the Retailrocket and JData datasets, because MRR@20 can reflect a
better ranking than Recall@20. The learning curves of the three specific training strategies
are shown in Figures 8 and 9.
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The curves in Figures 9 and 10 show that although the pretraining model achieves better
results at the beginning of training, it is significantly inferior to alternating and joint training
at the convergence stage. This also proves that multi-task learning is significantly superior
to single-task knowledge graph pre-training. In addition, according to Formula (20), the
commodities that appear multiple times in the training set session will adjust the loss LK
multiple times in each epoch of alternate training so that the knowledge learning embedding
is gradually biased towards the auxiliary task LK. This method can reduce the loss (LS) of the
main task DGCNR and improve the learning performance of the overall model.
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4.8. The Influence of Different Control Parameter λ1 Values on the Model

The value of the control parameter λ1 will have a direct impact on the MTL loss
and will also affect the final recommendation result of the model. When the interval of
parameter λ1 is set at [0.00001, 0.1], the performance of the model changes very little. After
continuous adjustment, this paper finds that when λ1 = 0.0001, the MTL-DGCNR model
can obtain the highest score and the model performance is optimal. The effect diagram of
different values of the control parameter λ1 is shown in Figure 11.
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When the value of λ1 is too small, it means that the knowledge learning embedding
as an auxiliary task is given too little weight. This results in that the auxiliary task has
less influence on the main task, and the model cannot be optimized. If the value of λ1 is
too large, it means that the auxiliary task is given too much weight. This will also cause
the auxiliary task to interfere with the learning of the main task, which will also cause the
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model to fail to achieve optimality. Therefore, after continuous adjustment, this paper finds
that when λ1 = 0.0001, the model can reach the optimal level.

5. Conclusions

The current recommendation models all have the defects of cold start and single
recommendation items more or less. This paper mainly studies a multi-task learning
recommendation model with a directed graph convolution network (MTL-DGCNR) for
the recommendation field of e-commerce. This model integrates related technologies
such as a directed graph convolutional network, a soft attention mechanism, a TransH
algorithm, and multi-task learning. The working principle of MTL-DGCNR is expounded
and the superiority of this model is verified experimentally. However, there are still some
deficiencies in this model, and further research is planned in two aspects in the future.

(1) In the multi-task learning mode, the data preprocessing stage not only needs to
build the graph structure data of the user-commodity interaction information, but also
needs to build the knowledge map of the user and the commodity. Therefore, a relatively
large amount of work and parameters are undoubtedly increased in the preparatory stage.
Even if multi-task learning proves to be effective in improving the performance of the
model, the complexity of the model is still high. It is hoped that the complexity and
parameter quantity of the model can be reduced through more in-depth research without
reducing the performance of the model.

(2) In data sets with dense user behaviors or many types of user operation behaviors,
the workload of the MTL-DGCNR model in processing each node and each directed edge
will become larger, and the speed of model convergence may also be affected accordingly. If
the gated graph sequence neural networks (GGNN) are used as the main recommendation
task, and the gating mechanism is used to relatively reduce the influence of the front hidden
nodes on the back hidden nodes, the convergence and performance of the model should
be better. However, corresponding algorithm improvements are needed to adapt to the
processing of directed graph structured data.
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RNN Recurrent Neural Network
GCN Graph Convolutional Network
GNN Graph Neural Networks
DGCN Directed Graph Convolutional Networks
MTL Multi-task Learning
MTL-DGCNR Multi-Task Learning Recommendation Model for Directed Graph

Convolutional Networks
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MLP Multi-Layer Perceptron
DGCNR Recommendation Model for Directed Graph Convolutional Networks
s session sequence
mi user’s i-th micro-behaviors
AF the first-order proximity matrix
ASin the second-order in-degree proximity matrix
ASout the second-order out-degree proximity matrix
ÃF the augmented matrix of the first-order proximity matrices.
ÃSin the augmented matrix of second-order in-degree proximity matrices.
ÃSout the augmented matrix of second-order out-degree proximity matrices.
Dx the degree matrix
D̃F the augmented matrix of degree matrices of first-order
D̃Sin the augmented matrix of degree matrices of second-order in-degree
D̃Sout the augmented matrix of degree matrices of second-order out-degree.
X the micro-behavior feature matrix
ZL the local preference of a session
at the attention weight
sg the global session representation
ij the candidate item set
ŷsj the final score calculated by the softmax classifier
S the session set
I the candidate set of items
wr the hyperplane
i⊥ the embedding of i is projected onto the hyperplane wr
a⊥ the embedding of a is projected onto the hyperplane wr
LS the loss function of the session recommendation task
LK the loss function of knowledge graph embedding
L the comprehensive loss function of the MTL target
Lalter the loss function for alternate training
Ljoint the loss function for joint training
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