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Abstract: A new reliability estimation method based on partial multiplicative dimensional reduction
is proposed for probabilistic and non-probabilistic hybrid structural systems. The proposed method is
characterized by decorrelating interval input variables from random input variables using the partial
multiplicative dimensional reduction method in conjunction with the weakest-link theory. In this
method, the failure statistics of the original performance function are equivalent to a statical chain of
two elements, in which one of the two elements represents the failures due to random input variables
and the other represents the failures due to interval variables. Rather than yielding an estimated
interval of failure probability, the proposed method produces a single value for failure probability,
which is more meaningful for engineering. In addition, the accuracy, validity, and superiority of
the proposed method are demonstrated, and the error-related properties of the proposed method
are investigated.

Keywords: reliability analysis; variable decorrelation; probabilistic and non-probabilistic hybrid
structural systems; multiplicative dimensional reduction; weakest-link theory

1. Introduction

Due to the stochastic nature of loads, material strengths, geometry, and other factors,
reliability-based analyses are indispensable for many engineering problems [1]. In practice,
the input variables can be classified into random variables or interval variables according
to their data size. For a variable with sufficient statistical data, a probability distribution
can be used for its statistical description, which can be treated as a random variable [2].
On the other hand, if the statistical data of a variable is insufficient, an interval, rather
than a distribution, is applied for its statistical description, which is therefore treated as
an interval variable [3–5]. Structural systems contain both random variables and interval
variables which are common in practice, and which are referred to as probabilistic and
non-probabilistic hybrid structural systems whose reliability estimation is difficult, the
study of which has attracted many scholars for decades [6–8].

In recent years, various probabilistic–interval hybrid reliability methods for solving
the reliability estimation of probabilistic and non-probabilistic hybrid structural systems
have been developed. Jiang et al. [9] categorized the probabilistic-interval hybrid reliability
methods into three groups: loop calculation methods, surrogate models, and equivalent
transformation methods. Loop calculation methods can be used for the reliability esti-
mation of simple structures or systems [10,11], yet they are unable to solve the nested
optimization problems that commonly exist in many engineering cases. In contrast, meth-
ods based on surrogate models are computationally cheaper than loop calculation methods,
but they require a large number of samples to guarantee sufficient accuracy [12–14]. As
for equivalent transformation methods, though they can circumvent difficult nested opti-
mization problems, the transformations of the interval variables into the corresponding
probabilistic variables have certain inherent restrictions that may not be applicable to many
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practical problems [15,16]. At this point, it is noted that the hybridization of two types of
variables is one of the most challenging problems. For the treatment of interval variables,
scholars have proposed methods such as the interval angular vector [17] and the Taylor
expansion method [18]. Recent studies have suggested using decorrelation methods for the
solution of such a difficult problem. Wang et al. [19] utilized the multiplicative dimensional
reduction method (M-DRM, Toronto, ON, Canada) [20–22] for the decorrelation of each
variable. Wei et al. [23] employed the Taylor series expansion in combination with M-DRM
in order to obtain better decorrelation results. However, a total decorrelation of each input
variable through M-DRM would be necessary since there exist many available methods
that can deal with cases of uniformly random variables or interval variables [24]. Further,
the reliability estimation obtained from a total decorrelation of each variable is usually
too conservative.

Aiming at providing accurate reliability assessment for satisfactory probabilistic
and non-probabilistic hybrid structural systems, this paper proposes a novel method
for probabilistic–interval hybrid structural reliability estimation based on a partial M-DRM
and the Weakest-link theory. In this method, the original performance function is statis-
tically equivalent to a statical chain of two elements, in which one of the two elements
represents the failures due to random input variables and the other represents the failures
due to interval variables. Evidently, since the failure of any element in the chain causes
the failure of the entire system, the system’s reliability is computed as the product of each
element’s reliability. The rest of this paper is structured as follows: Section 2 presents the
theoretical background; Section 3 proposes and validates the method; Section 4 compares
the proposed method to other methods; Section 5 studies the error-related properties of
the proposed method; and Section 6 demonstrates the engineering applications of the
proposed method.

