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Abstract: The inverse scattering problem related to the localization of metal bars embedded within a
finite-dimensional dielectric was studied in two-dimensional geometry. The dielectric was placed
in air and illuminated from the outside using a linear microwave source and a multi-monostatic
configuration. The discontinuity at the interface between the air and the dielectric causes reflections
that are neglected if a simple linear Born approximation of scattering is assumed. Herein, a new
formulation was proposed based on a quadratic approximation of the scattering equation. The
formulation maintained the interaction between the metal bars and the dielectric edge, whereas the
mutual coupling between the bars was neglected. By exploiting the knowledge of the permittivity of
the dielectric and the shape of its section, a relatively simple approximate expression for the scattered
field was derived, which allowed for formulation of an inverse linear problem. Numerical examples
demonstrated the feasibility of this approach.

Keywords: ground-penetrating radar; electromagnetic imaging; inverse scattering; microwave
imaging; non-destructive testing; reconstruction algorithms

1. Introduction

Microwave inverse scattering is a suitable method for non-destructive testing (NDT)
applications. It is based on the ability of the electromagnetic field to penetrate and propagate
inside dielectric materials, at frequencies in the microwave band, and on the effects on
the propagation of the objects embedded inside the background medium [1]. Ground-
penetrating radar (GPR) is one of the most interesting microwave-based techniques, and it is
applied in many fields, ranging from geophysics to archeology and civil engineering [2–6].

The study of electromagnetic scattering from cylindrical objects embedded inside a
homogeneous dielectric is useful for schematizing many different situations, such as the
localization of buried pipelines [7], tree root reconstruction [8], grid diagnostics [9,10], and
reinforced concrete monitoring [11,12].

In particular, the diagnosis and monitoring of reinforced concrete structures are of
great interest within civil engineering. The bars’ number, diameter, and deployment, to-
gether with the concrete cover thickness, are important parameters attesting to the correct
structural behavior towards external mechanical stress and long-lasting structures. How-
ever, the details of the structural design in terms of such parameters can be lost and must
be recovered. Moreover, the structure can be damaged during its life by concrete corrosion
or if some bars oxidize, with a diameter smaller than the nominal one. Many destructive
and non-destructive methods already exist for acquiring information about materials and
structures within civil engineering. Conventional destructive methods usually require
samples of the structure under test to be taken, for instance by drilling and coring, or
removal of some external layers in order to allow visual inspection of the internal status of
the structure. Such methods have the disadvantage of being invasive and providing only
punctual information. On the contrary, methods based on NDT techniques do not damage
or modify the structure under test and make in situ diagnostics and monitoring possible.
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The currently available NDT methods for the investigation of reinforced concrete structures
are based on a variety of different physical phenomena. Acoustic methods (sonic and
ultrasonic frequencies) [13], infrared thermography [14], magnetic flux leakage (MLF) [15],
eddy currents [16], optical fibers [17,18], and electromagnetic radar-based methods [5] have
been extensively studied. In [15] and the references therein, MLF is discussed, and the
experimental results pave the way for its application in concrete bar detection. In [19],
a comparison between a destructive method and a non-destructive method based on an
ultrasonic pulse for concrete strength measurement is presented, and, in the same paper,
GPR measurements are used as a complementary tool to investigate the structure.

Among the NDT methods for reinforced concrete investigation, those based on elec-
tromagnetic propagation and scattering, such as radar and GPR, allow contactless mea-
surements to be performed. This feature is very attractive because makes it possible to
perform flexible measurements, and it even allows for operation in remote sensing con-
figurations [20]. On the other hand, data processing is challenging for several reasons.
Contactless measurements are affected by the strong reflection from the interface between
the air and concrete. Additionally, the final result of a commercial GPR is a radargram
whose interpretation is not immediate, except in very simple cases, and the need to prop-
erly model the electromagnetic scattering phenomenon and formulate an inverse problem
arises [21,22].

The focus of this paper is on the mathematical modeling of the scattering phenomenon
and on the study of the related inversion algorithm.

