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Abstract: Although graph convolutional networks (GCNs) have shown their demonstrated ability
in skeleton-based action recognition, both the spatial and the temporal connections rely too much
on the predefined skeleton graph, which imposes a fixed prior knowledge for the aggregation of
high-level semantic information via the graph-based convolution. Some previous GCN-based works
introduced dynamic topology (vertex connection relationships) to capture flexible spatial correlations
from different actions. Then, the local relationships from both the spatial and temporal domains
can be captured by diverse GCNs. This paper introduces a more straightforward and more effective
backbone to obtain the spatial-temporal correlation between skeleton joints with a local-global
alternation pyramid architecture for skeleton-based action recognition, namely the pyramid spatial-
temporal graph transformer (PGT). The PGT consists of four stages with similar architecture but
different scales: graph embedding and transformer blocks. We introduce two kinds of transformer
blocks in our work: the spatial-temporal transformer block and joint transformer block. In the former,
spatial-temporal separated attention (STSA) is proposed to calculate the connection of the global
nodes of the graph. Due to the spatial-temporal transformer block, self-attention can be performed on
skeleton graphs with long-range temporal and large-scale spatial aggregation. The joint transformer
block flattens the tokens in both the spatial and temporal domains to jointly capture the overall
spatial-temporal correlations. The PGT is evaluated on three public skeleton datasets: the NTU RGBD
60, NTU RGBD 120 and NW-UCLA datasets. Better or comparable performance with the state of the
art (SOTA) shows the effectiveness of our work.

Keywords: skeleton-based action recognition; graph embedding; transformer; spatial-temporal
attention; pyramid

1. Introduction

Skeleton-based action recognition has been a hot topic with vast application areas:
surveillance systems, human–computer interaction, medical care assistance, etc. Due to
the development of depth cameras and pose estimate algorithms, human skeletons are
much easier to obtain as efficient data. Therefore, many skeleton-based action recognition
algorithms have been proposed in recent years. Compared with the RGB images and videos,
the skeleton data consisting of 3D joint coordinates show advantages in the following
aspects: being robust to illumination, stable to the background and lightweight.

The semantic information of skeleton data was extracted with handcrafted features
in the early years [1]. Vemulapalli et al. [1] adopted lie group theory in this task for the
features of the joints and angles. However, with the development of deep learning, many
works introduced convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) into their models to learn powerful features with high-level semantics. The CNN-
based methods construct the skeleton joints into a 2D pseudo-image, and the popular
CNN architectures are applied to classify the images into a special spectral form [2–5].
RNN-based methods treat the skeletons as a series of feature vectors and construct a deep
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network in the spatial domain with long short-term memory (LSTM) units [6–9]. Therefore,
the dynamic changes over a long period of time are captured.

Then, a series of graph convolution networks (GCNs) was proposed and showed steps
of improvement compared with previous works [10–15]. Yan et al. [10] were the first to
propose the graph convolution operation and treat the skeletons as non-Euclidean graphs.
The key to graph convolution lies in constructing the learnable graph convolution kernels.
Based on this work, Shi et al. [11] proposed a two-stream graph convolution network with
an adaptive mechanism to learn the adjacency matrix. Cheng et al. [12] further presented a
shift graph convolution operation with a similar backbone. Inspired by previous works,
Plizzari et al. [14] introduced the attention mechanism into their two-stream architecture
to improve the performance with more learnable parameters.

Previous GCN-based methods mainly explored a dynamic network based on a graph
convolution backbone proposed by [10]. The graph convolution kernel is fixed, and the
network is suitable for the static topology of graphs. However, the spatial-temporal cor-
relations between all nodes are essential. At the same time, GCN-based methods adopt a
cascading spatial graph convolution and temporal convolution layers to learn this infor-
mation, as shown in Figure 1. As graph convolution operation is inferred from CNNs, it
means GCNs will also come across the problem of the local receptive field. As far as we are
concerned, these multi-layer GCN-based methods perform poorly in the dynamic fusions
of the global joints. For example, the correlation between the joint of the hand in the first
frame and the joint of the foot in the last frame cannot be measured in most cases, which
may be crucial spatial-temporal information for the perception of actions.

