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Abstract: Recently, with the expansion of the smart city and autonomous driving-related technologies
within complex urban structures, there has been an increase in the demand for precise 3D modeling
technology. Wearable sensor systems can contribute to the construction of seamless 3D models
for complex urban environments, as they can be utilized in various environments that are difficult
to access using other sensor systems. Consequently, various studies have developed and utilized
wearable sensor systems suitable for different target sites and purposes. However, studies have
not yet suggested an overall framework for building a wearable system, including a system design
method and an optimal calibration process. Therefore, this study aims to propose a framework for
wearable system development, by presenting guidelines for wearable sensor system design and a
calibration framework optimized for wearable sensor systems. Furthermore, calibration based on
point–plane correspondences is proposed. A wearable sensor system was developed based on the
proposed guidelines and it efficiently acquired data; the system calibration and data fusion results for
the proposed framework showed improved performance in a comparative evaluation.

Keywords: wearable sensor system; framework development; 3D smart city modeling; point–plane
correspondence; system calibration; data fusion

1. Introduction

The demand for detailed 3D modeling of urban landscapes has recently increased in
tandem with the growing demand for smart cities and autonomous driving technologies [1].
Precise 3D modeling can be used to solve urban problems [2], as well as for autonomous
driving and vehicle localization in GNSS-denied environments [3]. Furthermore, 3D
modeling that reflects spatiotemporal changes facilitates the implementation of digital
twins and smart cities [4]. Thus, it is considered an essential element of future technologies,
with applications in the city and for transportation.

Multi-sensor systems have been considered among the important research topics of
the past few years, owing to their ability to increase the efficiency of 3D modeling [5,6].
In particular, the usability of wearable multi-sensor systems equipped with LiDAR and
cameras is increasing with the demand for 3D modeling of complex urban structures, such
as indoor and underground spaces, urban canyons, alleys, and mixed traffic streets [3].
Wearable systems have several advantages, the system offers sufficient 3D information even
in environments with insufficient texture or discontinuous depth [7–9]. Wearable systems
mounted on the human body are available in various environments. More specifically,
wearable systems can be operated in complex environments where the accessibility of
mobile platforms is severely restricted, such as indoors, underground spaces, narrow alleys,
mixed traffic streets, and historical buildings [10–12].

Although there are significant advantages of the wearable multi-sensor system for
urban 3D modeling, for accurate data acquisition and fusion, the following must be carefully
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considered in system development. First, the sensor arrangement method for efficient data
acquisition must be reviewed. Wearable sensor systems have a small maximum payload,
thereby limiting the number and types of sensors used. Therefore, the configuration and
arrangement of sensors must be reviewed, with the aim of acquiring data more efficiently
using a relatively small number of sensors. Second, self-calibration of the on-board sensors
is required. Self-calibration is the process of estimating the interior orientation parameters
(IOPs) and the distortion parameters of the camera by determining the mathematical model
equation related to the data acquisition of each sensor. Finally, for accurate data fusion,
precise system calibration should be conducted to determine the geometric relationships
between sensors. In particular, the system calibration for wearable systems should be
conducted especially carefully for the following reasons. For efficient data acquisition,
wearable systems have generally been designed to minimize the overlapping of FOV (Field
Of View) between sensors. However, such a sensor arrangement obstructs the acquisition
of common control features between sensors and limits the accuracy of system calibration.
Therefore, the design and characteristics of the wearable system should be considered
during the system calibration procedure.

1.1. Previous Studies

Previous studies related to wearable systems have developed systems suitable for
the purpose of each study; however, details have been lacking regarding the placement
method for the sensors of the wearable system for efficient data acquisition. Gong et al. [3]
developed a backpack LiDAR system comprising two 3D LiDARs for 3D modeling of
underground parking in a GNSS-denied environment. Filippo et al. [11] developed a
wearable mapping system using a hand-held laser scanner for 3D modeling of a historical
site. Chahine et al. [10] performed data fusion for data acquired in the forest area using
a backpack-type wearable system equipped with LiDAR and multiple optical cameras.
Liu et al. [13] developed a system to help visually impaired people move indoors using
a wearable system composed of LiDAR and a camera. However, these studies did not
provide specific criteria or reasons for the arrangement and design of their sensors and
sensor systems. One previous study [14] related to this research indicated the method for
LiDAR sensor arrangement within the backpack system; however, that study dealt only
with LiDAR.

Self-calibration of optical cameras and LiDAR sensors has been sufficiently verified
through various previous studies. The calibration methodology for conventional and
fish-eye lens cameras has been established through various studies [15–24] from the 1960s
to recent years. Furthermore, regarding LiDAR self-calibration, various methodologies
have been proposed and verified through numerous studies [25–30]. Therefore, the self-
calibration of optical cameras and LiDARs can be performed reliably and accurately via the
approaches of previous studies.

Various studies have proposed multi-sensors system calibration approaches; however,
most of the previous studies focused on the characteristics of the sensor without considering
the platform used in the development of the system calibration approach. In other words,
previous approaches mainly considered the correspondences between control features
(points, lines, and planes) of sensor data, not the characteristics of the sensor arrangement
according to the platform.

The point–point correspondence-based approach has been the most commonly used
methodology of system calibration. This approach allows stable calibration, because several
matched points robustly limit the relative position of the sensors. Therefore, many previous
studies used the point–point correspondence-based approach to conduct system calibration
between an optical camera and a LiDAR, using the camera images and intensity images [31–36]
or LiDAR point clouds [37–44]. However, this approach has the disadvantage that the accuracy
is dependent on the resolution of the data and the FOV overlap between the sensors [45–49].