Microwave imaging requires the modeling and solving of an inverse electromagnetic
scattering problem, which is intrinsically non-linear. The operator relating the external
scattered field to the internal dielectric contrast can be expanded in a Taylor operatorial
series. In particular, the scattered field depends on the contrast and on the internal field.
The internal field, in turn, satisfies a Fredholm equation that can be expanded into the
well-known Neumann series and then substituted into the external equation [23,24]. Con-
sideration of only the first term implies linearization, whereas keeping the first two terms
of the series brings the quadratic approximation that was considered in the following.
In this sense, the quadratic approximation represents the lower degree of non-linearity.
From the physical point of view, linearization corresponds to considering each portion of
the investigation domain as if it were standing alone in free space, whereas the quadratic
approximation can be interpreted as keeping a mutual coupling between different parts of
the investigation domain. Similarly, cubic, quartic, and higher order terms would consider
“multiple” interactions, which are neglected in the present paper.

There are many different scattering models that allow for the obtaining of algorithms
suitable for the reconstruction of desired unknowns [25]. Focusing algorithms, such as
backpropagation and backprojection, and approximations, such as the well-known Born,
distorted Born, Rytov, and Kirchhoff, fall within the class of linear models of scattering [5].
Linearity allows for dealing with inverse problems in which the attainable resolution can be
forecast, and well-assessed techniques against noise are at hand. However, linear models
neglect mutual interactions inside the structure and result in the qualitative reconstruction
of the region under investigation [26]. On the other hand, preserving the full non-linearity
results in algorithms that usually require a huge computational effort, are often solved using
non-deterministic procedures, and do not guarantee global convergence to the solution [26].
To avoid such drawbacks, strategies that provide a moderate degree of non-linearity are
attractive and worth investigating [27].

In this framework, a quadratic approximation of the scattering phenomenon is demon-
strated to be a good compromise between the full non-linear model and the linearized
one [28,29]. Additionally, a formulation that includes all the a priori information can be
helpful when dealing with partially known structures. This approach has been considered
in [9,10] in which a linear approximation was adopted.

Another element that must be considered is measurement configuration. Full-view
illumination allows for the collection of more information than a limited aspect one. How-
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ever, sometimes the structure is not accessible from all around, and only reflection-mode
illumination, which is typical, for instance, of ground-penetrating radar applications,
is allowed.

The approach proposed here was already briefly presented in the conference paper [30].
In the present extended paper, the analytical details of the proposed model are explicitly
derived, and a critical study of the operator is performed. Moreover, several new examples
are presented, and the role of the threshold in the detection is shown.

The problem was formulated in canonical two-dimensional geometry: metallic bars
embedded into a lossless dielectric homogeneous medium, and in turn, embedded in
free space. The electric field polarization was assumed to be parallel to the vertical bars,
thus providing a scalar problem. An “almost” quadratic approximation of the problem
was derived, which allowed for the achievement of, for the geometry at hand, a synthetic
formulation where some of the involved coefficients can be evaluated analytically, thus
reducing the computational burden. The data of the problem were the multi-monostatic
scattered fields observed at different frequencies. The structure was tested using incident
fields radiated by filamentary electric sources placed at different positions along a straight
segment outside the investigated region. The bars were electrically conducting cylinders
with circular cross-sections whose radii are known. The problem was formulated as the
detection and localization of an unknown number of bars inside a pre-determined grid
of “candidate” positions. The result of the inversion algorithm is an image showing spots
where the bars were detected. To put the proposed approach in the context of reinforced
concrete testing, the numerical examples reported in the following were made using realistic
values for the dielectric section dimensions and the bar diameter, number, and position.

The paper is organized as follows: in Section 2, the problem is first formulated in
operatorial form, and then its expression in the considered geometry is derived; in Section 3,
the inverse problem and the related imaging algorithm are presented; and in Section 4,
numerical examples are presented. Conclusions follow.