Therefore, we propose a new backbone based on transformers to learn the long-range
dependencies in the spatial and temporal domains. The transformer architecture was
proposed in recent years and has shown itself to be a strong backbone for natural language
processing (NLP) tasks. For computer vision (CV) tasks, the vision transformer (ViT)
has also demonstrated more robust effects compared with CNNs or RNNs. Inspired by
this architecture, we propose a pyramid transformer backbone named PGT, which can
provide multi-scale features with a four-stage architecture for skeleton graph data. The
long-range, multi-scale spatial-temporal correlations are learned through an alternate
connection structure of the GCN module and the transformer module. Concretely, the GCN
module is called graph embedding, having an efficient separate convolution operation,
and we introduce two kinds of transformer blocks: spatial-temporal transformer blocks
and joint transformer blocks. The spatial-temporal transformer block calculates the spatial
self-attention and temporal self-attention separately, while the joint transformer block
discovers the global self-attention of all nodes in the graphs.

The main contributions of this work are summarized as follows:

• A pyramid spatial-temporal graph transformer backbone (PGT) is proposed in this
work which shows a powerful ability to learn robust features for skeleton graphs with
dynamic attention.

• Two kinds of transformer blocks are introduced and applied to discover the long-
range spatial-temporal correlations in human actions, and the separate convolution
operation in graph embedding makes the model go deeper with high-level semantics.

• Extensive experiments are performed in this work, and the ablation study demon-
strates the effectiveness of our backbone. Finally, the experiments show better
comparable performance with the state-of-the-art methods and show the potential of
this backbone.

The rest of this paper is organized as follows. Section 2 describes the related work in
the field of skeleton-based action recognition and some work on the vision transformer
method. Section 3 presents the architecture design of our PGT. Section 4 provides the
experiment results, ablation study and comparisons with the state-of-the-art methods. The
conclusions are drawn in Section 5.
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(a)

(b)

Figure 1. The method for capturing spatial-temporal correlations for skeleton graphs. Previous GCNs
adopted a spatial-temporal cascaded backbone to learn their representations. However, the trans-
former architecture is able to capture the long-range correlations for skeleton graphs. (a) Cascaded
spatial-temporal correlations via GCNs. (b) Long-range spatial-temporal correlations via transformer.

2. Related Work
2.1. Skeleton-Based Action Recognition

Instead of searching for high-level semantic information based on RGB videos, skeleton-
based action recognition is committed to extracting the spatial-temporal features of the
highly condensed joints. Earlier works rely on extracting handcrafted features from the 3D
skeleton sequences. Hussein et al. [16] proposed a covariance descriptor extracted from the
covariance matrix for skeleton joint locations over time. In a previous work [1], handcrafted
features based on the lie group were applied to represent the dynamic skeleton information.

As deep learning algorithms have gained absolute dominance in various computer
vision tasks, convolutional neural network (CNN)- and recurrent neural network (RNN)-
based models are widely used to learn spatial-temporal correlations and variations. CNN-
based methods arrange the 3D skeleton joints to form a pseudo-image, in which the width
of the image represents the joints and the length denotes the frames. These methods
take great advantage of the powerful representation ability of CNNs through various
ingenious convolution structures. Kim et al. [17] introduced a temporal convolutional
network instead of the LSTM-based RNNs to learn the spatiotemporal representations
explicitly. Liu et al. [2] transformed the skeleton sequences through a visual-enhanced
method and predicted the action with a multi-stream CNN model. The fused features show
the robustness of the changes in the viewing angles. Li et al. [4] proposed a CNN-based
model which contained a practical skeleton-rearranged module and a two-stream network
with seven layers. Banerjee et al. [18] proposed using four feature representations to
capture various aspects of skeleton sequences with a fuzzy combination of CNNs. Wang
et al. [19] focused on the edge motion, which contains the angle changes and movements,
and showed the effectiveness of this operation.

Unlike the CNN-based methods, which transform the skeletons into a pseudo-image,
RNN-based models take the skeleton coordinates as a series of signals in the time domain
to learn deep temporal networks. The output of the previous moment of the RNN network
is taken as the input of the next moment, which enables the model to represent the temporal
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dynamics. Liu et al. [6] introduced a long-short-term memory (LSTM)-based network
to learn the hidden action-related information in both the spatial and temporal domains
simultaneously. Song et al. [7] incorporated the LSTM unit with an additional attention
subnetwork, which was able to assign different weights to different frames. Diao et al. [20]
presented a multi-term strategy by combing both an MTA-RNN and ST-CNN. In [21], Jiang
et al. rethought the spatial information with previous handcrafted features and proposed
a spatial-temporal skeleton transformation descriptor (ST-STD). A three-layer LSTM to
learn the temporal dynamics reduces the action misalignment. Gao et al. [22] proposed an
LSTM-based deep attention network with a new triplet loss function.

