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Featured Application: The findings of this paper can be used to guide the opto-mechanical system
design of lightweight metal elliptic mirrors with a high steepness. In the field of using aerospace
for detection and imaging, due to the small space volume and moment of inertia, the demand for
ultra-compact high steepness mirrors is increasingly urgent. It is a technical challenge to ensure
a high steepness and light weight at the same time. Since the bending stiffness of the mirror is
positively correlated with the thickness of the mirror, the accurate selection of an initial mirror
thickness can improve the iterative efficiency of its lightweight design and ensure high steep-
ness. In this paper, a flat plate equivalent modeling and performance estimation method for the
initial structure of a high steepness elliptical mirror is proposed, and it is appropriate to quickly
evaluate whether the mirror thickness meets the requirements of self-weight deformation. This
method can realize the fast modeling and performance evaluation of high steepness mirrors.

Abstract: In order to realize the compact layout of aerospace payloads, the design and manufacture
of high-steepness lightweight aluminum alloy mirrors is a key technology to be explored. For
high-steepness mirrors, the traditional method is to establish the initial thickness that satisfies the
bending stiffness through finite element optimization iteration, which cannot achieve fast modeling
and performance estimation. In this paper, firstly, the equivalent modeling method of the mirror
with high steepness is proposed to achieve the equivalent of the elliptic mirror with a diameter of
410 × 310 mm and F# less than 0.7. Based on the mathematical model, topology shape optimization
was used to build a highly lightweight mirror structure that could be quickly assembled, and
the equivalent area–mass density of the mirror is less than 34 kg/mm2. Next, the rationality of
design feasibility was verified by simulation analysis. Finally, by using single point diamond
turning combined with post polishing process, the high-precision manufacturing of conventional
aluminum alloy mirror was realized. The results show that the mirror shape accuracy is 1/10 λ

(λ = 632.8 nm), and the surface roughness Ra is 3.342 nm. This research provides strong theoretical
support and application prospects for the low-cost and rapid manufacturing of high-steepness
lightweight aluminum alloy mirrors.

Keywords: aluminum alloy; elliptic mirror; steepness; lightweight; plate equivalent modeling;
single-point diamond turning

1. Introduction

Recently, in the context of the demand for low-cost and rapid manufacturing, metal-
based mirrors have been widely used in aerospace payloads for commercial and military
purposes [1–6]. Metal mirrors, especially aluminum alloy mirrors, can realize passive
athermalization, and are proven to have good stability [7]. They are ideal materials for
developing high-cost performance optical systems [8].
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In order to achieve an ultra-compact layout and small moment of inertia, the most
effective method is to increase the curvature (or steepness) of the mirror. This means
that an ultra-lightweight design becomes more difficult to achieve, especially for the
specific stiffness (E/ρ). It is still a technical challenge to realize a high steepness and
ultra-lightweight design with low-specific-stiffness aluminum alloy materials [9].

The bending stiffness of the mirror is positively correlated with the thickness of the
mirror. The suitable selection of an initial mirror thickness can improve the iterative
efficiency of a lightweight design with high steepness.

Many scholars have conducted outstanding research on the construction of initial mirror
models. One method is based on an analytical deformation solution of a thin elastic plate
with a circular thickness distribution under easily supported boundary constraints [10,11].
The other method is to establish a parametric topology shape optimization model, using an
optimization algorithm to determine an optimal solution in the global solution [12,13]. Both
methods require a lot of calculation and data processing, and it is impossible to quickly
plan the initial mirror thickness suitable for an accurate mirror surface, which means that it
is difficult to achieve fast modeling and performance estimation.

The thin plate hypothesis theory can be used for estimating the self-deformation of
a mirror with a small curvature aperture under the condition that the mirror diameter
thickness ratio (diameter/thickness) is fixed [14–16]. For mirrors with large curvatures,
especially elliptic mirrors, it is impossible to directly use the thin plate theory to select the
appropriate mirror diameter thickness ratio. Further research is needed in order to quickly
select the mirror diameter thickness ratio using an analytical approach.