The conventional point–plane correspondence-based approach is a calibration method
for an optical camera and a LiDAR. The constraint condition of this approach is that
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LiDAR point clouds for a plane should be on the corresponding plane derived from the
optical images. This approach has the advantage that it requires nothing but checkerboard
calibration targets in the testbed configuration [50]. Thus, several studies have employed the
conventional point–plane correspondence-based approach [51–55]. However, the approach
has a disadvantage in that (i) the application is limited to a system consisting of an optical
camera and a LiDAR with sufficient FOV overlap, and (ii) it requires an additional process
for extracting 3D plane information from optical images.

The line–plane and point–line correspondence-based approaches are generally used
for the systems with 2D LiDAR and cameras. These approaches offer the advantage that
the positional relationship between control features is strongly constrained, and they derive
accurate results [56,57]. Therefore, they have been utilized in various studies dealing
with 2D LiDAR [56–64]. However, the line–plane and point–line correspondence-based
approaches are not suited for 3D LiDAR systems, and require an additional process to
extract the edge points or lines of the calibration target.

The common disadvantages of previous system calibration approaches include their
unsuitability for systems consisting of sensors with insufficient FOV overlap. Furthermore,
previous system calibration methods for multi-sensor systems generally required pre-
processing to measure GCP (Ground Control Point) coordinates. The procedure for GCP
measurement increases the time required for system calibration and makes periodic system
calibration difficult.

1.2. Purpose of Study

The purpose of this study is to propose a framework for building a wearable system
that generates accurate RGB-D data. More specifically, the objectives of this study are:
(1) to suggest guidelines for the design of a wearable multi-sensor system, (2) to propose a
framework that can accurately conduct calibration of a wearable sensor system, and (3) to
propose an efficient system calibration method.

In this study, criteria for sensor placement of wearable systems are suggested for
efficient and accurate RGB-D data generation. For efficient data acquisition and accurate
data fusion, sensor placement and system design should be determined carefully. However,
most previous studies have not expanded upon the details of the sensor placement for
wearable systems. Therefore, this study suggests the criteria to be considered in the sensor
arrangement of a wearable sensor system.

This study proposed a calibration framework optimized for wearable sensor systems.
Because the number of mounted sensors in a wearable system is limited, the FOV overlap
between the same modal sensors is generally kept small for efficient data acquisition.
Therefore, previous calibration methods for sensors with high FOV overlap are not suitable
for wearable systems calibration. The proposed calibration framework is optimized for
wearable sensor systems and can be applied to various sensor systems. Sensor-bundle
configuration proceeds based on interpretation of FOV overlap between sensors, and
subsequently conducts system calibrations for each bundle.

Finally, in this study, a calibration method based on point–plane correspondence is
proposed for more efficient system calibration. Previous calibration methods for multi-
sensor systems require (i) the coordinates of GCPs or the length of control lines, or (ii)
processes to extract points or lines on the edge of the calibration target of the test-bed.
On the other hand, the proposed method does not require the pre-processed coordinates
of GCPs for point or line extraction on the edge of the calibration target. Therefore, the
proposed method contributes to efficient system calibration. Furthermore, the proposed
method has high utility because it is applicable to sensors with low FOV overlap. It is
based on bundle adjustment (BA) using a co-linearity condition, which is commonly used
in optical camera calibration.

This paper describes the research in the following order. Section 2 presents the sensor
arrangement method for the backpack-based wearable system used in this study, and
describes the actual fabricated sensor system. Section 3 provides a detailed description of
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the proposed calibration framework. The contents of self-calibration for the optical camera
and LiDAR sensor (mounted in the wearable system) in the previous study are briefly
introduced, and the details of the proposed system calibration framework are described.
Section 4 evaluates the proposed framework through the calibration of a wearable sensor
system and the analysis of data fusion results. Finally, Section 5 considers the significance
of this study and presents suggestions for future research.

2. Design and Production of Wearable Sensor System

In this study, a wearable sensor system was designed based on efficient data acqui-
sition, system calibration, and data fusion accuracy. The wearable sensor system was
designed in two major steps. First, the platform to be used and the type of sensor to be
used were determined; second, the number of sensors and the sensor arrangement were
determined through simulation.

2.1. Platform and Sensors

The platform and sensors used for building the wearable sensor system were the
backpack platform, optical camera, and LiDAR, respectively. The reasons for selecting
the backpack as the platform of the system were as follows. First, the backpack platform
can accommodate more sensors than other wearable platforms. Also, the backpack-based
wearable system was easier to move through various environments, leaving the wearer’s
hands free. Moreover, it could be used in a variety of ways owing its capacity if necessary
to be mounted on a wheel-based platform with a simple modification.

This study used an optical camera and 3D LiDAR for RGB-D data generation, and the
sensor to be used was determined as shown in Table 1. First, fisheye lens cameras were
employed to acquire RGB data efficiently. The advantage of a fisheye camera is its ability to
acquire data efficiently through a wide FOV compared to a conventional camera. Therefore,
the system in this study was developed using fisheye cameras to minimize the number of
mounted sensors. The LiDAR sensor was adopted in the system for accurate 3D depth data
acquisition. In other words, because 3D modeling using only optical images could result in
low accuracy in an environment where feature points were insufficient or similar textures
were repeated, in this study a multi-modal sensor system was constructed composed of an
optical camera and LiDAR.