However, graph convolutional network (GCN)-based models soon replaced the CNN
and RNN models because of their powerful ability to represent the spatial-temporal skele-
ton features. The graph convolution operation, extended from CNNs, is applied to the
non-Euclidean graph data. Earlier, Yan et al. [10] first proposed a spatial-temporal graph
convolutional network (ST-GCN) and provided a robust GCN backbone for skeleton-based
action recognition. The backbone consists of cascading spatial graph convolution (SGC)
and temporal convolution (TC) modules.

Inspired by this work, many researchers have decided to construct skeleton graphs for
human skeletons, which are more intuitive and able to achieve better performance. Liu
et al. [23] proposed capturing spatial-temporal correlations with a unified graph convo-
lution operation named G3D, which can be seen as a dynamic method. Huang et al. [24]
also introduced a multi-scale dynamic approach with an extra inference module to be
adaptive for various actions. Li et al. [25] proposed the concept of an actional link and
structural link to learn the correlated joints, such as the hand joint and the foot joint in the
action of “walking”. Chen [26] aimed to discover the spectral-domain information and
propose a dual-domain GCN network based on both vertex graph convolution and spectral
graph convolution operations. Zheng et al. [27] proposed a multi-scale adaptive aggregate
GCN to model the remote dependency between joints, which is able to fuse particular
global information.

Some works focus on the pattern-level perception and propose a multi-stream architec-
ture. Shi et al. [11] proposed an attention augmentation model with a two-stream network,
which combines the joint feature and bone feature for a more robust representation. Then,
they provided a stronger model with a four-stream architecture by introducing the pre-
processed joint motion and bone motion data [28]. Cheng et al. [12] further proposed a
four-stream network while introducing a graph shift operation from CNNs. The extra joint
and bone motion streams are added as handcrafted prior knowledge. Chen et al. [29] and
Cheng et al. [30] focused on the topology-non-shared models, which means the topologies
in different channels are learned dynamically during inference. In [30], the skeleton features
were aggregated with a channel-wise topology module for high-level representation.

2.2. Vision Transformer

The transformer [31] was first proposed for natural language processing (NLP) tasks
with a self-attention mechanism, which enables the model to capture long-range correlations
dynamically. Then, Dosovitskiy et al. [32] introduced a vision transformer backbone (ViT)
by embedding image patches of 16× 16 pixels. The backbone consists of an image tokenizer
module, positional embedding layers and transformer encoder layers. The local information
is reweighted by a global attention mechanism named multi-head self-attention (MSA).

Thereafter, Srinivas et al. [33] introduced bottleneck layers into ViT and constructed a
bottleneck transformer for vision segmentation and detection. Carion et al. [34] presented
a transformer-based encoder-decoder backbone called a detection transformer (DETR),
which combines CNN architectures together. Touvron et al. [35] further proposed an
efficient model with no convolution layers. Yuan et al. [36] proposed a more efficient
attention backbone which incorporates a token-to-token transformation module and a
deep-narrow architecture. Wang et al. [37] raised a pyramid vision transformer (PVT) to
replace CNN backbones. Similar to the classic ResNet [38], a PVT is composed of four
stages with different feature scales while sharing a similar architecture.
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ViT models show superiority for various vision tasks based on RGB images and
videos. Owing to the attention mechanism, the weights of the essential pixels are amplified.
Therefore, the models can be trained dynamically based on the input data. As for skeleton-
based action recognition, Plizzari et al. [14] raised the effectiveness of applying the self-
attention module to the skeleton recognition task, and the two-stream model makes a
further improvement based on the ST-GCN to capture the spatial-temporal correlations.
Zhang et al. [39] proposed a spatial-temporal transformer model consisting of a spatial
transformer block and a directional temporal transformer block in the spatial and temporal
dimensions, respectively.

3. Method

In this section, the details of the architecture of our pyramid spatial-temporal graph
transformer are illustrated. The preliminaries subsection presents the fundamentals of the
relevant mathematical theory. Then, the three main designs are described in sequence:
the graph embedding module, spatial-temporal transformer attention and the pyramid
architecture. As shown in Figure 2, the PGT is designed as a pyramid architecture with
four stages consisting of similar modules for different scales. The long-range multi-scale
spatial-temporal correlations are learned and shown to be effective with this efficient model.
The detailed parameters are shown in Table 1.

Figure 2. Implementation of the pyramid spatial-temporal graph transformer (PGT). A pyramid
architecture is designed for multi-scale feature learning. The model consists of four stages with similar
modules to capture the long-range correlations in the spatial and temporal dimensions. Each stage
has a graph embedding module and a spatial-temporal transformer block. The temporal dimension
decreases exponentially with each stage, while the spatial dimension stays the same. In this way, the
spatial granularity is retained, and temporal redundancy is removed.

