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Abstract: The subjectivity of listeners’ emotional responses to music is at the crux of optimizing
emotion-aware music recommendation. To address this challenge, we constructed a new multimodal
dataset (“HKU956”) with aligned peripheral physiological signals (i.e., heart rate, skin conductance,
blood volume pulse, skin temperature) and self-reported emotion collected from 30 participants,
as well as original audio of 956 music pieces listened to by the participants. A comprehensive set
of features was extracted from physiological signals using methods in physiological computing.
This study then compared performances of three feature sets (i.e., acoustic, physiological, and
combined) on the task of classifying music-induced emotion. Moreover, the classifiers were also
trained on subgroups of users with different Big-Five personality traits for further customized
modeling. The results reveal that (1) physiological features contribute to improving performance on
valence classification with statistical significance; (2) classification models built for users in different
personality groups could sometimes further improve arousal prediction; and (3) the multimodal
classifier outperformed single-modality ones on valence classification for most user groups. This
study contributes to designing music retrieval systems which incorporate user physiological data
and model listeners’ emotional responses to music in a customized manner.

Keywords: multimodal recognition; music retrieval and generation; physiological measures; sound
and music computing; customization

1. Introduction

Music discovery based on emotion has been a universal behavior in our everyday life
and has been widely exploited for supporting emotion regulation and music therapy [1].
Geared toward this music information retrieval (MIR) scenario, music emotion recognition
(MER) has become an important task in the MIR field, and fruitful results have been
achieved through modeling music emotion in multiple feature domains (e.g., acoustic
signals, lyrics, social tags, and album images) [2].

Notwithstanding the remarkable progress achieved by MER research to date, the
subjectivity of affective perception of music is still at the crux of optimizing user experience
for emotion-aware MIR systems. As we frequently observe, a music piece pleasant for
some people could be annoying for some others. Modeling listeners’ emotional responses
to music thus becomes crucial for emotion-aware music recommendation.

Individual differences in affective perception of music have been studied intensively in
music psychology. It has been found that listeners’ emotional response to music is not only
related to music characteristics but could also be influenced by various user-centric factors,
including personality traits [3], music preference [4], and listening environment [5]. This
poses challenges to the content-based MER approach, which primarily relies on acoustic
modality. Fortunately, the rapid development of wearable technology has enabled us to
model listeners’ emotional responses to music via fine-grained and time-sensitive user data
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such as physiological signals. With physiological signals collected via wireless and low-
profile devices (e.g., wristband) during music listening, it would be possible to monitor and
measure listeners’ emotional responses to music in an objective and unobtrusive manner
based on which music recommendation could be more customized and context-aware.

To this end, this study aimed to explore the potentials for incorporating physiological
sensing for detecting music-induced emotion. Particularly, we focused on exploiting pe-
ripheral physiological signals such as heart rate, blood volume pulse, skin conductance, and
skin temperature as these signals were reported to be associated with people’s emotional
status [6] and can be collected by portable wearable and unobtrusive devices. The research
questions of this study could be summarized as:

RQ1: Do features extracted from peripheral physiological signals from listeners im-
prove the performance of music-induced emotion classification compared to acoustic
features extracted from music content?

Furthermore, motivated by studies on the role of personality traits in affective percep-
tion of music in the psychology literature [7], this study further investigated:

RQ2: Does building multimodal models on subgroups of users with similar personal-
ity traits improve classification performance of music-induced emotion?

To answer these research questions, a user experiment was conducted to record users’
interactions with a novel MIR system, in which participants’ self-reported emotional status
and a series of peripheral physiological signals (e.g., heart rate, skin conductance, skin
temperature) was collected by a research-grade wristband. These data were then aligned
with 956 music pieces traced from participants’ music listening history. In response to RQ1,
we trained classification models on three distinct feature sets, including acoustic features
extracted from music content, physiological features extracted from listeners’ physiological
signals, and the combination of the two, and compared the performances across these
sources of different modalities. Moreover, classifiers were also trained on subgroups of
users with similar Big-Five personality traits for further customized modeling.

Contributions of this study are four-fold. First, there are few datasets in MER involving
listeners’ physiological responses to music pieces and the original audio of the music, as
well as emotion labels reported by the listeners. By constructing and sharing a new dataset
of 956 sets of aligned physiological signals, (copyright-free) music audio and user-reported
emotion, this study provides an open testbed for combining the two modalities for MER.
Second, as physiological signals have not yet been thoroughly exploited in the domain
of MIR, this study explores methods of physiological signal processing and extracts a
fairly comprehensive set of physiological features, including those specific to electrodermal
activity (EDA) and heart rate variability (HRV), further bridging the literature of MIR and
physiological computing. Third, through comparing MER performances of features in
combined and individual modalities, this study helps verify the possibility of designing
MIR systems that can make use of physiological data and model listeners’ emotional
responses to music. Last but not least, through connecting music and human emotion
at the physiological level, deliverables of this research can be applicable to related fields
such as music perception, music therapy [8], human-computer interaction, and well-being
studies [9].

2. Related Work
2.1. Music and Emotion

Exploiting the power of music in mood modulation has become one of the primary
reasons for people’s engagement with music [3], which has motivated an increasing body
of research geared toward the design and implementation of emotion-aware MIR systems.
Music emotion recognition (MER) is the underlying technique for designing emotion-aware
music retrieval systems and has been an important part of community-wide evaluation cam-
paigns such as Music Information Retrieval Evaluation Exchange (MIREX) since 2007 [10]
and MediaEval since 2013 [11]. In MER research, there are two distinct kinds of music
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emotion to be automatically recognized based on which two research paradigms have been
developed. One is perceived emotion, the other is induced emotion [12].