Table 1. Specifications of used sensors.

Sensor Model Specifications

Camera

Lens Sennex DSL315 Projection model Fish-eye lens
(equisolid angle projection)

Body Cameleon3 5.0 MP
Color USB3 Vision

Image size
(pixel size)

2448 × 2448
(0.00345 mm)

LiDAR Velodyne HDL-16E

Channel number 16

FOV
Horizontal 360◦

Vertical 30◦ (±15◦)

Resolution
Horizontal 0.5◦ (10 Hz)

Vertical 2◦

2.2. Design of Wearable Sensor System

Sensor placement criteria were prepared for efficient data acquisition and accurate
data fusion, and the design of the wearable sensor system was agreed. The wearable sensor
system design criteria determined in this study were as follows:

1. Criterion 1. One LiDAR sensor is installed to acquire data about the surrounding
environment without gaps, while one LiDAR is installed horizontally on the ground
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to enable data fusion using algorithms such as SLAM (Simultaneous Localization And
Mapping) or ICP (Iterative Close Point).

2. Criterion 2. For efficient data acquisition, the overlapping of FOV is minimized
between cameras of the same type, thereby allowing data for a wider area to be
acquired with one shot.

3. Criterion 3. The FOV of the optical camera and LiDAR allows sufficient overlap to
enable efficient data fusion between different types of sensors.

4. Criterion 4. All sensors are positioned to exhibit a sufficient overlapping of FOV with
at least one other sensor to ensure system calibration accuracy.

In this study, a wearable sensor system was designed based on the above criteria,
followed by a review of the design created through simulation. Figure 1 shows the final
determined sensor arrangement and the data acquisition simulation results obtained. As
shown in Figure 1a, the sensor system comprised two fisheye lens cameras and two LiDARs.
According to Criterion 1, LiDAR1 was installed horizontally and LiDAR2 was installed
diagonally on the back of the backpack. The diagonal placement of LiDAR2 was determined
through a previous study [14] on Li-DAR placement method for efficient data acquisition.
According to Criterion 2, the fisheye cameras were installed to face the left and right of the
backpack, respectively. Figure 1b,c shows the data acquisition simulation results. Here, the
red and green crosses in the figure indicate the areas covered by fisheye cameras 1 and 2,
respectively, and the cyan and purple dots indicate the areas covered by LiDARs 1 and 2,
respectively. The figure shows that the design of the wearable system satisfies each criterion
as follows. First, the fisheye cameras were placed such that their FOVs did not overlap to
acquire image data for all areas around the system. Next, the LiDAR sensors seamlessly
acquired 3D information of the surrounding area, while point cloud data (light blue dots)
that can be used in algorithms such as SLAM was acquired through LiDAR1. Finally, with
respect to Criteria 3 and 4, the FOV of camera 1 overlapped with that of LiDARs 1 and 2
in the left direction of the system movement direction (yellow arrow), while the FOV of
camera 2 overlapped with that of LiDARs 1 and 2 in the right direction.

Figure 2 shows the backpack-based wearable sensor system that was produced based
on the design. First, a reference LiDAR (LiDAR1 in Figure 1) was installed at the top of
the platform, and depth data was obtained horizontally. The second LiDAR (LiDAR2 in
Figure 1) was installed at low overlap ratio with LiDAR 1 on the back of the platform in
a 60-degree diagonal direction. Two fish-eye lens cameras were installed at the top-left
(camera 1) and top-right (camera 2) of the platform to acquire images for the left and right
sides of the platform, respectively.
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3. Calibration Framework for Wearable Sensor Systems

The calibration framework for the wearable sensor system proceeded in two stages:
sensor self-calibration and system calibration. In the sensor self-calibration phase, the IOPs
and distortion parameters of the fisheye camera and LiDAR embedded in the system were
calculated. Next, in the system calibration step, ROPs that describe the relative geometric
positions between the sensors were derived.

Self-calibrations for onboard sensors were performed using the methodology proposed
in the previous study paper of this research. The self-calibration of the fisheye cameras was
performed using the approach proposed by Choi et al. [24]. Next, for self-calibration of LiDAR,
the method proposed by Kim et al. [30] was applied. Further details regarding self-calibration
for the fisheye camera and LiDAR can be found in related previous studies [22–24,30].

In the proposed system calibration, the relative location between the sensors exhibiting
a relatively high overlap ratio was first estimated through system calibration, based on
which the relative locations for all sensors were derived. The method comprised three
steps: (i) sensor-bundle configuration, (ii) system calibration for each sensor-bundle, and
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(iii) global optimization for the entire sensor system. First, in the sensor-bundle configura-
tion stage, a camera and LiDAR with a relatively high FOV overlap ratio were checked and
set as one sensor-bundle. Next, system calibration was performed for each sensor-bundle
set employing the point–plane correspondence-based approach. Finally, in the global opti-
mization step, the ROPs of all other sensors based on the reference sensor were calculated
using ROPs between sensors derived through system calibration.

3.1. Sensor-Bundle Configuration

In this study, a multi-sensor-bundle was constructed by selecting sensors with a high
FOV overlap ratio among sensors installed in the multi-sensor system. In case of insufficient
FOV overlap ratio between a sensor and the reference sensor, accuracy of estimated ROPs
can be reduced owing to insufficient control feature correspondences. Therefore, in this
study, calibration of sensors with high FOV overlap was first carried out, and a sensor-
bundle was constructed more stably to obtain the final relative orientation parameters
(ROPs) using the result.