Table 1. The architecture parameters of the pyramid spatial-temporal graph transformer on the
NTU-RGBD 60 dataset.

Stage Block Channel Shape

0
Graph Embedding 3 (3× T/4×V)

ST Transformer Block ×2 64× 2 (64× T/4×V)× 2

1
Graph Embedding 64 (64× T/8×V)

ST Transformer Block ×2 64× 2 (64× T/8×V)× 2

2
Graph Embedding 128 (128× T/16×V)

Joint Transformer Block ×2 128× 2 (128× T/16×V)× 2

3
Graph Embedding 256 (256× T/32×V)

Joint Transformer Block ×2 256× 2 (256× T/32×V)× 2

3.1. Graph Embedding

The skeleton data used for action recognition consisted of several joints of humans,
which were the 3D coordinates specifically. Unlike image data, skeleton graphs are more
lightweight and more structurally relevant. For one action, they have three-dimensional
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parameters, such as the frame, joint number and coordinate. To transform the skeleton
graph into a uniform pattern, we propose a graph embedding module for the pyramid
architecture. For traditional vision transformer models, a graph embedding module is
utilized to obtain a series of feature tokens sent to the multi-head self-attention (MHSA) in
the transformer block to reweight the local features based on long-range attention. However,
for skeleton graphs, we introduce a GCN-based embedding module to enhance the spatial-
temporal correlations as shown in Figure 3. Meanwhile, the graph embedding module
plays a vital role in the information aggregation in the temporal dimension of the skeleton
graphs. As shown in Figure 2, the temporal dimension shrinks with the stage progression,
which forms a deep pyramidal structure for high-level semantic learning.

(a)

(b)

Figure 3. Illustration of the basic ST-GCN unit and the graph embedding. The SGC represents the
spatial graph convolution module, and the temporal convolution adopts a separate convolution
structure in our graph embedding. (a) Basic ST-GCN unit. (b) Graph embedding.

Unlike the image-based vision tasks, we denote the 3D skeleton coordinate sequences
as Fin ∈ RT×V×C, where T, V and C represent the frame, joint number and coordinates,
respectively. At the start of each stage i, a spatial graph convolution is first applied
to aggregate local information from neighbors according to the natural connection of
joints. According to the network in [10], the vertex-domain graph convolution operation is
as follows:

fout(vti) = ∑
vtj∈N(vti)

1
Zti

(
vtj

) fin
(
vtj

)
·w

(
dti

(
vtj

))
(1)

where vti denotes the ith skeleton joint at time t and w(·) calculates the distance partitioning
dti(·) to determine the neighborhood of the graph convolution kernel. Cardinality Z shows
the contribution of the neighbor joints. Concretely, the spatial graph convolution takes the
adjacency matrix as the distance instruction, and the formula is transformed as follows:

Fout =
D

∑
d=0

Wd(FinAd)�Md (2)

where the input feature map Fin is weighted with the normalized adjacency matrix with

Ad = Λ
− 1

2
d AdΛ

− 1
2

d . The kernel learns the weights, denoted as Wd ∈ R1×1×C×C′ . Md
denotes a learnable attention map to adjust the importance of each vertex.

Then, a temporal convolution module is followed to fuse the local information in the
temporal domain. We adopted a separate convolution method to make the calculation
more efficient. MobileNet first introduced this design for less computation, and it was also
applied in [15]. As shown in Figure 3, the 1 × 1 convolution layer is used to adjust the
channel dimension. Next, the depth-wise convolution layer is applied to one corresponding
channel, while the point-wise convolution takes charge of the transformation for the
output dimension. During this step, temporal pooling is applied to concentrate the joint
information in the time domain.
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3.2. Transformer Block

Two kinds of transformer blocks are adopted in our pyramid architecture: spatial-
temporal transformer and joint transformer blocks, as shown in Figure 4. The vision
transformer uses qkv self-attention [31] for a sequence of tokens xn, which is computed
as follows:

[Q, K, V] = xnWqkv, Wqkv ∈ RC×3Ch (3)

where Q, K and V are the query, key and value of the token vector, respectively, and Wqkv
is a learnable weight matrix. The difference between these two transformer blocks lies in
the self-attention operation, as shown in Figure 4. As the number of tokens can be very
large due to redundancy in the time domain, the computation cost is extremely high for the
regular multi-head self-attention (MSA), which can be written as follows:

MSA(Q, K, V) = [head1; head2; · · · ; headh]Wmsa (4)

where headi denotes the output of the self-attention and Wmsa is a learnable matrix. Note
that the number of head h is set to 1, 2, 4 or 8 for four stages. The formula of each head is
as follows:

headi = Attention
(

QWQ
i , KWK

i , VWK
i

)
(5)

where WQ
i , WK

i and WK
i are learnable matrix projections for the query, key and value of the

tokens. Furthermore, as denoted in [31], the single-head attention is as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

where 1/
√

dk denotes the scaling factor. The attention mechanism reweights the represen-
tation vectors by a global connection of all tokens.