2. Theoretical Background

This section presents the necessary theoretical background of the proposed method,
and Sections 2.1 and 2.2 introduce the multiplicative dimensional reduction method and
the weakest-link theory, respectively.

2.1. The Multiplicative Dimensional Reduction Method

Consider a performance function y(x) of an N-dimensional input variable x = [x1, . . . , xN]T.
Its logarithmic transformation in real space is defined as:

ϕ(x) = ln[|y(x)|] (1)

A univariate approximation of ϕ(x) with respect to an arbitrary reference point c takes
the following form:

ϕ(x) =
N

∑
i=1

ϕ(c1, . . . , ci−1, xi, c1+1, . . . , cN)− (N − 1)ϕ(c) (2)

Evidently, it is obtained that

ϕ(c) = ln[|y(c)|] (3)

and
ϕ(c1, . . . , ci−1, xi, c1+1, . . . , cN) = ln[|y(c1, . . . , ci−1, xi, c1+1, . . . , cN)|] (4)

The inverse transformation of Equation (2) yields

y(x) = exp[ϕ(x)] ≈ exp
[

N
∑

i=1
ϕ(c1, . . . , ci−1, xi, c1+1, . . . , cN)− (N − 1)ϕ(c)

]
= exp[(1− N)ϕ(c)] exp

[
N
∑

i=1
ϕ(c1, . . . , ci−1, xi, c1+1, . . . , cN)

] (5)
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Substituting Equations (3) and (4) into Equation (5) yields the M-DRM approximation
of y(x) [20], i.e.,

y(x) ≈ [y(u)]1−N
N

∏
i=1

y(u1, . . . , ui−1, xi, ui+1, . . . , uN) (6)

2.2. The Weakest-Link Theory

The weakest-link theory states that if the failure statistics of a structural system can be
treated as a statistical chain of elements, then the structural reliability, denoted by R, equals
the product of each element’s survival probability, i.e.,

R =
N

∏
i=1

Ri (7)

where Ri denotes the survival probability of element i.
Taking a logarithm of Equation (7) yields

ln R =
N

∑
i=1

ln Ri (8)

3. A Partial Multiplicative Dimensional Reduction-Based Reliability
Estimation Method

In this section, a partial multiplicative dimensional reduction-based reliability estima-
tion method for probabilistic and non-probabilistic hybrid structural systems is presented.
In addition, two numerical examples are used to demonstrate the validity of the pro-
posed method.

3.1. Method Presentation

Given a structural system’s performance function G (X, Y) containing both random
variables and interval variables as the inputs, where X = [X1, . . . , XN]T and Y = [Y1, . . . , YM]T

are the random input variables and interval input variables, respectively, and G = 0, G > 0,
or G < 0 indicates that the system is in the limit safety state, safe state, or failure state,
respectively, the existence of cross terms between random variables and interval variables
contributes considerable difficulty to the reliability estimation. Hence, a method that can
reasonably eliminate these cross terms with a subtle influence on the final reliability would
be quite helpful for the corresponding reliability estimation since it decorrelates the random
variables X from the interval variables Y, which is the core idea for the proposed method.

In order to obtain such a decorrelation method, let us first consider the bivariate
function G (X1, Y1). By using Equation (6), its M-DRM form becomes

G(X1, Y1) ≈ G(X1, Yc
1) · G(Xc

1, Y1) · G(Xc
1, Yc

1)
−1 (9)

where Xc
i is the mean value of Xi and Yc

i is the center of Yi.
Now, consider G = G (X1, X2, Y1). Similarly, by applying Equation (6) to G (X1, X2, Y1)

while treating X2 as a parameter, the following is obtained:

G(X1, X2, Y1) ≈ G(X1, X2, Yc
1) · G(Xc

1, X2, Y1) · G(Xc
1, X2, Yc

1)
−1 (10)

At this point, it is noted that the above approximation holds since Equation (6) is
applicable to any reference point.