2. Mathematical Formulation

A two-dimensional scalar problem is considered, in which the geometry is invariant
along the z-axis of a Cartesian reference system, and the electric field is z-polarized. The
investigation domain Ω is a limited portion of the xy plane and is filled with a dielectric
of the known relative permittivity εr. The external region is free space, whereas, inside Ω,
there are N circular metallic objects, representing the section of circular cylinders whose
radii are a. Their positions are indicated by rn = (xn, yn) and n = 1, . . . , N. The scene
is illuminated by a z-polarized line source placed at different positions along the line
Σ. A multi-monostatic configuration is assumed in which the scattered field is observed
at the same source positions, that is, at No observation points over Σ. See Figure 1 for
the geometry.

The scattering equations are formalized as follows [31]:

Es = Ae[χE] (1)

E = Ei +Ai[χE] (2)

where Ei and E are the incident and the total field inside Ω, respectively; χ is the normalized
contrast between the internal and external region; and Ae, Ai are linear operators whose
kernel is the Green’s function of the scattering problem, calculated outside and inside Ω,
respectively. Es is the scattered field outside Ω. It is well known that the inverse problem
related to (1) and (2), that is, recovering χ from the knowledge of Es and Ei, is non-linear.
The non-linearity is due to the presence of the total field E in (1), which in turn should be
recovered by solving (2).
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Figure 1. Geometry of the problem and reference system. The investigation domain is the rectangle
of size W × P placed at distance D from the measurement line, whose length is L.

The usual linear approximation is the Born approximation, in which the total field
in (1) is replaced by the incident field [29]. Taking into account a further term in the operator
series expansion, that is, replacing the total field on the right-hand side of (2) with the
incident field and then substituting the result in (1), the so-called quadratic approximation
of the scattered field is achieved [31]:

Es = Ae[χEi] +Ae[χAi[χEi]]. (3)

2.1. Quasi-Quadratic Approximation of the Scattered Field

To separate the contribution of the bars from that of the dielectric whose permittivity
and shape are assumed to be known, the contrast is represented as follows:

χ(r) = χ0 − j f (r), with r ∈ Ω (4)

where χ0 = εr − 1 is constant over Ω, and

f (r) =
σζ

k

N

∑
n=1

φ(|r− rn|), (5)

where σ is the bar’s conductivity, ζ is the free space impedance, k is the free space wavenum-
ber, and

φ(r) =

{
1 r 6 a
0 r > a

(6)

Using (4), the quadratic approximation of the scattered field in (3) can be recast as:

Es = χ0Ae[Ei] + χ2
0Ae[Ai[Ei]]− jAe[ f Ei]

−j2χ0Ae[Ai[ f Ei]]−Ae[ fAi[ f Ei]].
(7)

The quasi quadratic approximation proposed in this paper consists of neglecting the
last term in (7). In this way, mutual scattering between the bars is neglected, retaining the
interaction between the bars and the surrounding dielectric. Furthermore, the first two
terms on the right-hand side of (7) represent the quadratic approximation of the scattered
field when no bars are present. Such terms can be calculated, provided that the dielectric
shape and permittivity are known, and subtracted from the actual (measured/simulated)
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scattered field. By denoting such a difference by Ês, the problem can be formulated as the
solution to the following equation:

Ê = −jAe[ f Ei]− j2χ0Ae[Ai[ f Ei]] (8)

where the relationship between the data, at the first member, and the unknown, i.e., the
function f (r), is linear.

The explicit computation of (8) is now in order. By exploiting the Green’s function
expression in the two-dimensional case, the following results are obtained:

Ae[u] = −j
k2

4

∫∫
Ω

H(2)
0 (kRe)u(r)dr (9)

Ai[u] = −j
k2

4

∫∫
Ω

H(2)
0 (kRi)u(r)dr (10)

Ei = −
kζ

4
H(2)

0 (kRe) (11)

where Re = |r− ro|, with ro ∈ Σ, is the distance between a source/observation and a point
inside the investigation domain, Ri = |r− r′|, with r′ ∈ Ω, is the distance between two
points of the investigation domain; u(r) stands for either Ei or f Ei; H(2)