Figure 3 describes the sensor-bundle configuration method for the multi-sensor system
used in this study. Figure 3a shows the ROPs to be derived from the wearable system
used in this study. LiDAR 1 was set to reference sensor, and the ROPs of the two cameras
and LiDAR 2 were targets to be estimated from system calibration. However, regarding
the manufactured wearable system, extracting a common control object and securing the
accuracy of the ROPs was challenging owing to the very low FOV overlap ratio of LiDAR1
and LiDAR2. Therefore, in this study, four sensor bundles (LiDAR1-Camera1, LiDAR1-
Camera2, LiDAR2-Camera1, and LiDAR2-Camera2) were composed of an optical camera
with a high FOV overlap ratio and LiDAR, as shown in Figure 3b. Subsequently, in the
system calibration step, the ROPs (ropC1

l1 , ropC2
l1 , ropC1

l2 , and ropC2
l2 ) of each sensor-bundle

were estimated, whereas in the global optimization step, the final ROPs (ROPc1
l1 , ROPC2

l1 ,
and ROPl2

l1) were derived using the ROPs of sensor bundles.
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3.2. Point-Plane Correspondences Based System Calibration for Sensor Bundles
3.2.1. Point-Plane Correspondence of the Proposed System Calibration Method

The system calibration approach proposed in this study is based on the point–plane
correspondence condition that “all control points estimated using camera images should be
on the plane extracted from the LiDAR point cloud.” The manner in which the point-plane
correspondences of the proposed method determine the geometric relationship between the
sensor data is indicated in Figure 4; where the green, black, and blue dots represent LiDAR
point clouds, GCPs, and image control points corresponding to GCPs corresponding to
the yellow plane, respectively, the white dots are the initial GCPs to be input into bundle
adjustment, and the red ellipses are the error ellipses of the initial GCPs.

When a planar target with GCPs was captured through LiDAR and a camera, the
GCPs (black dots) positioned on the target plane were positioned on a planar patch (yellow
rectangle) obtained from the LiDAR data. Therefore, any point on the planar patch (white
point) can be set as the initial coordinates of GCPs, and the set GCPs yield an error ellipse
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that exhibit large and very small errors in the plane (U-V plane) and vertical directions,
respectively, as shown in Figure 4. Exterior orientation parameters (EOPs) of each image
expressed in the LiDAR coordinate system can be derived by performing BA using the
collinearity condition between the image control point (blue dot) and the set initial GCPs;
where the coordinates of the initial GCPs are arbitrarily selected on the plane, and those of
the initial GCPs are adjusted in the BA process by reflecting the size of the error ellipse in
the BA weight matrix.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20 
 

3.2. Point-Plane Correspondences Based System Calibration for Sensor Bundles 
3.2.1. Point-Plane Correspondence of the Proposed System Calibration Method 

The system calibration approach proposed in this study is based on the point–plane 
correspondence condition that “all control points estimated using camera images should 
be on the plane extracted from the LiDAR point cloud.” The manner in which the point-
plane correspondences of the proposed method determine the geometric relationship be-
tween the sensor data is indicated in Figure 4; where the green, black, and blue dots rep-
resent LiDAR point clouds, GCPs, and image control points corresponding to GCPs cor-
responding to the yellow plane, respectively, the white dots are the initial GCPs to be 
input into bundle adjustment, and the red ellipses are the error ellipses of the initial GCPs. 

When a planar target with GCPs was captured through LiDAR and a camera, the 
GCPs (black dots) positioned on the target plane were positioned on a planar patch (yel-
low rectangle) obtained from the LiDAR data. Therefore, any point on the planar patch 
(white point) can be set as the initial coordinates of GCPs, and the set GCPs yield an error 
ellipse that exhibit large and very small errors in the plane (U-V plane) and vertical direc-
tions, respectively, as shown in Figure 4. Exterior orientation parameters (EOPs) of each 
image expressed in the LiDAR coordinate system can be derived by performing BA using 
the collinearity condition between the image control point (blue dot) and the set initial 
GCPs; where the coordinates of the initial GCPs are arbitrarily selected on the plane, and 
those of the initial GCPs are adjusted in the BA process by reflecting the size of the error 
ellipse in the BA weight matrix. 

 
Figure 4. Point–plane correspondences in proposed system calibration. 

3.2.2. Application of the Proposed System Calibration Method 
In the proposed system calibration methodology, three or more planes installed per-

pendicular to each other are required to accurately adjust the coordinates of GCPs while 
securing BA accuracy. Figure 5 shows three patches arranged perpendicular to each other, 
and the white and black dots show the positions of the initial GCPs and the actual GCPs, 
respectively. The position (plane direction coordinates) of each GCP in the plane direction 
is limited by the constraint that “GCPs must be located on the corresponding plane” for 
GCPs on different patches. For example, the GCPs in patches 2 and 3 cannot be adjusted 
in directions perpendicular to the plane (𝑧ଶ and 𝑧ଷ respectively), as each of them must 
be located on a plane, and the vertical orientations of patches 2 and 3 coincide with the 
plane directions (𝑥ଵ and 𝑦ଵ) in patch 1, respectively. Hence the constraint that the GCPs 
of patches 2 and 3 must be on each patch serves as a condition for positioning the GCPs 
of patch 1 on the plane. 

Figure 4. Point–plane correspondences in proposed system calibration.