Topology optimization is an effective way to achieve a very lightweight design. Topol-
ogy optimization and additive manufacturing are combined to reduce the weight of the
mirror by about 20% under the same mechanical properties, which has been applied in
designing small-aperture metal mirrors [17,18]. However, for medium- and large-aperture
metal mirrors, the traditional material reduction manufacturing method remains the main
design choice at this stage [19]. In order to simultaneously meet the high-steepness and
very lightweight design of aluminum alloy mirrors, the lightweight structure of the back of
the mirror should be optimized after the thickness ratio of the mirror is selected.

This paper introduces a new method for the equivalent design of a high-steepness
aluminum alloy mirror. Firstly, a high-steepness elliptic mirror plate equivalent method
was proposed to quickly select the mirror diameter thickness ratio, as described in Section 3.
Through the combination of topology shape optimization and theoretical calculation, a
very lightweight mirror structure suitable for single-point diamond turning (SPDT) was
established, as detailed in Section 4. Then, the author describes the completed finite element
simulation analysis in Section 5 and completed static accuracy test and dynamic stiffness
test in Section 6. The test results verify that the high steepness mirrors designed by this
method have a high static accuracy and dynamic stiffness.

2. Design Input and Flow Chart of Mirror

The optical system introduced in this paper is derived from the infrared high-sensitivity
remote sensing load of deep space exploration, which is limited by the constraints of the
platform, and the envelope volume of the optical load needs to be strictly controlled. The
optical system is shown in Figure 1. In order to reduce the distance between primary and
secondary mirrors, the primary mirror of the optical system bears a large focal power.

According to the design requirements of the optical system, the quantitative index
requirements of the primary mirror are set, as shown in Table 1.

The larger the steepness of the mirror, the more difficult it is to design and manufacture.
For a mirror of such high steepness, it is necessary to study a design method that can quickly
complete the initial structure evaluation and verification.
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Figure 2 provides a flow chart for the design of a high-steepness lightweight elliptical
mirror. Firstly, an equivalent method to design an elliptical mirror plate with high steepness
is proposed to quickly select the mirror diameter thickness ratio. By combining topology
shape optimization and theoretical calculations, a mirror structure suitable for SPDT turning
was established. Then, the rationality of the design was verified by a finite element
simulation analysis.

Table 1. Requirement of main mirror index.

Index Parameters Requirement

shape elliptical mirror
radius of curvature (mm) 433

conic −1

F number long axis: 0.53
short axis: 0.70

mass <3.5 kg
first order model (Hz) ≥180 Hz

surface accuracy requirement (RMS) 1/10 λ (λ = 632.8 nm)
surface roughness (nm) <5 nm
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3. Equivalent Design Theory of a High-Steepness Mirror
3.1. Plate Equivalence Theory and Self-Weight Deflection

For a cylindrical or rotationally symmetric mirror, if the change in the mirror section is
less than about 10% [20], the axial self-weight deflection can be calculated by the following
equation:

δ =
3
(
1 − v2)ρgR4

16Et2 =
3
(
1 − v2)ρg∆2D2

256E
(1)

where δ is the maximum self-weight deformation of the mirror, ρ is the unit of material
density, R is the mirror half-aperture, E is the unit of the elastic modulus of material, t is
the mirror thickness, ∆ is the diameter thickness ratio, g is the acceleration of gravity, v is
the poison ratio of the material, and D is the mirror aperture.

Equation (1) can be used to estimate the initial diameter thickness ratio of the mirror.
It is relatively easy to predict the self-weight deflection of the mirror with a given aperture
under different equivalent bending thicknesses based on the flat plate theory.

3.2. Flat Plate Equivalent Method for High Steepness Circular Mirror

The primary mirror of modern large telescope optical system is made with a relatively
fast primary focal ratio and high steepness, whose center thickness Tmin and edge thickness
Tmax greatly differ. Since the radius of the curvature of a mirror with a fast focal ratio is
relatively short, the sagittal depth is quite large.