As stressed by Juslin et al. [13], there is an intrinsic distinction between the emotion
expressed, the emotion perceived, and the emotion induced by music. Specifically, the
expressed emotion focuses on the expressive intention of the composer or performer, while
the perceived emotion refers to how listeners perceive the emotion conveyed by the music
pieces based on the musical features [13]. Furthermore, given the possibility that a listener
might perceive what a music piece tries to convey but not necessarily feel that emotion,
Juslin et al. [13] further conceptualizes the induced emotion, which is the actual emotional
experience of listeners. As the expressive intention of the composer/performer is beyond
the scope of MER task, emotion-ground truth generally refers to perceived or induced
emotions [12].

From the perspective of perceived emotion, a wide range of music features have been
reported to be related to the emotion a music piece conveys, including rhythm and tempo,
loudness, mode, pitch and consonance, tone attacks and decays, timbre, and melody [14].
This psychological basis of predicting music emotion from acoustic modality has motivated
a considerable number of studies in the MIR field, which is today generally referred to
as the content-based MER approach. Among the multiple feature domains (e.g., acoustic
signals [15], lyrics [16]) exploited in these studies, the acoustic signal domain is the earliest
and most fundamental modality and has been widely used in online digital music services
(e.g., Spotify).

Nevertheless, as indicated by the distinction between perceived and induced emotion,
despite the implicit music-centered assumption in the content-based MER research, people’s
emotional experience of music is subjective and temporal, which may not solely depend
on characteristics of the music piece. Emotion induced by music is also influenced by
personal and situational factors, such as personality traits, music preference, and listening
environment [3–5]. Hence, toward the ultimate goal of optimizing user experience in
emotion-aware music retrieval, it would be important to incorporate user-related modalities
into current MER framework.

2.2. Recognition of Music-Induced Emotion

Existing MER research has been dominated by the music-centered paradigm, focusing
on perceived emotion [8,9], while the MER task on music-induced emotion started later
yet is gaining increasing interest [17–19]. The Emotify dataset constructed by Aljanaki
et al. [17] is one of the few datasets with music-induced emotion annotated by human
annotators. It has since been frequently used in subsequent studies focusing on mod-
eling emotion induced by music listening through content-based analysis (e.g., [18,19]).
In these studies, different sets of acoustic features that capture music characteristics in
loudness, rhythm, timbre, pitch, and harmony have been exploited [17–19]. As pointed
out in [17], results in these studies indicate that the content-based modeling of induced
emotion seems to be more feasible for some emotion categories (e.g., tenderness, joyful
activation) than others. Although later studies (e.g., [19]) further improved the prediction
performance on other emotion categories such as calmness and power, there is still room
for improvement on emotions such as amazement and sadness. One possible direction of
further research suggested by [17] was to incorporate contextual information for modeling
emotion categories.

Physiological signals, as a user- and context-related information source, have gained
increasing attention for recognizing emotion induced by music in recent years, where both
brain signals [20–23] and peripheral physiological signals such as electrocardiography
(ECG) [24] were exploited for this research topic. For example, refs. [21–23] conducted com-
prehensive laboratory experiments to collect participants’ electroencephalography (EEG)
under music stimuli and self-reported emotion states. Statistical regression models [21]
and several machine learning algorithms [22] were modeled to predict induced emotion.
In particular, apart from the features extracted from EEG signals, ref. [21] leveraged music



Appl. Sci. 2022, 12, 9354 4 of 17

acoustic features into the models and resulted in significantly better prediction on the
induced valence and arousal. In addition, multimodal views of people’s emotional re-
sponse to music, which comprehensively considered acoustic characteristics of music and
physiological responses of listeners, have also contributed to unravelling the underlying
mechanism of individuals’ affective perception and emotional experience of music [25,26].
For instance, refs. [25,26] showed that loudness-, rhythm-, and harmony-related acoustic
features were informative for predicting people’s emotional responses to music, and both
studies revealed associations between acoustic features and physiological measures. These
findings provide empirical evidence for understanding the interplay between the psy-
choacoustic characteristics of music and listeners’ emotional and physiological responses
to music.

2.3. Physiology-Enhanced MIR Systems

As physiological changes are an inherent part of emotion [6], with the rapid develop-
ment of wearable technology, physiological signals are of great potential for enhancing the
state-of-art of MER. However, studies exploiting physiological signals for MER are still
scarce, with the following being pioneering exceptions.

Healey et al.’s Affective DJ [27] was an early study on personalizing music selection for
individual listeners based on their physiological responses to music. Specifically, the study
inferred users’ emotional state from their galvanic skin response (GSR) and automatically
generated a relaxing or energizing playlist based on the inferred arousal level of the user.
Their evaluation revealed a significant correlation between participants’ arousal levels and
skin conductance. Following up, Janssen et al. proposed another affective music player
named AMP and probed the relationship between skin temperature and valence [28] as
well as that between skin conductance and arousal [29]. Validation of the AMP found
that decreasing skin temperature was correlated with more positive emotion induced by
music. A few studies also tried to incorporate other types of physiological signals into MIR
systems as well such as electrocardiogram (ECG) [30], photoplethysmography (PPG) [31],
and electroencephalography (EEG) [32]. For instance, Chiu et al. [30] designed a music
selection system which used heart rate variability (HRV) to infer arousal status of users
such as sleep, boredom, anxiety, and panic and performed music selection based on a set of
prespecified rules to maintain users’ arousal at a moderate level.