Further, by substituting Equation (6) into G (X1
c, X2, Y1), the following is obtained:

G(Xc
1, X2, Y1) ≈ G(Xc

1, X2, Yc
1) · G(Xc

1, Xc
2, Y1) · G(Xc

1, Xc
2, Yc

1)
−1 (11)
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Substituting Equation (11) into Equation (10) yields

G(X1, X2, Y1) ≈ G(X1, X2, Yc
1) · G(Xc

1, Xc
2, Y1) · G(Xc

1, Xc
2, Yc

1)
−1 (12)

Through the similar process, G (X1, X2, X3, Y1) is obtained as

G(X1, X2, X3, Y1) ≈ G(X1, X2, X3, Yc
1) · G(Xc

1, Xc
2, Xc

3, Y1) · G(Xc
1, Xc

2, Xc
3, Yc

1)
−1 (13)

By using such a recursive method, G (X1, . . . , XN, Y1) is obtained as

G(X1, . . . , XN , Y1) ≈ G(X1, . . . , XN , Yc
1) · G(Xc

1, . . . , Xc
N , Y1) · G(Xc

1, . . . , Xc
N , Yc

1)
−1 (14)

Now, consider G = G (X1, . . . , XN, Y1, Y2). The similar operation yields

G(X1, . . . , XN , Y1, Y2)

≈ G(X1, . . . , XN , Yc
1 , Y2) · G(Xc

1, . . . , Xc
N , Y1, Y2) · G(Xc

1, . . . , Xc
N , Yc

1 , Y2)
−1 (15)

and G (X1, . . . , XN, Y1
c, Y2) is transformed into

G(X1, . . . , XN , Yc
1 , Y2)

≈ G(X1, . . . , XN , Yc
1 , Yc

2) · G(Xc
1, . . . , Xc

N , Yc
1 , Y2) · G(Xc

1, . . . , Xc
N , Yc

1 , Yc
2)
−1 (16)

By substituting Equation (16) into Equation (15), one can obtain

G(X1, . . . , XN , Y1, Y2)

≈ G(X1, . . . , XN , Yc
1 , Yc

2) · G(Xc
1, . . . , Xc

N , Y1, Y2) · G(Xc
1, . . . , Xc

N , Yc
1 , Yc

2)
−1 (17)

Accordingly, G (X1, . . . , XN, Y1, . . . , YM) is finally expressed as

G(X1, . . . , XN , Y1, . . . , YM)

≈ G(X1, . . . , XN , Yc
1 , . . . , Yc

M) · G(Xc
1, . . . , Xc

N , Y1, . . . , YM) · G(Xc
1, . . . , Xc

N , Yc
1 , . . . , Yc

M)−1

= G(X, Yc) · G(Xc, Y) · G(Xc, Yc)−1

(18)
where Xc = [X1

c, . . . , XN
c] T is the mean vector of X and Yc = [Y1

c, . . . , YM
c] T is the center

point of Y.
Therefore, the system’s performance function G (X, Y) can be finally transformed into

the following separable form:

G(X, Y) ≈ G′ = GX · GY · Gc (19)

where GX = G (X, Yc), GY = G (Xc, Y), and Gc = G (Xc, Yc)−1.
Since Gc > 0 is guaranteed for most engineering cases, G > 0 is statistically equivalent