The combination of a fast focal ratio and thin mirror leads to a large change in the
thickness of the mirror from the center to the edge. Whether Tmin or Tmax is selected for the
equivalent plate thickness, the self-weight deflection obtained in the analysis has a large
error, which is not conducive to the rapid convergence of the initial structure of the mirror.
Therefore, it is vitally important to establish a plate equivalent model with a smaller initial
error to facilitate rapid modeling and performance estimation.

For high-steepness flat–concave mirrors, the mirrors can be divided into two parts, the
mirror body and the back plate, as shown in Figure 3. The back plate is used as the basic
thickness Tmin of the equivalent plate, the equivalent thickness of the mirror part is Tmirror,
and the final equivalent thickness of the plate is TEQ:

TEQ = Tmin + Tmirror (2)
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We focus on the equivalent thickness of the mirror body. Since the center of mirror
weight of high steepness mirror changes with the changes in mirror curvature and aperture,
we propose that the distance between the center of gravity of the mirror body TCG and
the back plate is taken as the equivalent plate thickness Tmirror of the mirror body. The
following relationships are satisfied:

Tmin ≤ TCG ≤ Tmax (3)
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For the sake of simplicity and generality, the best-fitting sphere can be used to replace
the aspheric surface for the initial structure modeling of the aspheric surface with a small
deviation, thus reducing the complexity of modeling. The parsing expression is as follows:

S = R −
[

R2 − D2

4

]1/2

TCG =
S(3D2−8S·R+2S2)

6D2−24S·R+8S2

TEQ = Tmin + TCG

(4)

where R is the best fitting spherical curvature radius of the high-steepness mirror, D is the
diameter of the mirror, and S is the sagittal depth difference between the outer edge of the
mirror and the center of the mirror.

3.3. Flat Plate Equivalent Method for High-Steepness Elliptic Mirror

In this paper, we mainly focus on a high-steepness elliptic mirror. Since the shape
and curvature of the mirror is not regular, we propose a method of “volume” equivalent
to convert a high-steepness elliptic mirror into equivalent radial steepness circular mirror.
Then, using the method described in Section 3.2, the circular mirror is converted into an
equivalent axial parallel plate. In this way, the choice of an initial mirror diameter–thickness
ratio can be quickly realized through the self-weight deflection formula of the parallel plate.

3.3.1. Radial Equivalent

Radial equivalence is to transform the elliptic section into a circular section, which
is approximated by “equal area” method, Sellipse = Scircular. The equivalent analytical
expression is shown as follows: {

Sellipse = π · a · b
Scircular = π · R2

1
(5)

where S is the area of the equivalent circle, a is the size of the long half-axis of the oval
mirror, b is the size of the short half-axis of the oval mirror, and R1 is the radius of the
equivalent circle.

The schematic diagram of radial equivalence is shown in Figure 4.
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3.3.2. The Axial Equivalent

The axial equivalent method is to calculate the mirror diameter–thickness ratio of the
equivalent circular mirror by using the method described in Section 3.1 above. In this case,
D = 2 R1, and Tmin of the back plate thickness of the initial oval mirror can be estimated
according to the equivalent circular plate.
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∆ =

(
256·E·δ

3(1−ν2)ρgD2

)1/2

TEQ = D
∆

Tmin = TEQ − TCG

(6)

3.4. Area–Mass Density

In order to evaluate the quality characteristics of lightweight mirrors, the area–mass
density is introduced. Therefore, lightweight mirrors are measured in terms of area–mass
density or mass per unit area [21]. The general form for estimating the mass per unit area
of the mirror is shown in Equation (7):

m
A

= ρ
(

t f + ηhc

)
(7)

In the formula, m/A is the area–mass density, ρ is the material density, tf is the mirror
face–sheet thicknesses, η is the solidness ratio, and hc is the isogrid cell depth.

The solidness ratio can be calculated using Equation (8) as follows:

η =
(2B + tW)tW

(B + tW)2 (8)

where B is inscribed circle diameter, and tW is shear core rib thickness.
For commonly used lightweight structures, the expressed parameters are shown

in Figure 5:
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4. Optomechanical Design and Optimization of Mirror
4.1. Initial Structure Selection

According to the equivalent method in Section 3, the thickness of the mirror can be
selected to meet the bending stiffness requirements. In order to realize the high lightweight
design of the mirror, it is necessary to select the support structure and optimize the
lightweight structure.