More recently, Kim et al. [31] proposed a more sophisticated framework for emotion-
aware music recommendation where features extracted from listeners’ galvanic skin re-
sponse (GSR) and photoplethysmography (PPG) signals were used to predict their emo-
tional status (i.e., positive vs. negative valence; high vs. low arousal). Hu et al. [33] also
explored the relationships between music-induced emotion and physiological signals of
listeners and found some features extracted from heart rate (HR) and electrodermal activity
(EDA) differed significantly across emotion categories.

Notwithstanding the contributions of these existing studies, the investigation on
exploiting physiological signals for emotion-aware MIR is still limited. One limiting
factor is the lack of publicly available datasets. To date, the most widely used dataset on
this topic is DEAP [34], which contains EEG and physiological signals of 32 participants
recorded while they watched 40 pieces of music video. However, the stimuli in DEAP
were not exactly music but music videos which included a large amount of dynamic
visual information. It is not possible to separate the effect of auditory input using DEAP.
The PMEmo dataset [35], on the other hand, used music as the stimuli, specifically, 794
music chorus clips annotated by 457 subjects. While PMEmo contains moment-to-moment
emotion annotations, it only includes one type of physiological signals, electrodermal
activity (EDA). More recently, a new dataset named MUSEC [36] was constructed with
EEG signals of 20 listeners when they listened to 220 pieces of music. While the study [36]
collected listeners’ ratings on valence and arousal, these emotion labels were not released
with the dataset. Thus, a dataset with multiple physiological signals, corresponding music
stimuli, and emotion labels is much in need.
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Another research gap lies in insufficient work on features extracted from physiological
signals. Most studies exploited the time-series nature of physiological signals and extracted
features in the time-domain (e.g., means and standard deviations) and frequency-domain
(e.g., power spectrum) [37]. Other studies employed deep neural network machine learning
methods to automatically generated features [31], which suffers from the “black box prob-
lem” in interpreting meanings of the features. Very few studies leveraged the theoretical
and empirical findings in physiological computing to extract features that can be explained
by knowledge in human physiology.

Moreover, it has been found that the relationship between users’ physiological signals
and emotional responses to stimuli could be affected by individual differences such as
personality traits [7]. However, to the best of our knowledge, few studies have empirically
probed this question. The study presented in [33] is an exception in which classification of
music-induced emotion was conducted for subgroups of users with different personality
traits, but it only explored physiological features without considering acoustic features
extracted from music. This study aims to bridge these gaps.

3. The Dataset Built from a User Experiment

To answer the research questions, a dataset was collected through a user experiment
that simulated a real-life music discovery scenario. This section describes the experimental
setup and then summarizes the dataset collected.

3.1. The User Experiment Setup

This was a controlled experiment in which participants were recruited to conduct
music searching and listening with a web-based music retrieval system in a quiet room.
To encourage participants to interact with music, they were asked to create a playlist for
the songs they liked during the experiment. Participants’ peripheral physiological signals
during music listening were recorded by a research-grade wristband. Moreover, we also
collected their self-reported emotional responses to music via short pop-up surveys, which
were taken as the ground truth labels for the classification experiment.

The experiment was conducted with a novel web-based music retrieval system, Moody
(version 4), which supported music searching and browsing, online music streaming,
playlist management, and interactive online surveys. In the meantime, users’ interactions
with Moody (e.g., play/pause music, skip a track) were logged as timestamped user events.
The music collection hosted in the system is the one used in the MIREX Grand Challenge
on User Experience (GC14UX) [38], which consists of 10K full tracks obtained from a free
music service, Jamendo, under the Creative Commons (CC-BY) license. The collection
also contains album cover images and metadata of the tracks originally obtained from
Jamendo (e.g., title, album, artist, genre), which are displayed in the user interface to
facilitate searching and browsing. Similar to many streaming music services, the album
cover and metadata were displayed when a song was played (see [33] for a screenshot of
the interface).

A pop-up survey subsystem was implemented in Moody to collect participants’ self-
reported emotional responses to music they listened to, which serve as ground truth for
training and evaluating MER classifiers. Specifically, for each music piece listened to for
more than 30 s, a question would be prompted to solicit participants’ emotion induced by
the song (Figure 1). The question asked participants to give scores of arousal and valence
levels [39] on a continuum of −10 (very low energy, very negative) to 10 (very high energy,
very positive).
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Figure 1. Pop-up question on users’ emotion in the Moody system.

To probe the role of personal characteristics in predicting music-induced emotion,
a pre-experiment questionnaire was administered to gather information on participants’
demographics and their personality traits based on the Big-Five model (i.e., openness to
experiences, conscientiousness, extraversion, agreeableness, emotional stability) measured
by the Ten Item Personality Inventory (TIPI) [40].

The instructions of the Moody system and search task were subsequently presented to
participants in detail. Following that, participants were asked to interact with the Moody
system for no less than 40 minutes, looking for at least 10 songs they liked and adding them
to their personal playlists. They were encouraged to explore music in different genres for a
more diverse listening experience. During music listening, the Empatica E4 wristband, one
of the few research-grade wearable devices, was used to measure participants’ physiological
signals. This device supports real-time data streaming and provides a Web API for accessing
raw physiological data. It has been employed in emotion-related studies in neuroscience,
human-computer interaction, etc., with high reliability (e.g., [41]). For signal stabilization
and baseline acquisition, the wristband was mounted on each participant’s wrist two
minutes before the pre-experiment questionnaire.