to GX · GY> 0, which means that GX and GY are identically positive or negative. On the
other hand, since the chance of both GX and GY being negative is usually negligible, the
condition that G > 0 can be consequently replaced by the condition of both GX and GY being
positive. At this point, it is noted that the original structural system represented by G is
translated to a weakest-link of two elements in which GX represents the element of random
inputs and GY represents the element of interval inputs (as shown in Figure 1). Since the
safety state determination and reliability estimation of either the element of random inputs
or the element of interval inputs can be properly addressed by well-established probability
theory [25] or the non-probabilistic theory [26], respectively, such a task can be difficult
for cases when random inputs and interval inputs are coupled, and it is evident that the
advantage of the proposed method is in decorrelating the random inputs from the interval
inputs, making the safety state determination or reliability estimation of probabilistic and
non-probabilistic hybrid structural systems considerably easier.
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Figure 1. Conceptional illustration of the proposed method.

As for the determination of the system’s safety state, due to the conservatism of
non-probabilistic theory, the following strategies are proposed (shown in Figure 2): if the
element of interval variables is unsafe, then the system, whose reliability is zero, is unsafe;
otherwise, the system’s safety state and reliability are identical to those of the element of
random variables. This is because if the safety state of the element of interval values is
safe, its corresponding reliability is close to 1 due to its conservative nature, and so the
system’s safety state and reliability can be represented by the corresponding value of the
element of random variables. Further, since reliability index-based methods such as the
first-order reliability method (FORM) [27] and second-order reliability method (SORM) [28]
are widely used for safety state determinations, which are applicable to both random
variables and interval variables, a corresponding determination method of a system’s safety
state is proposed in Table 1, where β and η represent the reliability indices for the element
of random variables and the element of interval variables, respectively.
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Table 1. Estimation of structural reliability.

Case Number Non-Probabilistic
Reliability Index η

Probabilistic
Reliability Index βX

System’s Safety State

1 η > 1 βX > α Safe
2 η > 1 βX < α Unsafe
3 η < 1 - Unsafe

The target reliability index α is taken from the specification requirements.
Based on the principle of the weakest-link theory, for both Case 1 and 2, the system’s

reliability can be written as

R = 1− Pf = 1− φ(−β) ≈ P(GX(X) > 0) = 1− φ(−βX) (20)

where Pf is the system’s failure probability, φ (·) is the standard normal cumulative distri-
bution function, β and βX are the reliability indices of the entire system and the element of
random variables, respectively, and β ≈ βX. As for Case 3, β = βX − ∞. The flow chart of
reliability estimation is shown in Figure 3.
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3.2. Numerical Demonstration and Validation

In this subsection, two numerical examples are used to demonstrate and validate the
proposed method, respectively.

3.2.1. A Mathematical Problem of Two Variables

The following performance function is considered:

G = m− b1 p1 − b2 p2 (21)
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where b1 = 2.0, b2 = 5.0, m is a random variable that follows normal distribution, and p1
and p2 are interval variables. Herein, m follows a normal distribution with a mean value
that equals µ and a standard deviation that equals (1 (m~ N (µ,1)), p1

I = [4.4,5.6], and
p2

I = [1.7,2.3]).
The approximate function according to the proposed method is obtained as

G ≈ (m− 20)× (µ− 2p1 − 5p2)÷ (µ− 20) (22)

Case 1: α = 3.7 and m~N (21, 1). In this case, according to the proposed method,
η = 0.37 < 1, and the structural system is determined to be unsafe. The failure probability
computed from the corresponding Monte Carlo Simulations (MCSs) is Pf = 15.9%, which is
in line with the proposed method’s expectation.

Case 2: α = 3.7 and m ~ N (23, 1). In this case, from the proposed method, η = 1.11 > 1,
β = 3.0 < α, the reliability is 99.87%, and the failure probability is 0.13%. Therefore, the
system is also unsafe. On the other hand, from the MCSs, it is obtained that Pf = 0.13%.

Case 3: α = 3.7 and m ~ N (24, 1). In this case, from the proposed method, the non-
probabilistic reliability index η = 1.48 > 1, β = 4.0 > α, the reliability is 99.997%, and the
failure probability is 0.003%. Therefore, the system is safe, and the failure probability
obtained by the MCSs is Pf = 0.003%.