Commonly used mirror support methods include center support, back support, pe-
ripheral support, etc. For high-steepness and very lightweight mirrors, the use of peripheral
support will cause gravity deformation and collapse along the optical axis. Center support
and back support are two commonly used support modes for small- and medium-sized
mirrors. In order to combine the advantages of the rapid manufacturing and assembly of
metal mirrors, the center supporting structure, which is easy to design, is selected as the
preferred support scheme of the mirrors.

In order to reduce the mounting stress caused by the support structure connecting to
the mirror, the mounting flange is generally isolated from the mirror, as shown in Figure 6.
The diameter of the mirror is 410 mm × 310 mm. According to the above equivalent
method, the elliptic mirror is equivalent to a circular plate. Formula (5) is used to calculate
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the mirror diameter–thickness ratio using the circular plate, and δ is 0.032 µm (1/20 λ,
λ= 632.8 nm). According to Formula (1), the equivalent diameter–thickness ratio δ = 8.77,
the equivalent mirror thickness = 41.25 mm, and Tmin = 28.9 mm. The weight of the solid
model of the elliptic mirror designed by UG software is 12.5 kg, and the weight of the
equivalent circular mirror is 12.6 kg, which approximately equates to the equivalent of
“equal volume”.
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4.2. Mirror Shape Optimization

In the previous section, we described the completed construction of the initial structure
of the solid mirror, which was unable to meet lightweight design requirements.

In order to reduce the weight of the mirror, large-aperture mirrors are usually designed
to be single-arch, double-arch, flat back and other special shapes. Therefore, it is necessary
to select a reasonable lightweight structure based on the processing characteristics of
the mirror.

We chose a topology optimization design combined with the characteristics of mirror
processing to complete the shape optimization of the mirror, allowing us to carry out
conceptual design. Topology optimization is a mathematical method to optimize ma-
terial distribution under given load conditions, boundary conditions and performance
constraints [22–24], as shown in Figure 7.
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Based on the constraints of the single-point diamond turning process, the design
requirements of turning force on the lightweight support stiffness of the mirror back were
analyzed. Machining turning force is a static optimization problem, which usually takes
the minimization of structural compliance (or the minimization of strain energy and the
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maximization of stiffness) as the objective function and the structural volume ratio as the
constraint function. Its mathematical model can be expressed in Equation (9):

min : CSPDT = FT
SPDTUSPDT = UT

SPDTKSPDTUSPDT

s.t.


KU = F
V(ρi)/V0 − f ≤ 0
0 < ρmin ≤ ρi ≤ 1

(9)

where C is the compliance of the mirror, ρi is the unit density variable, K is the global
stiffness matrix, U is the global displacement vector, F is global load vector is the design
domain volume constraints, f is volume fraction, and V0 is design domain volume.

Topology optimization design can provide a good reference to guide the design of
a lightweight structure for the mirror back according to the density distribution. We use
the optimization module of HyperMesh software (Altair, Troy, MI, USA) to complete the
topology optimization analysis under given boundary constraints. After 25 iterations, the
optimization results converge to a stable value. The density ranges from 0 to 1. The closer
the density is to 1, the more important the structure is, which can be retained according
to the actual design. The closer the density is to 0, the less important this part is [25].
This can be appropriately removed according to the actual design. In order to ensure the
continuity of materials, we choose the result of threshold 0.1 as the reference result of shape
optimization. As shown in Figure 8, it can be seen from the iteration results that a better
lightweight density distribution of the mirror design is that less material is left in the long
axis and more material is left in the short axis. The back shape of the mirror is a single arch.
Unfortunately, the existing topology optimization results still failed to meet our expected
requirements, but provided a direction for the subsequent lightweight design.
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4.3. Parameter Design of Mirror