Figure 4. The spatial-temporal transformer block (left) vs. the joint transformer block (right).

For the first two stages with a large time dimension, we propose a separate spatial-
temporal attention architecture, shown in Figure 4. For the last two stages, we prefer to
flatten the skeleton tensor in both the spatial and temporal dimensions and calculate the
joint spatial-temporal correlations. The computations of the blocks are calculated as follows:

Jointhead = MLP(MSA(Flatten(xn))) (7)

SThead = MLP(TSA(SSA(xn))) (8)
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where MLP represents the multi-layer perceptron layer. Different from the multi-head
self-attention (MSA) in the last two stages, the first two stages are optimized using spatial
self-attention (SSA) and temporal self-attention (TSA) separately.

3.3. Pyramid Architecture

In our work, a pyramid architecture is introduced inspired by PVT [37]. In the previous
the PVT for image-based vision tasks, and multi-scale feature maps are generated for more
robust representations. Therefore, our PGT adopts a similar architecture consisting of four
stages, and all of them share a similar structure. In the first stage, the input skeleton tensor of
a sizeRT×V×3 is calculated with a spatial-temporal graph convolution module named graph
embedding. Then, the tensor x1 ∈ RT/4×V×C1 is divided into V tokens in the spatial domain
and T/4 in the temporal domain for the cascaded spatial attention (SSA) and temporal
self-attention (TSA). After that, the local feature of each node of the graph is reweighted
with the global nodes according to the transformer block. By this operation, the following
feature maps are obtained: D1 ∈ RT/4×V×C1 , D2 ∈ RT/8×V×C2 , D3 ∈ RT/16×V×C3 and
D4 ∈ RT/32×V×C4 . The pooling operation reduces the redundancy in the temporal domain.

4. Experiments

In this section, our PGT model is evaluated on three public datasets: NTU-RGBD
60 [40], NTU-RGBD 120 [41] and Northwestern-UCLA [42]. First, we introduce the datasets
and implementation details of the experiment. Then, the ablation study shows the effective-
ness of our model design. Lastly, comparisons with the state of the art are conducted.

4.1. Datasets

NTU-RGBD 60. The NTU-RGBD 60 dataset [40] is a widely used skeleton-based
action recognition dataset consisting of 56,880 samples divided into 60 categories. These
samples were performed by 40 different persons and captured by 3 cameras to ensure
the diversity of the actions. Each sample comprised 25 joints of humans, which were the
3D coordinates specifically. The evaluation of this dataset included both the cross-view
(CV) benchmark and the cross-subject (CS) benchmark. They verified the diversity of the
actions by the model under different viewpoints and by different characters. For the CV
benchmark, the training data came from camera 2 and 3, and the testing data came from
camera 1. For the CS benchmark, the training data were from 20 subjects, and the testing
data were from the other 20 subjects.

NTU-RGBD 120. The NTU-RGBD 120 dataset [41] is a large 3D skeleton dataset for
human action recognition which is an extension of the NTU-RGBD 60 dataset. This version
has 113,945 skeleton clips categorized into 120 classes. These actions are performed by
106 persons captured by 3 cameras as well. The validation benchmarks also have two
methods: cross-subject (X-sub) and cross-set-up (X-set). The training data came from
53 subjects, and the testing data came from the other 53 subjects for the X-sub benchmark.
For the X-set benchmark, the training data were from samples with even collector set-up
IDs, and the testing data were from samples with odd IDs.

Northwestern-UCLA. The Northwestern-UCLA dataset [42] is a popular skeleton
dataset captured by Kinect cameras. The actions are divided into 10 classes for 1494
skeleton sequences. Concretely, the actions were performed by 10 different subjects. The
evaluation set-ups were similar to the cross-view benchmark of the NTU-RGBD 60 dataset.
The training data were captured by cameras 1 and 2, and the testing data were from
camera 3.