0 is the Hankel
function of zero order and second kind, and the unitary current source is assumed. After
some non-trivial passages, as reported in Appendix A, the following results are obtained:

Ê(k, ro) =
N

∑
n=1

Cn(k)
[

H(2)
0 (k|ro − rn|)

]2
(12)

Equation (12) appears relatively simple, as the Hankel functions act as a sort of pulse
centered on the unknown bar positions, and the coefficients Cn do not depend on the
observation point. Their expression is:

Cn(k) = πσζ2
(

ka
4

)2
{

1− j2χ0

(
ka
2

)2
·[

1−
(

ka
2

)2
− j

π
(1− 2 log(ka))

]
− j

χ0

2
An

} (13)

where

An =

2π∫
0

(kRn)2

2

[
J0(kRn)H(2)

0 (kRn)+

J1(kRn)H(2)
1 (kRn)

]
dθ

(14)

In (14), the dependence on the integration variable θ stands in Rn(θ), i.e., the distance
between the center of the n-th bar and the point on the dielectric/air interface along the θ
direction, as shown in Figure 2.

It is noteworthy that An considers the nth bar position inside the dielectric and the
shape of Ω itself. Its computation can be performed offline because it does not depend on
the observation point’s position.
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Figure 2. Reference system used to compute the integral in (14).

2.2. Inverse Problem Formulation

Equation (12) allows the formulation of the inverse problem as the detection and
localization of bars within a predetermined number Nb > N of “candidate” positions. Fol-
lowing the same approach as in [9], we define a new discrete function γ(n), n = 1, . . . , Nb,
whose value is 1 if the nth position is occupied by a bar; otherwise, it is equal to 0. Thus,
the problem is recast as a discrete equation as follows:

Ê(k, ro) =
Nb

∑
n=1

Cn(k)
[

H(2)
0 (k|ro − rn|)

]2
γ(n) (15)

where γ(n) plays the role of an unknown.

3. Discretization and Inversion Algorithm

The data are collected at Nk wavenumbers, equally spaced at the interval [kmin, kmax].
In the following numerical examples, Σ belongs to the straight line y = Yo, and the data are
collected at No equally spaced observation points of the abscissa xop, p = 1, . . . , No. Thus,
(15) yields the following equation:

E11
. . .

E1Nk
. . .

ENo1
. . .

ENo Nk


=

 G111 . . . G11Nb
. . . . . . . . .

GNo Nk1 . . . GNo Nk Nb

×
 γ(1)

. . .
γ(Nb)

 (16)

where

• Elp = Ê(kl , xop), l = 1, . . . , Nk; p = 1, . . . , No are the data with respect to wavenumber
and observation point,

• Glpn = Cn(kl)H(2)
o

(√
(xop − xn)2 + (Yo − yn)2

)
.

In conclusion, the problem has been reformulated as the inversion of the following
matrix equation:

E = Gγ (17)

where the meaning of the symbols is immediately understandable by comparison with (16).
Once the geometry of the investigation domain and measurement configuration is fixed,
matrix G can be computed. Subsequently, its inversion is performed using truncated
singular value decomposition (TSVD). To this end, it must be considered that the analysis
of the behavior of the singular values allows us to determine if enough data have been
collected to retrieve the unknown. That is, the so-called “information content” of the
data can be analyzed a priori, and it depends on (a) the measurement configuration, the
frequency bandwidth, and the measurement line’s extent and position with respect to
the investigation domain, and (b) the number and positions of the Nb “candidate” bars.
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Once the data bandwidth and measurement line have been fixed, refinement of data
sampling above certain values does not provide an improvement in the singular value
curve, nor finally on the possibility of recovering the unknown [32,33]. As a final step
in the inversion procedure, a threshold is applied to the recovered function γ(n), where
the indices corresponding to values above the threshold indicate the positions of the
detected bars.

