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Abstract: The construction of high-quality word embeddings is essential in natural language process-
ing. In existing approaches using a large text corpus, the word embeddings learn only sequential
patterns in the context; thus, accurate learning of the syntax and semantic relationships between
words is limited. Several methods have been proposed for constructing word embeddings using
syntactic information. However, these methods are not trained for the semantic relationships between
words in sentences or external knowledge. In this paper, we present a method for improved word
embeddings using symbolic graphs for external knowledge and the relationships of the syntax and
semantic role between words in sentences. The proposed model sequentially learns two symbolic
graphs with different properties through a graph convolutional network (GCN) model. A new sym-
bolic graph representation is generated to understand sentences grammatically and semantically. This
graph representation includes comprehensive information that combines dependency parsing and
semantic role labeling. Subsequently, word embeddings are constructed through the GCN model. The
same GCN model initializes the word representations that are created in the first step and trains the
relationships of ConceptNet using the relationships between words. The proposed word embeddings
outperform the baselines in benchmarks and extrinsic tasks.

Keywords: neuro-symbolic; graph convolutional network; word embedding; dependency parsing;
semantic role labeling; ConceptNet; external knowledge

1. Introduction

Meaningful word embeddings using deep learning can effectively improve the perfor-
mance of various natural language processing (NLP) tasks, such as syntax analysis [1,2],
semantic analysis [3–5], and question-answering systems [6]. In previous studies, co-
occurrence words were mainly learned in a sequential context. Such word embedding
methods exhibit limitations because the syntactic relationships between words in the sen-
tences are not considered. Various methods using syntactic analysis for constructing word
embeddings have been proposed to overcome these limitations [7,8]. However, these meth-
ods require further investigation into understanding the relationships of the semantic roles
between words [9] and external knowledge.

WordNet [10] is a set of semantic lexicons in English. Each vocabulary is divided into
nouns, verbs, adjectives, and adverbs and is classified into a group of synonyms known as a
synset. Furthermore, this lexical knowledge graph focuses on formal classifications such as
synonyms, antonyms, hypernyms, and hyponyms. In contrast, ConceptNet [11] is a lexical
knowledge graph that is constructed from various lexical resources such as WordNet [10],
Wiktionary [12], and DBpedia [13]. Therefore, WordNet focuses on the formal classifications
of words, whereas ConceptNet defines the richer semantic relationships between words by
combining various lexical resources.
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In this study, word embeddings are constructed sequentially through the neuro-
symbolic learning of textual and knowledge graph information. A new graph representa-
tion is obtained to understand the syntactic and semantic relationships of the sentences.
The example in Figure 1 depicts the graphs of the dependency parsing (DP) [14] and se-
mantic role labeling (SRL) [9] of “hot spot uses technology developed in the military for
tank and jet fighter tracking.” The DP represents all syntactic trees of a sentence for the
syntax-aware model. The SRL enables the model to understand the predicate–argument
relationships within sentences. In our proposed method, these two graphs improve the
word embeddings through a graph convolutional network (GCN) [15,16]. As word embed-
dings with symbolic information of the textual graph do not understand the relationships
that are defined in the external knowledge graph, the model is trained using ConceptNet.
The same architecture as that of the GCN is used in this process, and the word embeddings
that are created by the first method are initialized.

(a)

(b)

Figure 1. Examples of dependency parsing (DP) and semantic role labeling (SRL). In DP, any depen-
dencies between words in a sentence are represented in a graph structure. In SRL, arguments are
labeled with BIO tags according to predicates. For example, for the predicate “use” and the linked
argument “hot spot", “hot” is B-ARG0 and “spot” is I-ARG0. (a) Example of dependency parsing.
(b) Example of semantic role labeling.

The contributions of this study are summarized as follows:

• The proposed model sequentially trains on the symbolic information of the textual
and external knowledge graphs to construct meaningful word embeddings.

• The proposed word embeddings (https://drive.google.com/file/d/1XXPYj47onzAx-
-DVvsIgib0HxzGd7wBR/view?usp=sharing, accessed on 21 August 2022) outperform
those of previous methods on word embedding benchmarks.

• Our word embeddings further improve the model performance in extrinsic tasks
(parts-of-speech tagging (POS) [1], named entity recognition (NER) [17], word sense
disambiguation (WSD) [18–22], and the Stanford Question Answering Dataset (SQuAD)
1.1) [23].