After completing the tasks of the music search and listening, participants were asked
to fill out a post-experiment questionnaire concerning their satisfaction with the music
collected, emotional states at that moment, and their feedback on the Moody system and
the experiment process. Informed consent forms were signed at the beginning of the
experiment session, and a nominal remuneration was paid upon the completion of the
experiment to compensate participants’ time. This study was approved by the Human
Research Ethics Committee (HREC) of the University of Hong Kong (HREC reference
number: EA1802092).

3.2. Collected Data

Thirty undergraduate and postgraduate students (18 females) in a comprehensive
university in Hong Kong were recruited as the participants of this experiment. According
to participants’ responses to the pre-experiment survey, they showed a diverse background
in musical training and a relatively high frequency of music listening in everyday life (from
a weekly to a daily basis).
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To facilitate subgroup modeling, we grouped the participants on the five personality
trait dimensions (i.e., high versus low) according to the TIPI norms provided by Gosling
et al. [40]. Specifically, participants who rated lower than the TIPI normative value in a
trait dimension were grouped into the “Low” category of that dimension, while those
rated higher were grouped into the “High” category. For example, people who scored
lower in “openness” would tend to avoid being exposed to new experiences, while people
scoring high in “conscientiousness” are usually self-disciplined and prefer following plans
to spontaneous actions. The number of participants in each group of each dimension is
shown in Table 1.

Table 1. Specification of participant grouping.

Personality Traits
Number of Participants

TIPI Norms
Low High

Openness 18 12 5.38
Conscientiousness 17 13 5.40

Extraversion 15 15 4.44
Agreeableness 24 6 5.23

Emotional stability 18 12 4.83
Note: The TIPI items are measured on 7-point Likert scales.

Overall, we collected physiological signals as well as arousal and valence ratings for
956 music pieces (592 unique ones) listened to by the participants. According to the system
logs, each song was played for approximately 50 s on average.

Table 2 summarizes the data collected from the user experiment. Particularly, par-
ticipants’ skin temperature was measured as degrees on the Celsius (◦C) scale. Their
skin conductance was collected by the EDA sensor in microsiemens (µS), and blood vol-
ume pulse (BVP), by a photoplethysmograph (PPG) sensor embedded in the Empatica E4
wristband. In addition, some secondary signals were also extracted from the BVP signal,
including heart rate (HR) sampled at 1 Hz and interbeat interval (IBI), which supports heart
rate variability (HRV) analysis. The raw physiological data were subsequently aligned with
the starting and ending time of each music piece and split into chunks corresponding to
the timestamped listening records stored in the Moody system logs.

Table 2. Description of collected data.

Category Source Description

Audio samples Jamendo MP3 audio files with
accompanied metadata.

Physiological signals Empatica E4 wristband

Blood volume pulse (BVP), heart
rate (HR), interbeat interval (IBI),
electrodermal activity (EDA), and

skin temperature (TEMP). The
sampling rates of BVP, HR, EDA,

and TEMP signals were 64 Hz,
1 Hz, 4 Hz, and 4 Hz, respectively.

User events Moody logs
Searching and listening records

and timestamped user events (e.g.,
play/pause music, skip a track).

Emotion ratings Pop-up survey
Arousal and valence rating

[−10, 10] reported at the end of
each music piece.

Participants’ emotional status reported after listening to each music piece was also
aligned with their listening records. The arousal and valence ratings were subsequently
grouped into three categories (i.e., positive, negative, neutral) and taken as the ground truth
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labels for the classification experiment. Specifically, ratings higher than zero were coded
as positive, while those lower were negative, which resulted in 571 positive, 365 negative,
and 20 neutral (i.e., 0) ratings in arousal and 647 positive, 283 negative, and 26 neutral (i.e.,
0) ratings in valence. The imbalance of samples across categories may create challenges
in experimentation for which resampling procedures could be adopted (see Section 5.1
for more details). The dataset with aligned music and physiological signals was named
“HKU956” and deposited in our institutional data repository (The HKU956 dataset is
available at: https://doi.org/10.25442/hku.21080821, accessed on 14 September 2022) for
other researchers to conduct further analysis.

4. Feature Extraction

With physiological signal chunks and audio samples aligned with participants’ listen-
ing records and emotion ratings, we further extracted a series of physiological and acoustic
features to construct the feature sets for the MER tasks. In particular, physiological signals
processing and feature extraction were based on the literature of physiological computing,
bridging a knowledge gap in MIR.

4.1. Physiological Features

For controlling motion artifacts, filters were applied to the BVP and EDA signals prior
to the physiological feature extraction. Specifically, an order-4 band-pass Butterworth filter
was used to filter the BVP signals inside the passband of 1–8 Hz [42]. A Hanning moving
average filter was applied to EDA signals with a window of 2.5 s [6]. As physiological
signals vary across individuals, we further normalized the signals within each individual
participant using z-score normalization [43]. We subsequently extracted a series of generic
features from the preprocessed signals, including descriptive statistics of the physiolog-
ical data (e.g., mean, standard deviation, min, max) as well as mean of the first/second
differences of the time-series of BVP, EDA, HR, and TEMP signals on their original and
normalized scales. In addition to these generic features, some physiological signal specific
features were extracted as well.

Electrodermal activity (EDA). The EDA signals comprise two components: the slowly
changing tonic component, which reflects a person’s general skin conductance level (SCL),
and the quickly changing phasic component, which is often elicited by external stimuli and
is also referred to as the skin conductance response (SCR) [43]. We decomposed the EDA
signal into its tonic and phasic component through Greco et al.’s cvxEDA approach [44]
and extracted the following features from the two separate components (Table 3). For the
tonic component, we computed the mean and standard deviation of the tonic activity level.
For the phasic component, we computed the number and the rate of the phasic activity (i.e.,
the number of SCR per second), the mean and the standard deviation of the amplitude of
the SCR peaks, and the mean and standard deviation of the SCR rise time and recovery
time as in [45].