As additive manufacturing is a good lightweight design method, we can choose many
typical lattice structures to complete the filling of mirror hollow structure, to achieve a high
stiffness and very lightweight design [26]. Unfortunately, limited by the project cycle, we
chose the conventional aluminum alloy 6061-T6 as the mirror material for this phase, and
the lightweight structure needs to be completed by conventional milling. Therefore, the
mirror-back lightweight structure is selected from three commonly used lightweight struc-
tures (triangle, square and hexagon). Triangular and hexagonal lightweight structures have
similar effects on weight and shape accuracy. However, the use of triangular lightweight
structure can improve the natural frequency by 10%, so we chose a triangular lightweight
structure as the mirror’s lightweight scheme [27,28].

In combination with Formula (1), factors such as the mirror diameter thickness ratio
and material properties are considered. We chose the diameter of the tangent circle of the
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triangle B = 35.6 mm, the lightweight rib TW = 3 mm, the edge thickness Te = 5 mm, and
the solidness ratio 0.15.

The thickness of the lightweight reinforcement is T = 7 mm. This reinforcement
measure can improve the stiffness of the main load-bearing structure of the mirror. In
addition, edge cutting was carried out in the long and short axis directions of the mirror,
and more supporting materials were left on the short axis side with topology optimization
and shape optimization as references. After edge cutting, the resulting lightweight mirror
α = 25.3◦, β = 40◦, with a weight of 3.4 kg is shown in Figure 9 below. Compared with the
initial structure of solid mirror, the lightweight rate is better than 72%, and the equivalent
surface density reaches 34 kg/m2.
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5. Finite Element Analysis

Through calculation and evaluation, we completed the design of the mirror. In this
chapter, the finite element model of the mirror component is described, and the static
and dynamic simulation analysis is completed to verify the rationality and feasibility of
engineering the design scheme.

5.1. Gravity Deformation Analysis

Since the designed application of the mirror described in this paper is in the space
environment, the mirror processed in the ground environment will cause the space degra-
dation of the surface shape. In order to predict this degradation, we generally apply a
gravitational acceleration of 1 g to the mirror on the ground to evaluate the surface shape
change from the mirror into space. The shape of the mirror we studied is elliptical and
has no rotational axis of symmetry, so self-weight deflection in three directions needs to
be analyzed.

By removing the rigid body displacement and angle, the surface shape fitting is carried
out using MATLAB software(MathWorks, Natick, MA, USA). The analysis result of the
mirror is better than 35 nm (RMS), as shown in Figure 10, which meets the performance
requirements of the mirror.

The previous equivalent modeling method is constructed in the vertical direction of
the optical axis. The reason for this is that the gravity deformation of the medium- and
large-aperture mirror in the vertical direction of the optical axis is more difficult to control.
Therefore, ensuring the minimum gravity deformation of the mirror in the vertical direction
of the optical axis is the main optimization goal of the design. In the finite element analysis
of gravity deformation, we focus on the vertical deformation of the optical axis. The design
value of the equivalent gravity deformation for the plate with a high steepness is 31.64 nm
(1/20 λ, λ = 632.8 nm), and modeling error and finite element analysis error are within
10%, as shown in Table 2. Gravity analysis results show that the equivalent model has a
high precision.
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Table 2. Comparison of method accuracy.

Method Self-Weight Deflection The Relative Error

Equivalent modeling 31.64 nm 8.3%
Finite element analysis (FEA) 34.5 nm Base

5.2. The Modal Analysis

The fundamental frequency of the mirror assembly not only determines its static
stability, but also affects its dynamic stability. Further modal analysis is required to verify
the sufficient local and overall stiffness of the optimized structure. Figure 11 shows the
first three modes of the mirror assembly, and Table 3 shows the mode participation factors
ratios in each mode.
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Table 3. Model participation factors in the first three modes.