3.2.2. Application of the Proposed System Calibration Method

In the proposed system calibration methodology, three or more planes installed per-
pendicular to each other are required to accurately adjust the coordinates of GCPs while
securing BA accuracy. Figure 5 shows three patches arranged perpendicular to each other,
and the white and black dots show the positions of the initial GCPs and the actual GCPs,
respectively. The position (plane direction coordinates) of each GCP in the plane direction
is limited by the constraint that “GCPs must be located on the corresponding plane” for
GCPs on different patches. For example, the GCPs in patches 2 and 3 cannot be adjusted
in directions perpendicular to the plane (zp2 and zp3 respectively), as each of them must
be located on a plane, and the vertical orientations of patches 2 and 3 coincide with the
plane directions (xp1 and yp1) in patch 1, respectively. Hence the constraint that the GCPs
of patches 2 and 3 must be on each patch serves as a condition for positioning the GCPs of
patch 1 on the plane.
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The proposed system calibration method was applied to each sensor bundle as shown
in Figure 6; where the green dots are LiDAR point clouds in Epoch m, and the black dots
are the GCPs. When the proposed system calibration was performed using the entire image
(n images) and the point cloud obtained from Epoch m, the EOPs of each image acquired
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in n epochs were calculated based on the LiDAR coordinate system of Epoch m. Moreover,
as the relative position between the camera and LiDAR was fixed, EOPs of the image m
(EOPsm

l ) are the same as the ROPs (ROPsC
l ) between the LiDAR and the camera. Therefore,

through the point–plane correspondence-based approach, system calibration between
LiDAR and camera can be performed and the ROPs between sensors can be estimated.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20 
 

 
Figure 5. Constraints for positioning GCPs. 

The proposed system calibration method was applied to each sensor bundle as 
shown in Figure 6; where the green dots are LiDAR point clouds in Epoch m, and the 
black dots are the GCPs. When the proposed system calibration was performed using the 
entire image (n images) and the point cloud obtained from Epoch m, the EOPs of each 
image acquired in n epochs were calculated based on the LiDAR coordinate system of 
Epoch m. Moreover, as the relative position between the camera and LiDAR was fixed, 
EOPs of the image m (EOPs ) are the same as the ROPs (ROPs ) between the LiDAR and 
the camera. Therefore, through the point–plane correspondence-based approach, system 
calibration between LiDAR and camera can be performed and the ROPs between sensors 
can be estimated. 

 
Figure 6. Application of the proposed system calibration methodology for sensor bundles. 

3.2.3. Advantages of the Proposed System Calibration Method 
The proposed point–plane correspondence-based approach offers four advantages 

as follows: 
1. First, the proposed methodology only requires information regarding the target 

plane from the point cloud. It does not require an additional complicated process to 
accurately extract the edge points or lines of the target plane and is less affected by 
the density of the point cloud. 

2. Second, arbitrarily determined initial GCPs employing the BA process are used in-
stead of the coordinates of previously measured GCPs. Therefore, the need for prior 
work measuring the coordinates of GCPs using a total station, etc., is eliminated and 
the time required to perform system calibration can be reduced. 

Figure 6. Application of the proposed system calibration methodology for sensor bundles.

3.2.3. Advantages of the Proposed System Calibration Method

The proposed point–plane correspondence-based approach offers four advantages
as follows:

1. First, the proposed methodology only requires information regarding the target
plane from the point cloud. It does not require an additional complicated process to
accurately extract the edge points or lines of the target plane and is less affected by
the density of the point cloud.

2. Second, arbitrarily determined initial GCPs employing the BA process are used instead
of the coordinates of previously measured GCPs. Therefore, the need for prior work
measuring the coordinates of GCPs using a total station, etc., is eliminated and the
time required to perform system calibration can be reduced.

3. Third, because the proposed method is based on BA using the collinearity condition,
implementing it utilizing various existing open-source codes is easy.

4. Fourth, the proposed method offers the advantage that when sensor data for part of
the target plane is acquired, information on the entire target can be used for calibration.

Figure 7 shows further specific details for the fourth advantage of the proposed system
calibration method. In the proposed method, the coordinates of the initial GCPs corre-
sponding to the control points (red and blue points in Figure 7a) were set to random points
on the plane (white points in Figure 7a), which were then adjusted to their actual positions
through BA. Therefore, control points outside the plane patch without corresponding point
clouds (red dots in Figure 7a) can also be used for calibration. In particular, the above
advantage becomes more prominent when the FOV overlap ratio between the LiDAR and
the camera is low, as shown in Figure 7b. The proposed method utilizes all the control
points shown in Figure 7b (red and blue dots), thereby allowing more stable calibration
than when only GCPs inside the planar patch (blue dots) are used.
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3.3. Global Optimization for Wearable System

In the global optimization step, the ROPs of all other sensors based on the reference
sensor were derived and adjusted using the ROPs of each sensor bundle estimated in
the system calibration step. In the multi-sensor system used in this study, the sensor-
bundle was set as shown in Figure 3b, and the ROPs of each sensor-bundle ropc1

l1 , ropc1
l2 ,

ropc2
l1 , and ropc2

l2 were derived in the calibration stage, where, ropc1
l1 -ropc1

l2 -ROPl2
l1 and ropc2

l1 -
ropc2

l2 -ROPl2
l1 must satisfy the closed loop condition. These two closing conditions can be

expressed as Equations (1)–(4), where Tl2
l1 and Ml2

l1 are the translation and rotation matrices

of ROPl2
l1, and Tcj

li and Mcj
li are the translation and rotation matrices of the ROPs of the j-th

camera with respect to the i-th LiDAR, respectively. In this study, while deriving ROPl2
l1

based on the least squares method using Equations (1)–(4), adjustments were made to the
estimated ROPs in the calibration step, and the variance value of the orientation parameters
calculated in the system calibration step was used as the weight for each ROP.