Table 3. EDA-specific features.

Category Code Description

Tonic SCL Mean and standard deviation of the tonic
skin conductance level.

Phasic

SCR_num The total number of detected SCRs.
SCR_rate The number of SCR per second.

SCR_peak Mean and standard deviation of the
amplitude of the SCR peaks.

SCR_rise_time Mean and standard deviation of the time
intervals between SCR onset and SCR peak.

SCR_resp_time
Mean and standard deviation of the time
intervals between SCR peak and recovery

point (i.e., 50% of SCR amplitude).

https://doi.org/10.25442/hku.21080821
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Interbeat interval (IBI). To obtain the NN intervals (normal interbeat intervals) from the
raw IBI signals, we removed abnormal intervals and ectopic beats based on Malik rules [46]
and used linear interpolation to replace the outliers. A series of time- and frequency-domain
analysis of NN intervals (NNI) were subsequently performed to measure participants’ heart
rate variability [47]. Specifically, for time domain features, apart from some descriptive
statistics of the NN intervals (e.g., mean, standard deviation, median, range), we computed
the SDSD, RMSSD, NN50, pNN50, NN20, pNN20, CVSD, CVNN from the NNI signals as
well. Moreover, we also extracted a set of HRV features in the frequency domain, including
total power, VLF, LF, HF, LF/HF, LFNU, and HFNU. Details on the computation of HRV
features are described in Table 4.

Table 4. Heart rate variability features.

Category Code Description

Time
domain

SDSD Standard deviation of successive differences between adjacent NN intervals.
RMSSD The root mean square of successive differences between adjacent NN intervals.

NN50, NN20 Number of pairs of adjacent NN intervals differing by more than 50 or 20 milliseconds.
pNN50, pNN20 Percentage of differences between adjacent NN intervals that exceed 50 or 20 milliseconds.

CVSD The coefficient of variation of successive differences, i.e., RMSSD divided by the mean of
the NN intervals.

CVNN The coefficient of variation, i.e., the ratio of SDNN divided by the mean of the NN intervals.

Frequency
domain

Total power Total power spectral density.
VLF Power in the very-low-frequency band (i.e., 0.003–0.04 Hz).
LF Power in the low-frequency band (i.e., 0.04–0.15 Hz).
HF Power in the high-frequency band (i.e., 0.15–0.4 Hz).

LF/HF The ratio of the power in the low-frequency band to that in the high-frequency band.
LFNU Low-frequency power in normalized units.
HFNU High-frequency power in normalized units.

4.2. Acoustic Features

Five categories of acoustic features corresponding to five major music characteristics
were extracted, including loudness, rhythm, timbre, pitch, and harmony. The features and
their dimensionalities are summarized in Table 5 and explained as follows.

Table 5. Extracted Acoustic Features.

Category Feature Dimensions

Loudness Root-mean-square energy 4
Rhythm Tempo 1

Rhythm strength 1
Global onset autocorrelation 2

Average onset frequency 1
Timbre Mel-frequency cepstral coefficient 38

∆ MFCC, ∆∆ MFCC 76
Spectrum characteristics 22

Zero crossing rate 2
Harmony Tonal centroid (tonnetz) 12

Pitch STFT chromagram 24
Constant-Q chromagram 24

CENS chromagram 24

Total 231

Loudness and dynamics generally represent the intensity of a sound and the variation
of it. In this study, the root-mean-square energy (RMSE) was adopted as the loudness
feature and was computed from the Short-Time Fourier Transform (STFT) spectrogram.
In addition, we also computed the logarithmic compression version of RMSE to simulate
human perception [48].
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Rhythm, which depicts the pulse of music and the pattern of arrangement of musical
notes, was characterized by the estimated tempo (i.e., beats per minute), rhythm strength
(i.e., the average of the onset strength envelope), global onset autocorrelation (i.e., autocor-
relation computed on the onset strength envelope), and the average onset frequency (i.e.,
the number of notes per second) [49].

Timbre, another music trait widely exploited in content-based MER, refers to the texture
of a musical sound. Spectrum characteristics, zero crossing rate of the time domain audio
signals, and Mel-frequency cepstral coefficient (MFCC) related features were used for this
music trait dimension. Specifically, the spectrum characteristics involved in this study were
roll-off frequency, flatness, spectral centroid, spectral contrast, and spectral bandwidth.
Furthermore, we took the first 20 MFCCs and excluded the direct current (DC) term. The
first and second order derivatives of MFCCs (i.e., ∆ MFCC and ∆∆ MFCC) were computed
as well.

Pitch and harmony. Three versions of chromagrams were computed to represent the
energy distribution of the 12 pitch classes (from C, C#, . . . to B), including a chroma-
gram computed from the STFT spectrogram, a chromagram computed from Constant-Q
Transform (CQT) spectrogram, and Chroma Energy Normalized Statistics (CENS). In the
chromagram, each pitch class (also known as a chroma) embraces a set of pitch bands sepa-
rated by octaves (e.g., the chroma C consists of {C1, C2, C3, C4, . . . }). The CQT chromagram
further mirrors the human auditory sensation through logarithmic transformation, while
the CENS chromagram smooths the local deviations and hence shows better robustness
to dynamical and timbral variations [49]. Moreover, this study also included the tonal
centroid (tonnetz) features following [50], which indicates the harmonic change of music.
Specifically, based on the harmonic network, collections of pitch classes were projected to a
six-dimensional space as tonal centroid points, which can be visualized on the circles of
major thirds, minor thirds, and fifths. The tonnetz features are particularly useful for chord
recognition [50].