4. Numerical Results

The numerical examples refer to a rectangular investigation domain Ω, as shown
in Figure 1, whose parameters are reported in Tables 1 and 2. The measurement line is
centered with respect to the dielectric rectangle. The data were simulated using the same
model developed to perform the inversion and then corrupted by additive Gaussian noise.
The signal-to-noise ratio SNR = 20 dB has been adopted.

First, to appreciate the role of the measurement configuration, the behavior of the
singular values for different values of the geometrical and measurement configuration
parameters is shown. Two different bandwidths and two different distances between the
measurement line and dielectric have been considered. Note that Table 1 refers to the
frequency f related to the wavenumber k = 2π f /c0 where c0 = 3 · 108 m/s. Matrix G and
its TSVD were calculated for the geometry and parameters defined in Tables 1 and 2. The
singular values for the two configurations specified in Table 1 are shown in Figure 3, where
the blue line refers to configuration 1, the green line to configuration 2, and the behavior of
the singular values obtained when fmax = 5 GHz and D = 0.10 m is shown by the red line.
It can be seen that a wider bandwidth and the enlargement of the angle of view (obtained
by moving the measurement line closer to the dielectric while keeping its length fixed)
provide better behavior of the singular values, which decay after a larger index. This result
is expected and is well known. In fact, in the presence of noise in the data, the truncation of
the singular values below −SNR is mandatory to obtain stable inversion [25].

Table 1. Measurement configurations (see Figure 1).

Quantity Symbol Config. 1 Config. 2

Measurement line distance from
the dielectric D 10 cm 50 cm

Measurement line extent L 200 cm 200 cm
Number of observation points No 101 101
Minimum frequency
(wavenumber) fmin (kmin) 4 GHz (83.78 m−1) 4 GHz (83.78 m−1)

Maximum frequency
(wavenumber) fmax (kmax) 7 GHz (146.61 m−1) 5 GHz (104.72 m−1)

Number of frequencies Nk 101 101

Table 2. Bar and dielectric parameters.

Quantity Symbol Value

Ω size along x W 0.40 m
Ω size along y P 0.25 m
Dielectric contrast χ 3
bars’ conductivity σ 107 S/m
bars’ radius a 8 · 10−3 m
bars’ candidate number Nb 294 (see Figure 4)
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Figure 3. Singular values of G for different measurement configurations. Intermediate configuration
uses same D as config. 1 and maximum frequency as config. 2.

To illustrate how the algorithm works, four deployments of the bars have been con-
sidered among the Nb = 294 positions depicted in Figure 4. The different deployments,
shown in Figures 5–8 represent cases in which the bars are regularly spaced and cases
in which some bars are out of place or completely lacking. Based on the noise level of
the data, a truncation value of −20 dB was adopted in the TSVD procedure. Concerning
Figure 3, this truncation level corresponds to retaining the first 112 singular values in the
“worst” configuration (green line) and the first 241 in the “best” one (blue line). It should
be emphasized that the number of singular values above the threshold does not depend
on the actual deployment of the bars inside the structure. The corresponding results in
terms of detection and localization are shown in Figures 5–8. In all figures, the bars are
numbered from the bottom left to the top right. Each figure shows a pictorial view of the
reconstruction, obtained after thresholding, at the top, and the reconstructed function γ(n)
at the bottom. As can be seen, when the number of retained singular values is higher,
the bars are successfully detected. In fact, in this case, the recovered function exhibits a
very clear behavior, which makes the procedure insensitive to the choice of threshold. In
contrast, in the case of a lower number of singular values, some of the bars are not detected,
and the choice of the threshold becomes crucial. Moreover, a lower threshold level causes
the detection of false bars.

Figure 4. Candidate (blue circles) bar positions inside the dielectric rectangle (grey line). Bars are
numbered from bottom left to top right.
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Figure 5. Bars’ detection (top) and reconstructed γ(n) for the two measurement configurations
(bottom). Red circles represent actual bars. Black stars represent detected bars. A threshold of 0.7 has
been applied.

Figure 6. Cont.
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Figure 6. Bars’ detection (top) and reconstructed γ(n) for the two measurement configurations
(bottom). Red circles represent actual bars (two bars lacking with respect to Figure 5). Black stars
represent detected bars. A threshold of 0.7 has been applied.