Ml2
l1(T

c1
l1 − Tl2

l1 )− Tc1
l2 = 0 (1)

Mc1
l1 − Mc1

l2 Ml2
l1 = 0 (2)

Ml2
l1(T

c2
l1 − Tl2

l1 )− Tc2
l2 = 0 (3)

Mc2
l1 − Mc2

l2 Ml2
l1 = 0 (4)

3.4. Test Bed Configuration and Data Acquisition for Calibration

In this study, using the proposed methodology, a test-bed was built to perform system
calibration for the wearable sensor system, and data for calibration were acquired. Figure 8a
shows the calibration target used for the test-bed construction. Each calibration target
consisted of two planes forming an angle of 120◦, with multiple grid patterns to be used as
control points printed on each plane. Figure 8b shows the test-bed constructed using the
calibration targets. A total of nine calibration targets (18 planes in total) were used in the
test-bed configuration, and the target planes were installed at various angles to one another
to ensure the accuracy of system calibration. Figure 9 shows the location and direction
where the data for calibration were acquired. The red dots and blue arrows in the figure
indicate the optical camera positions and shooting directions of each sensor bundle.
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4. Evaluation of System Calibration Results

In this section, the results of system calibration through proposed framework are pre-
sented and evaluated. First, the performance of the proposed point-plane correspondences-
based approach is presented through precision and accuracy of sensor-bundle ROPs. Next,
a visual analysis of the accuracy of ROPs between the estimated LiDAR and the cam-
era is performed. Finally, the accuracy of ROPs between LiDAR is estimated via global
optimization and then comparatively evaluated with other approaches.

The results of system calibration for each sensor bundle using the proposed method
were derived as presented in Table 2. In this study, the proposed approach was judged to
exhibit high accuracy based on the standard deviation results, residuals of image control
points, and correlation between orientation parameters. Table 3 presents the standard devi-
ation of the estimated ROPs and the residuals of the image control points. The maximum
standard deviation of estimated ROPs was found at X0 and κ of ropc2

l2 , which were 4.95 mm
and 0.0119◦, respectively. Further, the RMSE of the image control points were found to be a
maximum and minimum of 0.68 and 0.79 pixels, respectively. In addition, the correlation
between the ROPs was generally low (Table 4). The highest correlation (0.95) was that
between Y0 and ω of ropc1

l1 ; however, it was not at a level that had a significant effect on
the accuracy of system calibration.

Global optimization was performed using the estimated ROPs of each sensor bundle
(Table 2) and the standard deviation of ROPs (Table 3). The results are presented in Table 5;
where ROPc1

l1 and ROPc2
l1 show the corrected ROPs of cameras 1 and 2, respectively, and

ROPl2
l1 shows the ROPs of LiDAR 1 derived through global optimization. In this study, the

fusion data generated using the final ROPs was analyzed to verify the accuracy of the final
system calibration results.
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Table 2. System calibration results for sensor bundles.

X0 (mm) Y0 (mm) Z0 (mm) ω (◦) ϕ (◦) κ (◦)

ropc1
l1 −232.89 −121.40 −16.28 89.28 79.66 −87.85

ropc1
l2 −226.61 −281.42 −406.70 −157.07 100.42 97.56

ropc2
l1 210.83 −122.16 −18.32 273.90 −100.73 274.78

ropc2
l2 214.32 −281.23 −404.43 36.17 −80.89 98.75

Table 3. Standard deviation of system calibration for sensor bundles.

Standard Deviation of ROPs RMS-Residuals for
Image Points (pixel)X0(mm) Y0(mm) Z0(mm) ω (◦) ϕ (◦) κ (◦)

ropc1
l1 2.25 3.67 2.57 0.0033 0.0011 0.0033 0.56

ropc1
l2 0.77 1.50 2.28 0.0058 0.0008 0.0058 0.48

ropc2
l1 2.78 4.55 4.11 0.0089 0.0019 0.0081 0.59

ropc2
l2 4.95 4.86 4.89 0.0117 0.0008 0.0119 0.55

Table 4. Correlation between the ROPs.

ropc1
l1 ropc1

l2

X0 Y0 Z0 ω ϕ κ X0 Y0 Z0 ω ϕ κ

X0 - −0.27 0.08 −0.28 0.79 0.21 - 0.19 0.17 −0.26 0.02 0.28

Y0 −0.27 - −0.15 0.95 0.10 −0.84 0.19 - −0.08 −0.86 −0.42 0.87

Z0 0.08 −0.15 - −0.20 0.36 −0.02 0.17 −0.08 - −0.37 0.92 0.37

ω −0.28 0.95 −0.20 - 0.06 −0.79 −0.26 −0.86 −0.37 - −0.02 −0.79

ϕ 0.79 0.10 0.36 0.06 - −0.20 0.02 −0.42 0.92 −0.02 - 0.01

κ 0.21 −0.84 −0.02 −0.79 −0.20 - 0.28 0.87 0.37 −0.79 0.01 -

ropc2
l1 ropc2

l2

X0 Y0 Z0 ω ϕ κ X0 Y0 Z0 ω ϕ κ

X0 - 0.03 −0.05 0.23 −0.01 0.23 - −0.01 0.02 0.02 0.08 0.02

Y0 0.03 - 0.21 0.01 0.90 −0.08 −0.01 - 0.00 −0.55 −0.10 −0.54

Z0 −0.05 0.21 - −0.89 0.21 −0.91 0.02 0.00 - −0.08 0.51 −0.07

ω 0.23 0.01 −0.89 - −0.01 0.78 0.02 −0.55 −0.08 - −0.05 0.78

ϕ −0.01 0.90 0.21 −0.01 - −0.07 0.08 −0.10 0.51 −0.05 - −0.05

κ 0.23 −0.08 −0.91 0.78 −0.07 - 0.02 −0.54 −0.07 0.78 −0.05 -

Table 5. Estimated ROPs of backpack based wearable sensor system.