The aforementioned acoustic features were all extracted using a specialized Python
library for music and audio signal analysis, Librosa [51], with the default parameter settings
(e.g., sample rate: 22050, hop length: 512). Unless otherwise specified, the aggregate
statistics (i.e., mean, standard deviation) of the frame-wise feature vectors were used to
form the clip-level feature representation.

5. Supervised Classification

Based on the aforementioned feature sets, we performed a set of classification experi-
ments to investigate the potential contributions of physiological signals and music acoustic
features as well as the effectiveness of group-wise modeling. Details on the classification
experiments and the validation process are described in this section.

5.1. Classification Experiments

We built support vector machine (SVM) classifiers with the radial basis function (RBF)
kernel for arousal and valence recognition, since it has demonstrated its effectiveness for
MER tasks in previous research [52] including those based on physiological signals [37,53].
Given that only a small proportion of samples in our dataset were labeled as neutral arousal
(2.1%) or neutral valence (2.7%), all classification experiments were thus implemented as a
binomial classification problem (positive valence/arousal versus negative valence/arousal),
in which we excluded the samples with neutral labels in this study, resulting in 936 samples
for arousal prediction and 930 samples for valence classification.

In response to RQ1, we trained SVM models with three feature sets (i.e., audio-only,
physiology-only, and audio + physiology) and compared the classification performance
with Wilcox’s robust paired-samples t-tests [54] and the Benjamini–Hochberg procedure [55]
for controlling potential Type I errors introduced by multiple comparisons. Considering the
imbalanced sample distribution across the positive and negative arousal/valence categories,
apart from the experiments on the original imbalanced dataset, we also built prediction
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models with resampled balanced training data. Specifically, for each set of training folds,
we undersampled the majority class via random undersampling and oversampled the
minority class using the SVM borderline synthetic minority oversampling technique (SVM-
SMOTE), which extrapolated minority instances along the SVM decision boundary [56]. In
response to RQ2, we trained SVM classifiers on subgroups of users to investigate the role
of users’ personality in the customized modeling of music-induced emotion.

5.2. Validation

A set of 10-fold cross validations were performed for the validation of classifier
performance. Particularly, for each classification experiment (i.e., classifiers trained on each
feature set with either imbalanced or resampled data), the 10-fold cross validation was
repeated 10 times with different splits of the dataset, since this process is deemed to be
more robust especially when there is a resampling procedure involved in the classification
pipeline [55]. As the testing folds were imbalanced, the evaluation metrics used were macro
F1-score, which gives equal weight to each category, and AUC (area under ROC curve) [57].

6. Results and Discussion
6.1. Comparison of Different Modalities of Features

Table 6 presents classification performances on three modalities of features (i.e., audio-
only, physiology-only, and audio + physiology) for arousal and valence prediction.

Table 6. Comparison of classification performance on different modalities.

Feature Set

Imbalanced Data Resampled Data

Arousal Valence Arousal Valence

F1 AUC F1 AUC F1 AUC F1 AUC

Audio-only 71.38% 81.31% 54.74% 63.86% 72.93% 81.41% 58.09% 63.72%
Physiology-only 47.64% 58.60% 54.14% 57.44% 55.79% 58.85% 57.07% 59.62%

Combined 71.67% 81.42% 58.92% 70.26% 73.05% 81.46% 62.59% 68.96%

Aud. vs. phy. − *** − *** − − *** − *** − *** − − ***
Aud. vs. comb. + + + *** + *** + + + *** + ***
Phy. vs. comb. + *** + *** + *** + *** + *** + *** + *** + ***

Note: The best performance in each column is highlighted with bold font. The Benjamini–Hochberg pro-
cedure was applied to control Type I error when comparing classification performance (*** p < 0.001). The
“+”/“−” signs indicate the latter feature set performed better/worse than the former one. Aud. = Audio-only,
Phy. = Physiology-only, Comb. = Combined.

The classification performance (in macro F1-score and AUC) showed a similar pattern
across experiments with imbalanced or resampled training data. The combined multi-
modal feature set achieved the best performance in each experiment condition, while the
improvement for valence prediction was more significant than that for arousal prediction.

Specifically, for valence classification, the combined feature set consistently outper-
formed the single-modality feature sets (i.e., audio-only, physiology-only) with statistical
significance (at p < 0.001). In comparing the single-modality feature sets, the acoustic
features showed slightly better performance than the physiological features. The relative
strength of acoustic features was significant in AUC but not in the macro F1-score. For
arousal prediction, though the combined feature set was found to be the best-performing, it
did not significantly outperform the acoustic features (the best-performing single-modality
feature set). Finally, the audio-only feature set showed a statistically significant advantage
over the physiology-only feature set.

To sum up, with regard to RQ1, our results suggest that: for valence prediction,
features extracted from peripheral physiological signals from listeners might be mediocre
by themselves, but, when combined with acoustic features extracted from music content,
the multimodal feature set showed significant improvement compared to feature sets of
single modalities. For arousal prediction, the performances of physiological signals were
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in line with those on valence prediction, but little contribution was observed from the
physiological features in the performance of the combined feature set. In other words, the
acoustic modality alone was comparable with the multimodal approach.