4.2. Implementation Details

All our experiments were conducted on two GeForce RTX 3090 GPUs with a Pytorch
deep learning framework, which is developed by Meta Platforms. The Pytorch version is
1.10.1 and the python version is 3.7. Concretely, the training epoch was set to 300 with an
initial learning rate of 0.1. The learning rate decayed at a factor of 0.1 at epochs 150 and
250. However, at the start of the training process, the warm up strategy proposed in [38]



Appl. Sci. 2022, 12, 9229 9 of 16

was adopted. The PGT chose the SGD optimizer with a momentum of 0.9 and a weight
decay of 0.0004. The batch sizes for the NTU-RGBD 60 and 120 datasets were set to 64.
The skeleton data were preprocessed in the same way as in [43], in which the frame of the
skeleton sequences was set to 64, while for the Northwestern-UCLA dataset, the batch size
was set to 16. The preprocessing method was inspired by [12].

4.3. Ablation Study

The proposed pyramid spatial-temporal graph transformer was analyzed through var-
ious ablation studies in this section. The experiments were conducted on the CS benchmark
of the NTU-RGBD 60 dataset. Both the accuracy and the model complexity are denoted in
the following results. The model complexity contained the floating-point operations per
second (FLOPs, which means the computation speed) and the number of parameters in
the model.

4.3.1. The Effect of the ST-Joint Transformer Block

As shown in Table 2, the effect of our attention design in the transformer was explored
based on the CS benchmark of the NTU-RGBD 60 dataset. The separate spatial-temporal
(ST) transformer block increased the complexity of the model compared with the joint
transformer block, which flattened the skeletons in both the spatial and temporal domains to
obtain long-range global correlations. According to our experiments, the accuracy was best
when there were two ST transformer blocks and two joint transformer blocks. Compared
with the model that adopted four ST transformer blocks, the PGT performed more robustly
with high-level semantics. The predefined spatial self-attention and temporal self-attention
enabled the model to focus better on its single domain information in the previous layers.
As far as we are concerned, the increases in the parameters and FLOPs show its effectiveness,
but the global attention of the nodes in the graph is also crucial in the subsequent layers,
which brings a spatial-temporal information fusion.

Table 2. The ablation study on the NTU-RGBD 60 CS benchmark, denoting the effect of ST and joint
transformer blocks.

Transformer Block Acc. (%) FLOPs (G) Param. (M)

4 Joint 88.5 3.48 11.36

1 ST + 3 Joint 89.3 3.75 11.87

2 ST + 2 Joint (PGT) 90.9 4.01 12.36

3 ST + 1 Joint 90.6 4.37 12.87

4 ST 90.7 4.64 13.36

4.3.2. The Effect of Four-Stream Fusion

As with many state-of-the-art methods [12,13,15,28], we also adopted a multi-stream
fusion strategy in our work for fair comparison. Four streams were applied as input
skeleton data. The joint stream was the original 3D skeleton coordinates, and the second
stream was the bone stream, which was the differential of the spatial coordinates. Both the
joint and bone streams were calculated through the differential in the temporal dimension,
called the joint motion stream and the bone motion stream. As shown in Table 3, the results
of the four-stream fusion strategy brought a great gain for the final accuracy. The four kinds
of skeleton data provided additional prior knowledge for skeleton-based action recognition.
At the same time, our PGT was able to learn robust representation for these data.



Appl. Sci. 2022, 12, 9229 10 of 16

Table 3. The ablation study on the NTU-RGBD 60 CS benchmark denoting the effect of the four-stream
fusion strategy.

Input Branch Acc.(%) FLOPs(G) Param.(M)

Joint 87.3 1.00 3.09

Bone 87.4 1.00 3.09

Joint Motion 85.3 1.00 3.09

Bone Motion 84.8 1.00 3.09

4-s Fusion (PGT) 90.9 4.01 12.36

4.3.3. The Effect of Separate Convolution in Graph Embedding

As shown in Table 4, the effect of the separate convolution operation in graph embed-
ding was evaluated. The difference between the basic module and graph embedding can
be seen in Figure 3. The model showed itself to be more efficient and powerful with the
structure of separate convolution inspired by [15]. Owing to the depth-wise and point-wise
convolution layers, the network became deeper and able to learn the high-level semantics
in the features. Meanwhile, the graph convolution was shown to be more efficient with
fewer FLOPs and parameters. The accuracy was even 1.7% higher on the NTU-RGBD 60
CS benchmark. As far as we are concerned, with a more powerful GCN-unit design, the
accuracy of our PGT backbone can be further improved.

Table 4. The ablation study on the NTU-RGBD 60 CS benchmark, denoting the effect of separate
convolution in graph embedding.

Graph Embedding Acc. (%) FLOPs (G) Param. (M)

Basic 89.1 4.32 13.12

Separate (PGT) 90.9 4.01 12.36

4.4. Comparisons with Other Approaches

We compared the performance with the SOTA methods on three public skeleton action
datasets: the NTU-RGB 60 [40], NTU-RGB 120 [41] and Northwestern-UCLA [42] datasets.
As in many SOTA methods, we adopted a multi-stream fusion network by utilizing joints,
bones and their motion information as inputs. The effectiveness of our model is shown
below, with various comparisons with other approaches.