X0 (mm) Y0 (mm) Z0 (mm) ω (◦) ϕ (◦) κ (◦)

ROPc1
l1 −232.81 −121.88 −16.13 89.28 79.66 −87.85

ROPc2
l1 210.51 −121.09 −18.66 273.9 −100.73 274.78

ROPl2
l1 2.49 −340.55 422.79 61.28 1.05 −0.26

First, in this study, the accuracy of the final ROPs was analyzed through a visual
analysis of the fusion accuracy between the camera image and the point cloud. To clearly
determine the accuracy of the fusion data, a color that was easily identifiable was provided
to the main plane of the image (a relatively wide plane with the edges of the plane easily
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identifiable on the image), and the fusion accuracy was confirmed at the corners where
each plane met. The fusion accuracy visual analysis was performed using sensor data
acquired at two test-sites. Figure 10 shows the optical images acquired at the test-sites;
Figure 10a–d are the original images obtained at test-site 1 and the images with new colors,
(e–h) are the original images obtained at test-site 2 and the images with new colors.
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evident, in both test-sites, the color of the plane corresponding to the point cloud corre-
sponding to each plane was properly assigned and overall accurate data fusion was 
achieved. Initially, at test-site 1, a data fusion error was confirmed at position 1. However, 
considering that the error appeared on both sides of the wall simultaneously, the error 
may have been due to a LiDAR multi-path error at the edge and not because of an ROP 
error. At test-site 2, an error appeared at position 2 in Figure 11b, and the level of error 
was approximately 1.5 cm at a distance of approximately 4 m. However, as the error ap-
peared along the edge of the boundary between the white and yellow planes, it did not 
appear significantly to affect the overall accuracy of data fusion. 

Figure 10. Image data for visual analysis of system calibration results: (a) original image of camera
1 at test-site 1, (b) original image of camera 2 at test-site 1, (c) new colored image of camera 1 at
test-site 1, (d) new colored image of camera 2 at test-site 1, (e) original image of camera 1 at test-site 2,
(f) original image of camera 2 at test-site 2, (g) new colored image of camera 1 at test-site 2, (h) new
colored image of camera 2 at test-site 2.

Figures 11 and 12 show the data fusion results for test-sites 1 and 2, respectively.
As evident, in both test-sites, the color of the plane corresponding to the point cloud
corresponding to each plane was properly assigned and overall accurate data fusion was
achieved. Initially, at test-site 1, a data fusion error was confirmed at position 1. However,
considering that the error appeared on both sides of the wall simultaneously, the error
may have been due to a LiDAR multi-path error at the edge and not because of an ROP
error. At test-site 2, an error appeared at position 2 in Figure 11b, and the level of error was
approximately 1.5 cm at a distance of approximately 4 m. However, as the error appeared
along the edge of the boundary between the white and yellow planes, it did not appear
significantly to affect the overall accuracy of data fusion.
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To clarify the accuracy of ROPs (ROPl2
l1) between the LiDARs, fusion error between

point clouds was evaluated based on the distance between the point clouds being acquired
from LiDARs 1 and 2, which correspond to the same plane in this study. With more accurate
ROPs between the LiDARs, the planes scanned simultaneously by both LiDARs can be
visualized at the same plane through data fusion. Conversely, with less accurate ROPs, each
plane exhibits different plane shapes and the distance between the planes becomes larger.
Figure 12 shows the calculation methodology for the fusion error between point clouds.
The gray and green points are the point clouds of LiDAR 1 and LiDAR 2, respectively, and
the black lines are planar patches extracted from the point clouds of LiDAR 1. In addition,
Pi is the i-th point cloud of LiDAR 2, Di is the distance (m) between LiDAR 1 and Pi, and
ei is the distance from Pi to the planar patch. The fusion accuracy between LiDARs was
evaluated based on the mean bias error (MBE), the mean absolute error (MAE), and the
root mean square error (RMSE) of ei and ẽi; ẽi was calculated using Equation (5), implying
that ei was normalized based on the distance between the reference sensor (LiDAR 1) with
Pi set as 1 m.

ẽi =
ei
Di

(5)

In the accuracy evaluation of ROPs between LiDARs, ROPs obtained through the pro-
posed method (ROPl2

l1) were comparatively evaluated with nominal ROPs and ROPs derived
through ICP (iterative closest point). Table 6 presents the nominal ROPs (ROPnom) used in the
wearable system design and ROPs obtained through ICP (ROPicp). To evaluate the accuracy
of ROPs between LiDARs, planes were used located in the section where the FOVs of LiDARs
1 and 2 overlapped. Figure 13 shows the positions of the used planes (No. 1–4).

Table 6. Used ROPs for comparative evaluation of LiDAR data fusion accuracy.