Figure 7. Cont.
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Figure 7. Bars’ detection (top) and reconstructed γ(n) (bottom). Red circles represent actual bars
(one bar is displaced with respect to Figure 5). Black stars represent detected bars. A threshold of 0.7
has been applied.

Figure 8. Cont.
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Figure 8. Bars’ detection (configuration 1 and 2 from top) and reconstructed γ(n) (bottom). Red
circles represent actual bars. Black stars represent detected bars. A threshold of 0.7 has been applied.
Note the the two lateral bars are not detected in configuration 2.

5. Conclusions

In this study, an approximated model for the scattering from metallic bars embedded
into a dielectric is proposed. The model is “quasi” quadratic because it exploits a quadratic
approximation of the scattering, which allows the coupling between the bars and the
dielectric structure to be taken into account, but it neglects the coupling between the bars.
In this way, by exploiting a priori knowledge of the dielectric permittivity and shape, the
detection and localization of the bars are reduced to the inversion of a linear operator. The
behavior of the singular values of the operator provides indications about the information
content of the different measurement configurations. Two examples have been considered.
As expected, a wider angle of view (provided in the above examples by bringing the
measurement line closer to the dielectric) corresponds to an increased number of singular
values above the threshold. The threshold can be fixed according to the expected signal-to-
noise ratio of the data, and TSVD guarantees the stability of the inversion algorithm. The
proposed model allows for the computation of part of the relevant operator in a closed form
so that it reduces the computational burden. The algorithm was validated with numerically
simulated data relating to two measurement configurations and different numbers and
positionings of the bars inside the dielectric. The results show the feasibility of the approach
and encourage a deeper understanding of the model. The application that is considered by
the author is reinforced concrete diagnostics. It is worth noting that one of the difficulties
in reinforced concrete diagnostics stands in setting up a reliable measurement system, in
which the instrumentation’s accurate positioning and the minimization of measurement
noise play a crucial role. From this point of view, the availability of simple and stable data
processing algorithms is helpful. Experimental validation was not within the scope of this
paper. However, a laboratory set-up is in progress in order to obtain the data needed to test
the method with experimental measurements performed in a controlled environment.

Funding: This research was partially funded by VALERE: VAnviteLli pEr la RicErca research program
by Universita degli Studi della Campania Luigi Vanvitelli.

Conflicts of Interest: The author declares no conflict of interest.
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Abbreviations
The following abbreviations are used in this manuscript:

NDT non-destructive testing
GPR ground penetrating radar
MFL magnetic flux leakage
TSVD truncated singular value decomposition

Appendix A

Ae[ f Ei] is obtained by exploiting (5), (9), and (11) as follows:

Ae[ f Ei] = jσ
(

kζ

4

)2

∑
n∫∫

n−thbar

[
H(2)

0 (k|ro − r|)
]2

dr
(A1)

In the hypothesis that a << |ro − r|n, it can be assumed that the Hankel function is
almost constant when r varies within the n−th bar and coincides with its value calculated
at the center of the bar, that is, H(2)

0 (k|ro − r|) ≈ H(2)
0 (k|ro − rn|), such that the double

integral is obtained by multiplying this value by the area of the circle πa2. It results:

Ae[ f Ei] = jσπ

(
kaζ

4

)2

∑
n[

H(2)
0 (k|ro − rn|)

]2
(A2)

The computation of Ae[Ai[ f Ei]] is slightly more complex.

Ae[Ai[ f Ei]] = σ
k4ζ2

64

∫∫
Ω

H(2)
0 (k|ro − r|)·

∑
n

∫∫
nthbar

H(2)
0
(
k|r− r′|

)
H(2)

0
(
k|ro − r′|

)
dr′dr,

(A3)

applying the same arguments as before, we approximate the Hankel function of the argu-
ment k|ro − r′| with its value at the n−th bar center and put it outside the integrals

Ae[Ai[ f Ei]] = σ
k4ζ2

64 ∑
n

H(2)
0 (k|ro − rn|)·∫∫

Ω

H(2)
0 (k|ro − r|)

∫∫
nthbar

H(2)
0
(
k|r− r′|

)
dr′ dr.