3.2.2. A Cantilever Beam

As shown in Figure 4, given a cantilever beam whose length is l, width of cross section
is b, and height is h, the right end of the cantilever beam is subjected to two forces, Px
and Py. l, b, and h are random variables, while Px and Py are interval variables (as shown
in Table 2).
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Table 2. Descriptions of the input variables in Section 3.2.2.

Variables Parameter 1 Parameter 2 Variables Type

b(mm) 100 (mean) 15 (standard deviation) Normal variable
h(mm) 200 (mean) 20 (standard deviation) Normal variable
l(mm) 1000 (mean) 100 (standard deviation) Normal variable
Px(N) 50,000 (midpoint) 3000 (radius) Interval variable
Py(N) 25,000 (midpoint) 2000 (radius) Interval variable

Considering that the structural failure occurs when the maximum stress at the fixed
end of the cantilever beam reaches the yield strength S = 370 MPa, the performance
function becomes

G = S− (
6Pxl
b2h

)− (
6Pyl
bh2 ) (23)
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According to the proposed method, the following approximation is obtained:

M ≈ M′ = [370× 106 − ( 3×105×l
b2h )− ( 1.5×105×l

bh2 )]×
(370× 106 − 3× 103 × Px − 1.5× 103 × Py)÷ (1.825× 108)

(24)

After computation, it is obtained that η = 15.2 > 1 and βX = 1.93, indicating that the
structure is unsafe.

In order to test the proposed method, 100 sample values of the approximated values
obtained from Equation (24) and the corresponding values obtained by the original per-
formance function are presented and compared in Figure 5, and the close match between
them can validate the proposed method.
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To further investigate the accuracy of the proposed method, the errors (differences
between the values obtained from the proposed method and the corresponding target
values) obtained from 107 samples are presented in Figure 6, from which it can be seen that
the method is unbiased and sufficiently accurate.
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4. Comparison with Other Methods

In this section, the advantage of the proposed method over other existing methods is
demonstrated through a numerical example.

4.1. A Roof Truss

A roof truss, as shown in Figure 7, is tested to illustrate the performance of the
proposed method. Through linear-elastic analysis, the perpendicular displacement g at
node C can be written as
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g =
ql2

2
(

3.81
ACEC

+
1.13

ASES
) (25)

where EC and ES denote the elastic modulus of the two types of steel bars, respectively,
and AC and AS represent their cross-sectional areas, respectively. The allowable value of
the vertical deflection at node C is set to 0.0135 m. The performance function is therefore
formulated as G = C− g, where the random variables and interval variables in this example
are as given in Table 3.

Table 3. Distribution of the variables in Section 4.1.

Parameter 1 Parameter 2 Variables Type

q(N/m) 20,000 (mean) 200 (standard deviation) Normal distribution
l(m) 12 (mean) 0.12 (standard deviation) Normal distribution

AS
(
m2) 9.83 × 10−4 (mean) 9.83 × 10−6 (standard deviation) Normal distribution

AC
(
m2) 4.00 × 10−2 (mean) 4.00 × 10−4 (standard deviation) Normal distribution

ES
(
N/m2) 2.00 × 1011 (midpoint) 2.00 × 109 (radius) Interval distribution

EC
(
N/m2) 3.00 × 1010 (midpoint) 3.00 × 108 (radius) Interval distribution

To validate its superiority, the proposed method is compared with two highly cited
methods, namely the interval Monte Carlo Simulation with a genetic algorithm (MCS plus
GA) proposed by Biabani-Hamedani [29], and the FORM with an M-DRM (FORM plus
M-DRM) proposed by Wang [19], where the failure probability computed by an MCS using
107 samples serves as the corresponding target. The comparison result is shown in Table 4,
from which it can be seen that the proposed method yields a failure probability estimation
that is close to the target value, while the MCS plus GA or the FORM plus M-DRM only
suggest a large interval of failure probability that can be meaningless for engineering.