4.4.1. Experiments on the NTU-RGBD 60 Dataset

The performance of our PGT was evaluated on both the CS and CV benchmarks
as in [40]. As shown in Table 5, we compared our PGT with four kinds of methods:
handcrafted features, RNN-based methods, CNN-based methods and GCN-based methods.
GCN methods are generally the newest and most effective, and our work combined the
architecture of graph convolution in GCNs with the self-attention in transformers to fuse
local and global information.



Appl. Sci. 2022, 12, 9229 11 of 16

Table 5. Comparison of the experiment results on the NTU-RGBD 60 dataset.

Methods CS (%) CV (%) Year

Lie Group [1] 50.1 82.8 2014

STA-LSTM [7] 73.4 81.2 2017

DS-LSTM [21] 75.5 84.2 2020

Fuzzy-CNN [18] 84.2 89.7 2021

SEMN [19] 80.2 85.8 2021

ST-GCN [10] 81.5 88.3 2018

AS-GCN [25] 86.8 94.2 2019

2 s AGCN [11] 88.5 95.1 2019

TS-SAN [44] 87.2 92.7 2020

MS-AAGCN [28] 90.0 96.2 2020

4 s Shift-GCN [12] 90.7 96.5 2020

DC-GCN+ADG [30] 90.8 96.6 2020

AMV-GCN [45] 83.9 92.2 2021

3 s RA-GCN [13] 87.3 93.6 2021

ST-TR-AGCN [14] 89.2 95.8 2021

Efficient-GCN [15] 91.7 95.7 2021

PGT (Ours) 90.9 95.9 2022

When compared with the RNN-based and CNN-based methods, our PGT demon-
strated superiority in graph convolution operations, which is more consistent with the data
structures of skeletons. The accuracy increased by 6.7% or 6.2% when compared with the
fuzzy-CNN [18], which extracted four complementary feature vectors by a fuzzy integral
to capture different spatiotemporal dynamics. When compared with the RNN-based DS-
LSTM [21], our model greatly improved the accuracy with a more rational structure instead
of focusing on learning the temporal information with LSTM.

As for most GCN-based methods, our PGT showed better performance with the
proposed pyramid network consisting of graph embedding and self-attention modules.
Additionally, based on the four-stream converged network architecture, the accuracy of
our method was 0.9% and 1.7% higher than the MS-AAGCN [28] on both CS and CV,
respectively. Compared with the outstanding shift-GCN [12], our method still performed
better on the CS benchmark, which meant a more robust representation of various actions
performed by different persons. Compared with the DC-GCN [30], our method showed a
comparable performance. The DC-GCN adopted the decoupling aggregation mechanism
in CNNs and a more effective dropout design (ADG) for graphs. It was noticed that the
efficient-GCN [15] performed better than ours on the CS benchmark. However, our PGT
still showed a comparable ability by combining graph convolution with the transformer
attention mechanism.

Most GCN-based methods follow the backbone of the ST-GCN [10] and make efforts
for a more robust representation, a more efficient architecture, a more dynamic topology,
etc. However, our PGT introduced a novel backbone which showed excellent potential by
taking advantage of both GCNs and transformers.
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4.4.2. Experiments on the NTU-RGBD 120 Dataset

The performance of the NTU-RGBD 120 dataset was also evaluated on both the X-
sub and X-set benchmarks. As shown in Table 6, the PGT performed better than most
recent works. Compared with the four-stream shift-GCN, the accuracy of our PGT was
0.6% and 1.2% higher on the X-sub and X-set benchmarks, respectively, while compared
with the three-stream RA-GCN [13], our PGT achieved 5.4% higher accuracy on the X-sub
benchmark and 6.1% higher accuracy on the X-set benchmark.

The ST-TR-AGCN [14] also applies a self-attention mechanism in its architecture.
However, multi-head self-attention is added separately for spatial graph convolution and
temporal graph convolution with a two-stream network similar to the work in [10]. The
core ST-GCN unit was also adopted in our graph embedding to obtain the local information
in the vertex domain. Furthermore, our work took a pyramid transformer as the main
structure to give full play to the long-range attention ability of the temporal-spatial joints.
Concretely, our PGT applied both spatial-temporal transformer and joint transformer
design for long-range correlations in both the spatial and temporal domains. The accuracy
of the PGT was 3.8% and 3.8% higher than the work in [14].