2. Related Works
Word Embedding

Thus far, research on word embeddings has received substantial attention in NLP.
The continuous bag-of-words (CBOW) and skip-gram (SG) [24] methods are based on lan-
guage modeling using neural networks to represent words as real-valued vectors. However,
these methods do not consider word co-occurrences in sentences. The global vectors for
word representation (GloVe) [25] approach extends the use of global statistical information.
FastText [26] uses subwords to solve problems such as out-of-vocabulary (OOV) words.

https://drive.google.com/file/d/1XXPYj47onzAx--DVvsIgib0HxzGd7wBR/view?usp=sharing
https://drive.google.com/file/d/1XXPYj47onzAx--DVvsIgib0HxzGd7wBR/view?usp=sharing
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In recent years, language models have been proposed that represent words as different
real-valued vectors according to the context. The Embeddings from Language Model
(ELMo) [27] is an LSTM-based bidirectional language model, whereas bidirectional encoder
representations from Transformers (BERT) [28] is a Transformer-based bidirectional lan-
guage model. BERT is pretrained with a large corpus through masked-language modeling
(MLM) and next sentence prediction (NSP) objectives. These contextual representation
models have achieved high performance on various NLP tasks.

However, as these methods do not learn syntactic information, the understanding of the
relationships between words in a sentence is limited. In a study by Levy and Goldberg [7],
the encoding of syntactic relationships between words demonstrated that functional similar-
ity exhibited higher performance than topical similarity. Another study revealed improved
performance when words were represented with syntactic information using second-
order [29] and multi-order [30] dependencies. It is necessary to label a large corpus auto-
matically when employing modes that use syntactic information. Therefore, these models
exhibit errors that are propagated as a result of data that are constructed in this process.
To address this issue, Vashishth et al. [8] used an edge label gating mechanism to enhance
the performance compared to previous models. However, models that learn only syntactic
information experience difficulty in understanding semantic correlations such as external
knowledge or the relations of predicate arguments among words.

Semantic Role Labeling (SRL)

SRL [9] uses the concept of the predicate–argument relation. Each predicate is con-
nected to various arguments, and the linked arguments play a corresponding semantic role.
For example, in the sentence “Tom gives Susan a book", “gives” is a predicate, whereas
“Tom", “Susan", and “a book” are arguments. “Tom” is classified as an agent from the
arguments, and "a book” is an argument with the theme of “give” That is, when the
user asks “What is Tom giving to whom?” the answer of the model is “a book” Fur-
thermore, the answer to the question “Where is a book?” is “Susie", so “Susie” corre-
sponds to a goal among the types of arguments. We use the model provided by AllenNLP
(https://demo.allennlp.org/semantic-role-labeling, accessed on 11 August 2019) to con-
struct the SRL graph.

Dependence Parsing (DP)

DP [14] is a method of representation in the syntax tree structure that defines the
relations between words in a sentence. This method presupposes that a correlation exists
between the words of a sentence that influence one another. The modifier is known as the
“head” or “governor", and the word that receives the modifier is known as the “dependent”
or “modifier” The sentence is represented by a tree structure when the relationship be-
tween words is established. We used CoreNLP (https://stanfordnlp.github.io/CoreNLP/
depparse.html, accessed on 11 August 2019) provided by the Stanford NLP Group to
construct the DP graph.

ConceptNet

ConceptNet [11] represents a factual assertion in the real world using two nodes
(concepts) and a directional edge (relation). The nodes define words or phrases that ap-
pear in natural language sentences. As ConceptNet performs construction by collecting
various knowledge bases, the nodes are represented differently according to the knowl-
edge. The edges (relations) include lexical relation information and general common-sense
information of humans. ConceptNet may also define multiple edges between two nodes.
For example, the edges of “person” and “eat” are labeled as CapableOf and Desires, respec-
tively. Therefore, knowledge information is used in the models for various ambiguities in
each sentence.

https://demo.allennlp.org/semantic-role-labeling
https://stanfordnlp.github.io/CoreNLP/depparse.html
https://stanfordnlp.github.io/CoreNLP/depparse.html
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3. Proposed Method

In this study, the GCN [15,16] is exploited to learn the graph representation for word
embedding. The proposed model consists of two stages. First, the model trains a new
graph representation that combines the DP and SRL graphs. Second, the model initializes
the word representations that are constructed in the first process and learns the inner
correlations within ConceptNet on the same structure.