Table 4. Results comparison of the different methods.

Failure Probability

MCS of 107 samples Pf = 0.0178
Interval MCS plus GA minPf = 0.0056 maxPf = 0.0427

The proposed method plus MCS Pf = 0.0172
FORM plus M-DRM minPf = 0.0048 maxPf = 0.0448

The proposed method plus FORM Pf = 0.0172

5. Error Behavior of the Reliability Estimation

This section studies the error-related properties of the proposed method, and
Section 5.1 investigates the influence of the interval variables’ distributions on the error
of reliability estimation and Section 5.2 studies the convergency of error with respect to
failure probability.

5.1. Influence of Interval Variables’ Distributions

The influence of the distribution types of interval variables can significantly influence
the reliability estimation result, which should receive careful consideration. In order to
study an element such an influence, the interval variables of Section 4.1 were assigned
to different distributions (shown in Table 5) whose corresponding reliability estimation
results are concluded in Table 6. It can be seen from Table 6 that the proposed method
consistently gives accurate reliability estimations for all the studied distributions, which are
therefore applicable to a wide range of distribution types for the interval variables. Such
a result suggests that the partial decorrelation process adopted by the proposed method
can decrease the influence of the distribution types of interval variables on the reliability,
which also demonstrates the good robustness of the proposed method.
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Table 5. Parameters under different distribution types.

Distribution
Type

Es (N/m2) Ec (N/m2)

Parameter 1 Parameter 2 Parameter 1 Parameter 2

Uniform 2.00 × 1011 2.00 × 109 3.00 × 1010 3.00 × 108

Normal 2.00 × 1011 7.76 × 108 3.00 × 1010 1.17 × 108

Lognormal 26.02 3.88 × 10−3 24.13 3.88 × 10−3

Weibull 2.01 × 1011 348.10 3.02 × 1010 348.10

Table 6. Comparison of different distribution types.

Distribution Type Original Failure Probability Approximate Failure
Probability

Uniform 0.01787 0.01718
Normal 0.01774 0.01724

Lognormal 0.01714 0.01724
Weibull 0.01223 0.01717

For the uniform distributions, parameters 1 and 2 represent the midpoint and radius, respectively; for the normal
and lognormal distributions, parameters 1 and 2 represent the mean and standard deviation, respectively; and for
the Weibull distributions, parameters 1 and 2 represent the scale parameter and shape parameter, respectively.

5.2. Convergency of Errors with Respect to Failure Probability

Another core property of reliability estimation methods is the convergency of errors
with respect to failure probability, e.g., a method is good if the error matches the failure
probability (and it is desirable if the error decreases as the failure probability decreases).
To study such a convergence, different values of the failure probabilities of Section 4.1
are obtained by altering the value of σ, and the corresponding results of error and failure
probabilities are shown in Table 7 and Figure 8. It can be seen from Figure 8 that as
the failure probability decreases, the absolute error produced by the proposed method
correspondingly decreases. Such a good property implies that the method can be potentially
used in many engineering cases whose failure probabilities are usually sufficiently low
(10−6 to 10−4).

Table 7. Convergence analysis result of the errors with respect to the failure probabilities.

l~N (12,σ) Original Function The Proposed
Method

Absolute
Error

σ = 0.15 0.03769 0.03704 0.00065
σ = 0.12 0.01767 0.01715 0.00052
σ = 0.09 0.00565 0.00531 0.00034
σ = 0.06 0.00105 0.00092 0.00013
σ = 0.04 0.00026 0.00021 0.00005
σ = 0.03 0.00013 0.00011 0.00002
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6. Engineering Application

In this section, the proposed method is applied to an engineering example, demon-
strating its engineering practicality.