Mode Frequency 200.4 Hz 260.8 Hz 392.4 Hz

X-TRANS 3.791 × 10−1 1.407 × 10−3 7.869 × 10−4

Y-TRANS 1.276 × 10−3 4.303 × 10−1 1.724 × 10−3

Z-TRANS 2.602 × 10−2 1.181 × 10−3 1.000
X-ROTAT 3.545 × 10−3 1.000 9.123 × 10−4

Y-ROTAT 1.000 3.479 × 10−3 3.022 × 10−3

Z-ROTAT 2.627 × 10−5 2.813 × 10−4 1.907 × 10−4

It can be seen from the analysis results that the first and second modes of the mirror
module rotate around the Y−axis and X−axis, respectively, and the third mode is transla-
tion along the optical axis. The first mode of the module is 200.4 Hz. The analysis results
show that the mirror has sufficient stiffness.
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6. Verification and Surface Accuracy Testing
6.1. Test of Surface Shape after SPDT

After SPDT manufacturing, the mirror assembly was tested using computer-generated
hologram (CGH) components. Figure 12 shows the test optical path. CGH can produce
an oddly shaped wavefront without making expensive references or null optics [29]. The
detection area of the primary mirror is oval, and a circular cat eye area is designed outside
the oval detection area to achieve a high precision and fast alignment. The test results show
that the low-frequency surface shape error is 0.34 λ (λ = 632.8 nm), and the high-frequency
surface roughness error is Ra 6.172 nm after single−point machining, as shown in Figure 13.
Periodic turning tool patterns can also be seen on the surface.
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6.2. Mirror Polishing

The low-frequency and high-frequency errors of the mirror were corrected by non-
Newtonian fluid polishing combined with chemical mechanical polishing. Finally, the
mirror shape error is 0.096 λ (λ = 632.8 nm), and the surface roughness is 3.342 nm, as
shown in Figure 14.
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6.3. Gravity Deformation Verification Test

Since the mirror is tested in the horizontal direction of the optical axis, in order to
verify the influence of gravity deformation on the static accuracy of the mirror, a method is
used to flip the mirror 180◦ for the surface shape test. This method superimposes the effect
of 2 g gravity and can use this gravity to evaluate the surface change in the mirror. After
the flip, the surface accuracy of the mirror is 0.106 λ (λ = 632.8 nm). The test results are
shown in Figure 15 and validate the effectiveness of the model and finite element analysis.
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6.4. Vibration Test

After the single-point machining of the mirror component, a random vibration test
was carried out, and the natural frequency of the mirror was tested, as shown in Figure 16.
The first-order mode of the mirror component was 192.5 Hz, and the error was within 4%
of the finite element analysis result, which verified the reliability of the simulation results
and a good dynamic stiffness.
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7. Conclusions and Future Work

In order to solve the difficult challenge of achieving a very lightweight design of
mirrors with a high steepness in an ultra-compact layout of space payload, an equivalent
modeling method for the plate deformation of high-steepness elliptical mirrors is proposed
in this paper. Guided by topology shape optimization, a lightweight mirror structure that
can be quickly assembled is established. The error between the predicted results of the
equivalent model and the finite element analysis results is within 10%. The experimental
results show that the lightweight aluminum mirror with a high steepness shape accuracy is
1/10 λ (λ = 632.8 nm), and the surface roughness Ra is better than 3.342 nm. The vibration
test shows that the dynamic stiffness of mirror is better than 192 Hz. This research provides
a strong theoretical support and application prospect for the rapid manufacturing and
application of a lightweight aluminum mirror with a high steepness.

Future research should focus on three main aspects. First of all, due to limitations of
the project cycle and schedule, the surface shape accuracy and surface roughness of the
mirror still need to be improved. In the future, attempts will be made to further reduce the
low-frequency and high-frequency surface shape errors. Secondly, with the improvement
of the mirror shape accuracy, the print-through effect of a high lightweight mirror will
also increase, and the mediated frequency error will be hard to correct for the mirror
with a higher shape accuracy. Future studies should focus on reducing the influence of
the mirror footprint effect. Finally, with the improvement and application of additive
manufacturing and topology optimization design theory, future research should introduce
a lattice structure suitable for high-steepness mirrors to further increase the local stiffness
of mirrors and gradually promote the application of visible light.
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