The graph is defined as G = (V, E, X), where the node set is |V| = n, and E represents
the edge set. X ∈ Rn×d means an input node with d-dimensionality. When nodes u and v
exist, E(Edge) from u to v is labeled as (u, v, luv). Moreover, as information does not always
need to propagate in one direction, the reverse direction (u, v, l−1

uv ) is included in E(Edge).
The proposed model is depicted in Figure 2. The sentence s is composed of a set of words
such as s = w0, w1, . . . , wn.

Figure 2. Overview of the proposed method. The model sequentially trains symbolic graphs of
different properties in two steps.

TG-GCN

The text graph GCN (TG-GCN) performs training by combining the two graphs.
Unlike in DP, the SRL information is predicted with a BIO tag on the sentence. Therefore,
the defined tags are replaced with a new graph representation. For example, in Figure 1,
the "hot spot” that is connected to “uses” is defined as hot (B-ARG0) and spot (I-ARG0).
When this is represented as an edge, (“uses”, “hot", B-ARG0), (“uses”, “spot”, I-ARG0) is
expressed. Following the combination of the two graphs, the graph information is defined
as TG = (VTG, ETG, XTG). In Equation (1), hk+1

v is represented through the k-GCN layer
with the newly created graph representation as the input, where hk+1

v is hk+1
v ∈ Rd.

hk+1
v = f ( ∑

u∈N+(v)
(Wk

luv
hk

u + bk
luv
)), (1)

where Wk
luv
∈ Rd×d and bluv ∈ Rd denotes the model parameters for the relationship

between nodes. Furthermore, the adjacency set of N+(v) (including v itself) and hk
v ∈ Rd is

the representation of node v through layer k− 1.
When using an external model to generate graph structures from the corpus automati-

cally, it is possible to include incorrect edges and labels within the graph structure. Error
propagation occurs during the training process of the models because manual tagging
is not performed. To address this limitation, our method calculates the edgewise gating
score, as proposed by Marcheggiani and Titov [31]. The edge-label gating mechanism score
is applied to the node representation in Equation (1) of the GCN. The score is calculated
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independently for all connected edges of each node v, and the difference between the edges
is distinguished. The score gk

luv
∈ R is determined as indicated in Equation (2).

gk
luv

= σ(Ŵk
luv

hk
u + b̂k

luv
), (2)

where Ŵk
luv
∈ R1×d and b̂k

luv
∈ R is a learnable parameter. Furthermore, σ(·) is a sigmoid

function. Finally, hk+1
v with the edgewise gating mechanism is expressed by Equation (3).

hk+1
v = f ( ∑

u∈N+(v)
gk

luv
× (Wk

luv
hk

u + bk
luv
)) (3)

CN-GCN

The word embeddings that are constructed by the TG-GCN only understand limited
semantic relationships within the context. For example, the model merely understands
whether the word “apple” is a company or food through the surrounding contexts “eat”
or “computer”, respectively. However, the model does not know whether “apple” is a
hyponym for “fruit” The model can only understand such factual information using struc-
tured external knowledge. Therefore, our method creates meaningful word embeddings
by learning the semantic relationships of ConceptNet. The ConceptNet GCN (CN-GCN)
learns ConceptNet graphs to understand the semantic relationships of the words in a
sentence with external knowledge. The inputs of the ConceptNet graphs are defined as
CN = (VCN , ECN , XCN). The model structure is the same as that of the TG-GCN, and it
initializes the word embeddings that are constructed in the first step.

Output Layer

The output layers of TG-GCN and CN-GCN are updated in the same manner as in
continuous bag-of-words (CBOW). The training objective L is defined by Equation (4):

L =
|V|

∑
t=1

logP(wt|wt
1, . . . , wt

Nt
), (4)

where wt is the target word and wt
1, . . . , wt

Nt
is connected to neighboring nodes N in the

graph.

P(wt|wt
1, . . . , wt

Nt
) =

exp(vT
wt ht)

∑
|V|
i=1 exp(vT

wt ht)
(5)

In Equation (5), P(wt|wt
1, . . . , wt

Nt
) is calculated using the softmax function. Further-

more, ht is the GCN representation of the target word wt, and vwt is the target embedding.
However, L updates the weights to

L =
|V|

∑
t=1

(vT
wt ht − log

|V|

∑
i=1

exp(vT
wi

ht)) (6)

The second term in Equation (6) is computationally expensive because it requires
summing up the total vocabulary V. The proposed method described by Mikolov et al. [32]
uses negative sampling to reduce the computational cost.