(A4)

where the summation and external integral have been exchanged.
We focused on the integral of the nth bar. It is a function of r, that is, bn(r). It

is convenient to refer to local polar coordinates (R, θ) centered on the n−th bar, where
R = r− rn and R′ = r′ − rn (see Figure 2). In this way:

bn(r) =
2π∫
0

a∫
0

H(2)
0
(
k|R− R′|

)
R′dR′dθ′. (A5)

Two cases must be considered:

1. R > a
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It is straightforward to see that, in this case, the following results:

bn(r) =
2πa

k
H(2)

0 (k|r− rn|)J1(ka) (A6)

where the addition theorem for the Bessel function of integer order (formula 9.1.79
in [34])

H(2)
0
(
k|R− R′|

)
=

∞

∑
m=0

Jm(kR′)H(2)
m (kR) cos m(θ − θ′);

and the formula 5.52.1 in [35])

a∫
0

J0(kR′)R′dR′ =
a
k

J1(ka)

have been exploited.
2. R < a

In this case, the addition theorem provides two different expressions

H(2)
0
(
k|R− R′|

)
={

∑∞
m=0 Jm(kR′)H(2)

m (kR) cos m(θ − θ′) R′ < R

∑∞
m=0 Jm(kR)H(2)

m (kR′) cos m(θ − θ′) R′ > R

(A7)

Again, substituting such expressions in (A5), the integral on θ′ makes null the terms
of the sum m 6= 0, and only the term m = 0 survives. Then, the integral along R′ splits
as follows:

R∫
0

H(2)
0 (kR)J0(kR′)R′dR′+

a∫
R

H(2)
0 (kR′)J0(kR)R′dR′

Using again the formula 5.52.1 in [35], the first integral gives:

R
k

H(2)
0 (kR)J1(kR),

and the second integral results in

J0(kR)
[

a
k

H(2)
1 (ka)− R

k
H(2)

1 (kR)
]

.

Finally, summing up and making use of the Wronskian [34], we obtain:

bn(r) = −j
4
k2 +

2πa
k

J0(k|r− rn|)H(2)
1 (ka). (A8)
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We now return to the computation of (A4).

Ae[Ai[ f Ei]] = σ
k4ζ2

64 ∑
n

H(2)
0 (k|ro − rn|)·∫∫

Ω

H(2)
0 (k|ro − r|)bn(r) dr.

(A9)

The coefficients bn(r) assume the expression (A6), when they are calculated outside
the nth bar, and (A8), when they are calculated inside the nth bar. So, it is convenient to
split the integration over the investigation domain Ω as follows:∫∫

Ω
=
∫∫

nthbar
+
∫∫

Ω−nthbar
.

Then: ∫∫
nthbar

H(2)
0 (k|ro − r|)bn(r) dr = H(2)

0 (k|ro − rn|)·

·
2π∫
0

a∫
0

[
−j

4
k2 +

2πa
k

J0(kR)H(2)
1 (ka)

]
RdRdθ =

= H(2)
0 (k|ro − rn|)

[
−j

4πa2

k2 +

(
2πa

k

)2
H(2)

1 (ka)J1(ka)

]
,

(A10)

Again, using the addition theorem applied to the Hankel function

H(2)
0 (k|ro − r|) = H(2)

0 (k|ro − rn − R|)∫∫
Ω−nthbar

H(2)
0 (k|ro − r|)bn(r) dr =

2πa
k

J1(ka)·

·H(2)
0 (k|ro − rn|)

2π∫
0

Rn(θ)∫
a

H(2)
0 (kR)J0(kR)RdRdθ.