6.1. An Engineering Example

As shown in Figure 9, the finite element model of a plate arch bridge is established
in MIDAS 2021. Through finite element analysis, it is known that the internal force of
the midspan section of the main arch ring is consistently the largest. Therefore, the
midspan section of the main arch ring is selected as the control section to evaluate the
reliability assessment.
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For parameters that are easy to measure, such as geometric size, elastic modulus,
thickness of protective layer, etc., statistical characteristics can be obtained according to
existing research and the measured data. On the other hand, those parameters that cannot
be easily obtained are taken as intervals according to actual experience, such as the bulk
density of materials, and the coefficient of variation is considered to be 5%. The input
variables are described in Table 8.

Table 8. Values of the basic parameters in Section 6.1.

Parameter 1 Parameter 2 Variables Type

Width of main arch ring b(m) 10 0.0067 Normal distribution
Thickness of main arch ring h1(m) 0.606 0.004 Normal distribution

Pavement thickness h2(m) 0.25 0.003 Normal distribution
Elastic modulus of concrete ES(MPa) 3.25 × 104 1.08 × 103 Normal distribution

Reinforcement area AS
(
m2) 7.126 × 10−3 2.380 × 10−4 Normal distribution

Thickness of protective layer aS(m) 0.05 0.003 Normal distribution
Concrete unit weight γ1

(
kN/m3) 25 1.25 Interval distribution

Packing unit weight γ2
(
kN/m3) 18 0.9 Interval distribution

Pavement unit weight γ3
(
kN/m3) 24 1.2 Interval distribution

Vehicle load F(kN) 300 15 Interval distribution
Tensile strength of reinforcement fsd(MPa) 3.20 × 105 1.60 × 104 Interval distribution

For the normal distribution, parameters 1 and 2 represent the mean and standard deviation, respectively, and for
the interval distribution, parameters 1 and 2 represent the midpoint and radius, respectively.

By fitting the simulation results with a response surface, it is obtained that

M = R− S
= x5y5(x2 − x6)
−(−329.89− 85.4071x1 + 1303.25x2 + 5.08929x3 + 1.73643× 10−6x4
+2.11363y1 + 8.32423y2 + 2.56098y3 + 1.74568y4
+4.6875x2

1 + 358.073x2
2 + 200x2

3 + 1.8574× 10−14x2
4

+0.00643491y2
1 + 0.000388889y2

2 + 0.00108507y2
3 + 0.000104097y2

4)

(26)

where x1 represents the width of the main arch ring, x2 represents the thickness of the
main arch ring, x3 represents the pavement thickness, x4 represents the elastic modulus of
the concrete, x5 represents the reinforcement area, and x6 represents the thickness of the
protective layer. y1 is the unit weight of the concrete, y2 is the unit weight of the packing,
y3 is the unit weight of the pavement, y4 is the vehicle load, and y5 is the tensile strength
of reinforcement.

Finally, through the proposed method, it is obtained that the estimated reliability index
is 4.2 and the reliability estimation result is 7.91 × 10−7, indicating that the structure is safe.
On the other hand, the reliability estimation result obtained by the MCSs is 9.00 × 10−7,
and the corresponding error is 1.09 × 10−7. Such a low value of error demonstrates the
sufficient accuracy and good practicality of the proposed method.

7. Conclusions

In this paper, a novel method for the reliability estimation of probabilistic and non-
probabilistic hybrid structural systems is proposed and numerically validated. Differing
from those methods that produce an interval of the failure probability prediction, the
proposed method yields a single value reliability prediction that is sufficiently accurate. In
addition, the following conclusions are drawn:

1. The decorrelation between the random variables and the interval variables decreases
the influence of the interval variables’ distributions on the system’s failure probability;

2. The proposed method is robust against the change of variable distributions; and
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3. The error of failure probability estimation produced by the proposed method de-
creases as the failure probability decreases, demonstrating its promising engineer-
ing potential.
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