The performance of the GCN-based method, efficient-GCN [15], was better than
our method on this dataset. As far as we are concerned, we paid more attention to the
lightness of the network, particularly in the adjustment of the hyperparameters of the
model. The FLOPs of the four-stream PGT were 4 GFLOPs, nearly one-fourth the amount
of the efficient-GCN. Therefore, on a small dataset such as NTU-RGBD 60, our performance
was even better on the CV benchmark. If the computational complexity of our pyramid
network is improved, then the experimental results will be further increased as well.

Table 6. Comparisons of the experiment results on the NTU-RGBD 120 dataset.

Methods X-sub (%) X-Set (%) Year

SkeleMotion [46] 67.7 66.9 2019

TSRJI [47] 67.9 62.8 2019

Part-Aware LSTM [41] 55.7 57.9 2020

SGN [43] 79.2 81.5 2020

4 s Shift-GCN [12] 85.9 87.6 2020

DC-GCN+ADG [30] 86.5 88.1 2020

Fuzzy CNN [18] 74.8 76.9 2021

AMV-GCN [45] 76.7 79.0 2021

3 s RA-GCN [13] 81.1 82.7 2021

ST-TR-AGCN [14] 82.7 85.0 2021

SEMN [19] 84.2 85.5 2021

Efficient-GCN [15] 88.3 89.1 2021

PGT (Ours) 86.5 88.8 2022

4.4.3. Experiments on the Northwestern-UCLA Dataset

Northwestern-UCLA is a small dataset, and pretraining is needed for the pyramid
backbone with the NTU-RGBD 60 dataset. This was also conducted in previous work, such
as [48,49]. As shown in Table 7, the performance of our PGT showed strong ability on this
dataset and outperformed the SOTA method by 0.8%. Compared with the mature GCN-
based model DC-GCN [30] with a drop graph operation (ADG), the PGT was slightly better.
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Table 7. Comparisons of the experiment results on the Northwestern-UCLA dataset.

Methods Top-1 (%) Year

Lie Group [1] 74.2 2014

Ensemble TS-LSTM [50] 89.2 2017

Separable STA [48] 92.4 2019

SGN [43] 92.5 2020

VPN [49] 93.5 2020

4 s Shift-GCN [12] 94.6 2020

DC-GCN+ADG [30] 95.3 2020

PGT (Ours) 95.4 2022

4.4.4. Model Complexity

In this section, we present comparisons with other GCN-based methods from the
aspect of model complexity (FLOPs and parameters). As shown in Table 8, our back-
bone was more efficient compared with most previous GCN-based methods evolved from
the ST-GCN [10]. The FLOP count was one-fourth of that of the earliest ST-GCN back-
bone. However, the number of parameters was larger than most GCN works because of
the transformer architecture, which contained more trainable weights. Note that our PGT
backbone with only one stream had one-fourth of the FLOPs and parameters shown in
Table 8, which were only 1.00 GFLOPs and 4.09 M parameters on the NTU-RGBD 60 dataset.
The joint stream achieved an accuracy of 87.3%, being better than the AS-GCN [25] in terms
of both accuracy and model complexity.

Table 8. The model complexity on the NTU-RGBD 60 CS benchmark denoting the efficiency of
the PGT.

Model Acc. (%) FLOPs (G) Param. (M)

PGT 90.9 4.01 12.36

PGT (Only Joint) 87.3 1.00 4.09

ST-GCN [10] 81.5 16.32 3.10

AS-GCN [25] 86.8 26.76 9.50

3 s RA-GCN [13] 87.3 32.80 2.61

2 s AGCN [11] 88.5 37.32 6.94

4 s Shift-GCN [12] 90.7 6.12 0.79

Efficient-GCN [15] 91.7 15.24 2.03

5. Conclusions

This paper proposed a pyramid spatial-temporal graph transformer backbone (PGT)
for skeleton-based action recognition. We introduced the self-attention mechanism into
graph convolution blocks to extract spatial-temporal correlations. According to the pyramid-
alternated architecture, the local information extracted by the graph embedding module
was fused by the spatial-temporal and joint transformer blocks layer by layer. Both the
local information and global information were iterated alternately through the model.
Meanwhile, the graph embedding module adopted a separate convolution design to make
the model more efficient and deeper. The spatial-temporal separate self-attention proposed
for the former layers in the PGT was able to handle a wealth of tokens of skeleton joints. At
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the same time, the joint transformer self-attention focused on the long-range correlation
fusion in both the spatial and temporal domains. Extensive experiments were conducted
on the NTU-RGBD 60, NTU-RGBD 120 and Northwestern-UCLA datasets, demonstrating
the effectiveness of our work.
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