Results of acoustic features shown in Table 6 are also in line with the findings of the
previous research that acoustic features extracted from the music content are effective for
arousal classification but less successful for valence prediction [25,49]. Associations between
the dynamical and rhythmic characteristics of music and the induced arousal of listeners
have been evidenced by studies in music psychology literature, while listeners’ valence
was also found to be influenced by some nonmusical factors as well, such as individuals’
aesthetic judgement [58]. Hence, the acoustic features might be more comprehensive in
modeling listeners’ arousal than modeling listeners’ valence. On the other hand, for the
more challenging valence classification task, neither acoustic nor physiological feature set
alone performed well, but the combined feature set significantly improved the classification
performance over either single modality, indicating that the acoustic and physiological
feature sets compensated for one another in valence classification. In contrast to previous
studies that used only acoustic features, these findings reveal the potential values of
physiological signals in tasks related to music-induced emotion. Future research could
extend this work to further explore the applicability and discuss the balance between the
cost and the benefits of incorporating physiological signals into an MIR system.

6.2. Group-Wise Classification Performance

To answer RQ2, whether users’ personality plays a role in the predictive modeling of
music-induced emotion, we trained SVM classifiers on the datasets partitioned by partici-
pants’ personality (see Table 1), with the procedure described in Section 3.2. Particularly, for
the group-wise classifications, we only reported the performances in AUC for experiments
with resampled training data, as (1) macro F1-score and AUC reflected similar patterns
on the whole dataset; (2) the results of experiments with imbalanced or resampled train-
ing data revealed a similar pattern on the whole dataset; and (3) the models trained on
resampled data showed more stable performances.

Table 7 presents the classification performances (in AUC) of different feature modal-
ities within each user personality group. Interestingly, compared to the generic model
built on the whole (resampled) dataset, the group-wise models improved classification
performances for some of the participant groups (indicated by “+” signs next to the perfor-
mances in Table 7) but decreased prediction performances for the others (indicated by “−”
signs in Table 7). For example, arousal classification within the extraversion (low) group
and valence classification within the openness (high) group performed better than those
in the whole dataset (Table 6), while arousal classification within the extraversion (high)
group and valence classification within the conscientiousness (low) group performed worse.
These observations imply that there might be some moderating effects of personality in
individuals’ emotional response to music. In other words, listeners with certain personality
traits (e.g., less extraverted) may be more sensitive to acoustic features of music explored
in this study and may have higher level physiological responses to music. This result is
consistent with the results of [59] showing that extraversion is positively related to certain
responses to music (e.g., happiness and sadness). This is also related to previous findings
in psychology that introverted students tended to be more affected by background music
due to relatively higher cortical arousal than extraverted students [60]. Group-wise classi-
fication might be helpful for modeling the effects of personality, which could be further
verified in future investigations, preferably with larger samples.
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Table 7. Classification performance (in AUC) within each participant group.

Personality Trait
Arousal Valence

Size Acoustics Physiology Combined Size Acoustics Physiology Combined

O (Low) 515 80.59% − 55.01% − *** 80.67% − 512 62.92% − 47.86% − *** 61.47% − ***
O (High) 421 80.76% − 58.06% − 80.43% − 418 63.61% − 63.87% + *** 72.29% + ***
C (Low) 558 83.43% + ** 57.10% − 83.30% + *** 555 59.68% − *** 53.68% − *** 60.09% − ***
C (High) 378 76.76% − *** 52.53% − *** 77.37% − ** 375 60.11% − ** 62.31% + * 66.94% −
E (Low) 394 82.22% + 59.60% + 81.64% + *** 386 55.48% − *** 52.02% − *** 55.03% − ***
E (High) 542 79.09% − ** 56.38% − * 79.35% − ** 544 60.91% − ** 61.43% + 68.39% −
A (Low) 760 80.57% − 56.01% − ** 80.54% − 754 65.01% + 59.84% + 69.71% +
A (High) 176 82.46% + 61.88% + 82.49% + 176 38.95% − *** 49.08% − *** 44.48% − ***
E-S (Low) 562 80.12% − 62.94% + *** 80.20% − 556 60.27% − *** 57.45% − 67.12% −
E-S (High) 374 81.84% + 50.01% − *** 81.82% + 374 59.52% − ** 61.93% + 63.77% − ***

Note: The best performances of arousal and valence prediction within each participant group are highlighted
with bold font. Note that “size” denotes the sample size in terms of music pieces. The “+”/“−” signs indi-
cate the performance was better/worse than that on the whole dataset (resampled) presented in Table 6. The
Benjamini–Hochberg procedure was applied to control Type I error when comparing classification performance
(* p < 0.05, ** p < 0.01, *** p < 0.001). O = Openness, C = Conscientiousness, E = Extraversion, A = Agreeableness,
E-S = Emotional Stability.

Similar to the results on the whole dataset, we also compared group-wise classification
performances of different modalities, with results presented in Table 8. In group-wise
arousal classification experiments, the audio-only feature set consistently outperformed the
physiology-only one, while the multimodal feature set did not significantly improve the
performances of audio-only features in most cases (as indicated in the “Aud. vs. Comb.”
column in Table 8). This is consistent with our finding on the whole dataset that the
acoustic features were effective for arousal classification and the music modality alone was
comparable with the multimodal approach (cf. Section 6.1). On the other hand, in group-
wise valence classification experiments, the combined feature set (i.e., audio + physiology)
outperformed the audio-only feature set in all but two groups (i.e., openness to new
experiences (low), extraversion (low)), and the improvement was statistically significant in
the majority of cases (at p < 0.001, as indicated in the “Aud. vs. Comb.” column in Table 8).
In particular, for the two user groups where the audio-only feature set achieved better
performance in valence prediction, the audio-only feature set significantly outperformed the
other two feature sets in the openness (low) group (at p < 0.001), while, in the extraversion
(low) group, the acoustic features outperformed the physiological features (at p < 0.05), but
the performance difference between the audio-only and the multimodal feature set was not
statistically significant. These observations may be related to the fact that individuals’ music
perception and music preference were found to be closely related to an array of personality
trait dimensions, especially openness to new experiences [3,60], which is sensitive to art
and beauty [60]. In a more general sense, this result verifies previous findings that people’s
responses to music result from multiple factors, some of which are relatively changeable and
short-term such as physiological signals, while others are more stable and long-term such
as personality traits [61], which further implies the importance of personalized modeling
of music-induced emotion.