X0 (mm) Y0 (mm) Z0 (mm) ω (◦) ϕ (◦) κ (◦)

ROPsnom 0.00 −350.00 400.00 60.00 0.00 0.00

ROPsicp 10.50 −341.00 415.00 59.10 1.49 −1.15
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Table 7 lists the fusion error between point clouds based on ROP type and test-site
location, confirming that the most accurate ROPs were derived employing the proposed
methodology. The overall error based on the RMSẼ was the lowest for ROPsl2

l1, followed
by ROPsnom and ROPsicp. In particular, the fusion data using ROPl2

l1 derived using the
proposed method showed the lowest fusion error at all positions. However, fusion errors
for ROPnom and ROPicp showed very similar absolute values of MBE and MAE at each
location, implying that the two ROPs used were not fused on the same plane but arranged
adjacent to each other on different planes.

Table 7. LiDAR data fusion accuracy by test-site.

ROPs Location

ei ẽi

MBE
(mm)

MAE
(mm)

RMSE
(mm)

MB
~
E

(mm)
MA

~
E

(mm)
RMS

~
E

(mm)

ROPl2
l1

1 −3.11 29.08 34.82 −1.48 13.85 16.58

2 −1.23 12.17 15.32 −0.82 8.11 10.21

3 18.80 18.87 20.12 4.47 4.49 4.79

4 −1.70 16.40 20.19 −0.55 5.29 6.51

Overall 4.10 17.71 20.87 0.41 7.94 9.52

ROPnom

1 46.43 46.44 50.34 22.11 22.11 23.97

2 20.24 23.00 28.61 13.49 15.33 19.07

3 49.81 49.81 50.68 11.86 11.86 12.07

4 26.78 28.86 34.04 8.64 9.31 10.98

Overall 34.30 35.68 39.57 14.02 14.65 16.52

ROPicp

1 −20.18 20.33 23.37 −9.61 9.68 11.13

2 −34.43 34.43 35.94 −22.95 22.95 23.96

3 117.44 117.44 119.00 27.96 27.96 28.33

4 −30.87 30.90 32.80 −9.95 9.97 10.58

Overall 12.01 55.12 56.98 −3.64 17.64 18.50

Figure 14 shows the fusion data for each location of the test-site, visually confirming
the results in Table 7. When data fusion was performed using ROPsl2

l1, the point clouds
obtained from both LiDARs formed a single plane regardless of location. In contrast, where
ROPnom and ROPicp were used, point clouds obtained from different LiDARs cannot be
fused into one plane and were rather expressed as two different planes.
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5. Conclusions

This study aimed to propose a framework for building a wearable sensor system
optimized for complex urban structures. Thus, this study presents a workflow for wear-
able sensor system design and a calibration framework optimized for wearable sensor
systems. Furthermore, as part of the framework, a calibration method based on point–plane
correspondences is proposed for efficient system calibration of wearable systems.

The wearable sensor system design workflow was based on criteria prepared in
consideration of the efficiency of data acquisition and the accuracy of system calibration
and data fusion. In this study, a wearable sensor system was manufactured through
the proposed design workflow, and the manufactured sensor system efficiently acquired
images and point cloud data about the surrounding environment.

The proposed framework and system calibration method contributed to the accurate
calibration and data fusion of the wearable sensor system, and showed better performance
than the other method. The advantages of the proposed system calibration method stem
from (i) a calibration process designed in two steps, and (ii) a calibration method based on
point–plane correspondences. First, through the two-step system calibration method, ROPs
between sensors with low FOV overlap can be more stably derived, avoiding a decrease in
accuracy obtained by calculating ROPs between same-modal sensors with low FOV overlap
ratio, by instead using ROPs between a LiDAR and an optical camera, with relatively high
FOV overlap ratio. Second, the system calibration method proposed in this study accurately
and efficiently derived ROPs between sensors in a wearable system. The proposed method
does not require any prior work to acquire GCP coordinates, and it is easy to implement as
a code or program based on the conventional colinear equation by modifying the weight
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matrix setting method. In addition, it offers the advantage that does not require estimation
of a 3D point or line segment located at the edge of the target object in the lidar point cloud.
The data fusion results through the proposed framework showed better performance in
comparative evaluation with the results of methods using ICP and nominal values.

In conclusion, this study offers a method of efficient and accurate data acquisition
using a wearable system suitable for 3D modeling in a complex urban environment. The
proposed framework contributes to accurate data fusion through calibration optimized for
wearable multi-sensor systems. Furthermore, the proposed point–plane correspondences-
based system calibration method supports efficient calibration because it does not require a
GCP coordinate measurement process. This advantage of the point–plane correspondences-
based method contributes to the implementation of in situ system calibration by using
various planar objects of the site. On the other hand, the limitation of the proposed
method is that it requires three or more planar targets installed perpendicular to each other.
Therefore, when the directions of planar objects for calibration are similar, the performance
of the proposed system calibration method may decline. However, for complex urban
environments, it is expected that the limitations of the proposed method will have little
effect on the accuracy of system calibration, because the urban environment generally
includes planar objects in various directions.

This study will contribute to accurate 3D modeling of urban spaces, the generation of
the high-definition 3D road maps, and the development of smart cities, in that it supports
efficient 3D data acquisition and fusion using wearable sensor systems. In the future, an in
situ system calibration methodology and an accurate 3D modeling methodology for the
wearable sensor system will be developed by modifying, evolving, and automating the
proposed method, based on the advantage that the proposed method does not require prior
work to acquire GCP coordinates.
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