(A11)

where the terms of the index m 6= 0, whose contribution to the integral is negligible, have
been neglected. In (A11), Rn(θ) represents the distance between the center of the n-th bar
and the point on the dielectric border at angle θ, as depicted in Figure 2. The related integral
can be calculated in closed form [35,36] as follows:

Rn∫
a

H(2)
0 (kR)J0(kR)RdR =

=
R2

n
2

[
J0(kRn)H(2)

0 (kRn) + J1(kRn)H(2)
1 (kRn)

]
+

− a2

2

[
J0(ka)H(2)

0 (ka) + J1(ka)H(2)
1 (ka)

]
.

(A12)

where for the sake of brevity the dependence of Rn on θ was implied.

References
1. Pastorino, M.; Randazzo, A. Microwave Imaging Methods and Applications; Artech House: Boston, MA, USA, 2018; ISBN 978-1-

63081-348-2.
2. Daniels, D.J. Ground Penetrating Radar, 2nd ed.; Daniels, D.J., Ed.; IEEE Radar Sonar and Navigation Series; The Institution of

Electrical Engineers: London, UK, 2004.



Appl. Sci. 2022, 12, 9217 16 of 17

3. Catapano, I.; Crocco, L.; Napoli, R.D.; Soldovieri, F.; Brancaccio, A.; Pesando, F.; Aiello, A. Microwave tomography enhanced
GPR surveys in Centaur’s Domus—Regio VI of Pompeii. J. Geophys. Eng. 2012, 9, 92–99. [CrossRef]

4. Benedetto, A.; Pajewsky, L. Civil Engineering Applications of Ground Penetrating Radar; Springer: Cham, Switzerland, 2015; ISBN
978-3-319-04813-0.

5. Catapano, I.; Gennarelli, G.; Ludeno, G.; Noviello, C.; Esposito, G.; Soldovieri, F. Contactless Ground Penetrating Radar Imaging:
State of the Art, Challenges, and Microwave Tomography-Based Data Processing. IEEE Geosci. Remote. Sens. Mag. 2021, 10,
251–273. [CrossRef]

6. Wai-Lok Lai, W.; Dérobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year
journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018, 96, 58–78. [CrossRef]

7. Soldovieri, F.; Brancaccio, A.; Prisco, G.; Leone, G.; Pierri, R. A Kirchhoff-based shape reconstruction algorithm for the multi-
monostatic configuration: The realistic case of buried pipes. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3031–3038. [CrossRef]

8. Aboudourib, A.; Serhir, M.; Lesselier, D. A processing framework for tree-root reconstruction Using ground-penetrating radar
Under heterogeneous soil conditions. IEEE Trans. Geosci. Remote Sens. 2021, 59, 208–219. [CrossRef]

9. Brancaccio, A.; Leone, G.; Solimene, R. Fault detection in metallic grid scattering. J. Opt. Soc. Am. A 2011, 28, 2588–2599.
[CrossRef]

10. Brancaccio, A.; Solimene, R. Fault detection in dielectric grid scatterers. Opt. Express 2015, 23, 8200–8215. [CrossRef]
11. Pichot, C.; Trouillet, P. Diagnosis of reinforced structures: An active microwave imaging system. In Bridge Evaluation, Repair

and Rehabilitation; Nowak, A.S., Ed.; NATO ASI Series (Series E: Applied Sciences); Springer: Dordrecht, The Netherlands, 1990;
Volume 187, pp. 201–215. [CrossRef]

12. Leucci, G. Electromagnetic monitoring of concrete structures. In Proceedings of the XIII International Conference on Ground
Penetrating Radar, Lecce, Italy, 21–25 June 2010; pp. 1–5. [CrossRef]

13. Polimeno, M.R.; Roselli, I.; Luprano, V.A.M.; Mongelli, M.; Tatì, A.; Canio, G.D. A non-destructive testing methodology for
damage assessment of reinforced concrete buildings after seismic events. Eng. Struct. 2018, 163, 122–136. [CrossRef]

14. Chun, P.-j.; Hayashi, S. Development of a Concrete Floating and Delamination Detection System Using Infrared Thermography.
IEEE/ASME Trans. Mechatron. 2021, 26, 2835–2844. [CrossRef]
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