With respect to the classification experiments using feature sets of single modalities (i.e.,
audio-only vs. physiology-only), the audio-only feature set achieved better performance
with statistical significance (at p < 0.001) for arousal prediction in most cases, while neither
modality showed apparent advantage for valence prediction.
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Table 8. Comparison of classification performances on different modalities in group-wise modeling.

Personality

Arousal Valence

Aud. vs.
Phy.

Aud. vs.
Comb.

Phy. vs.
Comb.

Aud. vs.
Phy.

Aud. vs.
Comb.

Phy. vs.
Comb.

Openness (L) – *** + + *** – *** – *** + ***
Openness (H) – *** – * + *** + + *** + ***

Conscientiousness (L) – *** – + *** – *** + + ***
Conscientiousness (H) – *** + ** + *** + + *** + ***

Extraversion (L) – *** – *** + *** – * – + **
Extraversion (H) – *** + + *** + + *** + ***

Agreeableness (L) – *** – + *** – *** + *** + ***
Agreeableness (H) – *** + + *** + *** + *** – *

Emotional stability (L) – *** + + *** – * + *** + ***
Emotional stability (H) – *** – + *** + + *** +

Notes: The Benjamini–Hochberg procedure was applied to control Type I error when comparing classification
performance (* p < 0.05, ** p < 0.01, *** p < 0.001). The “+”/“−” signs indicate the latter feature set performed
better/worse than the former one. Aud. = Audio-only, Phy. = Physiology-only, Comb. = Combined.

7. Conclusions, Limitations, and Future Works

Aiming to explore the potentials for incorporating physiological signals for detecting
music-induced emotion and the role of users’ personality in group-wise modeling, this
study constructed a thorough dataset with aligned music stimuli audio and listeners’
physiological signals, ratings on emotion, and personalities. To bridge the gap between
physiological computing and MIR, this study leveraged techniques in physiological signal
processing to extract physiological signals that are potentially interpretable. Our findings on
multimodal music emotion classification make it evident that users’ physiological responses
to music is an informative modality for the MER task on music-induced emotion and
made more significant contributions to valence than arousal classification. The physiology
modality was found to be complementary to the acoustic modality for valence prediction.
However, for arousal classification, the acoustic modality alone was comparable with the
multimodal feature set. Additionally, the results of our user-group-wise classification
experiment imply that both music acoustic and listeners’ physiological signals might be
more effective in predicting music-induced emotions for users of certain personality traits
than other users. These observations imply moderating effects of personality in individuals’
emotional response to music.

Through a theoretical lens, our findings call for a more holistic perspective when study-
ing music-induced emotion. Despite the proved effect of music characteristics on listeners’
arousal levels, its effect on valence response can be largely individual-dependent. Beyond
psychoacoustic analysis, there are multiple factors contributing to inducing emotion in
music listeners, some of which are relatively changeable and short-term (e.g., physiological
signals), while others are more stable and long-term (e.g., personality traits). Practically,
through demonstrating the potential of physiological sensing techniques in emotion-aware
MIR, this study opens up a number of possibilities in the future for emotion-aware or
context-based music retrieval systems, such as recommending music based on physiologi-
cal metrics of users and maintaining emotion-sensitive playlists which can be adjusted in
real time in accordance with users’ changing physiological response to music. In addition,
findings of this study also highlight the importance of multimodal and personalized mod-
eling that exploits not only content-based MER but also various forms of user-dependent
information sources (e.g., personality, physiological signals). Findings of this line of re-
search may also prompt academic and industrial advancement in closely related areas such
as human physiological response, human-computer interaction, music perception, and
music therapy.

This study has several limitations. Although the HKU956 dataset is of a decent size,
samples with neutral labels were finally discarded, which resulted in smaller samples,
especially in the group-wise experiments. Moreover, our dataset also faced the issue of
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being dominated by the positive class, especially for the valence dimension. This data
unbalance toward positive valence might be attributable to the experiment design where
participants searched and selected music to listen to rather than listening to preselected
music. While this experiment design addresses the MIR contexts, it would result in more
music favorable to the listeners being included in the dataset. Future work could explore
personalized models if larger datasets could be constructed with more listening history
and corresponding physiological signals from each user. In the experiment setup, album
covers and song metadata were displayed on screen, albeit in small sizes, when music
was played. This setup conforms to the norm of online music services but does introduce
potential influence from visual information on listeners’ perception of the song. Future
studies may avoid this by displaying a blank screen when music is played, trading off the
ecological authenticity of the user interface.

Given that different physiological signals may reinforce each other, future research
is much needed to investigate the contribution each physiological signal makes to the
outcome. More work is also suggested to exploit other personal and situational factors
beyond personality that may play a role in ones’ affective perception of music, such as
music training background and/or tasks at hand. Last but not least, it is noteworthy that, as
physiological signals and audio signals are both time series data, a multimodal time series
approach could thus be exploited for many interesting research topics, such as detecting
variation of music-induced emotion within the course of a music piece.
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