4. Experimental Results and Analysis
4.1. Experimental Setup

The training corpus was obtained from the Wikipedia dump corpus provided by
Vashishth et al. [8]. This corpus includes 57 million sentences with 1.1 billion tokens (https:
//dumps.wikimedia.org/enwiki/, accessed on 11 August 2019). The GCN proposed in this

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
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study has the same parameters (https://github.com/malllabiisc/WordGCN, accessed on
11 August 2019) as that of Vashishth et al. [8]. The hardware used was a Geforce RTX 2080
Ti, and the learning time took about a week. The baseline on word embedding benchmarks
evaluates by published word embeddings. However, we re-implemented the unpublished
SemGCN. The effectiveness of the constructed word embeddings was evaluated using
word embedding benchmarks and extrinsic tasks (WSD, SQuAD 1.1, POS, and NER).

4.1.1. Word Embedding Benchmarks
Word Similarity

Word similarity is defined as the closeness between words with similar meanings.
The performance of the model was evaluated using Spearman’s rank correlation on
the tasks of Word Similarity-343 (WS353) [33], SimLex999 [34], Rare Word (RW) [35],
and MEN3K [36].

Word Analogy

Given three words w1, w2, and c1, word analogy analysis predicts c2 for c1 as the
relationship between w1 and w2. We validated the model on the MSR [32] and SemEval-
2012 [37] tasks.

4.1.2. Extrinsic Tasks
Word Sense Disambiguation (WSD)

WSD is a semantic analysis task in NLP, which involves classifying ambiguous words
in a document or sentence correctly. We used the standard evaluation dataset of Raganato
et al. [38], which consists of SenseEval2 (SE2) [18], SenseEval3 (SE3) [19], SemEval2007
(SE7) [20], SemEval2013 (SE13) [21], and SemEval2015 (SE15) [22]. The model was assessed
using the F1-score.

SQuAD 1.1

SQuAD [23] is a question-answering task in NLP. Given a question and passage,
the answers to all questions are a segment of text or span. SQuAD version 1.1, which is an
extension of Rajpurkar et al. [23], was used in this study.

Part-of-Speech (POS) Tagging

POS is the task of labeling words in a sentence with parts-of-speech that play a
syntactic role. We used the Penn Treebank POS dataset in the experiments [1].

Named Entity Recognition (NER)

The NER task involves classifying words that refer to entities in a sentence into
categories such as PERSON, ORGANIZATION, LOCATION, and TIME. We evaluated the
model using the CoNLL-2003 dataset [17].

4.2. Analysis of Word Embedding Benchmarks

In this section, the baseline models are described and the performance of the proposed
method on the word embedding benchmarks is analyzed.

4.2.1. Baseline
Skip-Gram (SG)

In SG, which was proposed by Mikolov et al. [24], the representation of the target
word is used to predict the context.

Continuous-Bag-of-Word (CBOW)

CBOW was proposed by Mikolov et al. [24]. The representations of the surrounding
words are combined to predict the target word.

https://github.com/malllabiisc/WordGCN
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GloVe

GloVe [25] performs training with the word co-occurrence probability as an objective
function.

FastText

FastText [26] considers subwords based on character n-grams and learns using the SG
method to solve the OOV problem.

Deps

Deps [7] trains the dependencies between words into SG using the relationships of the
DP tree as the input.

SynGCN

The SynGCN [8] performs learning as in the GCN to understand the relationships
between words using the DP tree as the input. The output layer is the same as that in the
CBOW method.

SemGCN

The SemGCN [8] initializes the word embeddings that are constructed from the
SynGCN and learns the four relationships of WordNet (synonym, hypernym, hyponym,
and antonym). The structure of the model is the same as that of the SynGCN.

BERT

BERT [28] is a pre-trained language model that uses the Transformer encoder. The model
trains on a large corpus using training objectives such as MLM and NSP for pre-training.
The MLM replaces (MASK) tokens with a 15% probability among the words in the input
sentence and predicts the appropriate target word using the surrounding context. NSP
determines whether the second sentence follows the first sentence. The model learns the
relevance of two sentences through these training objectives. Base and large models are
available according to the number of parameters.

4.3. Analysis

Table 1 presents the performance on word similarity and word analogy. The suggested
word embeddings achieved the highest average score in both domains. The CN-GCN
exhibited higher performance than the other models except for FastText in all word sim-
ilarity tasks. FastText outperformed the CN-GCN in WS353, WS353R, RW, and MEN3K.
These results demonstrate the advantages of the subwords used by FastText for solving the
OOV problem. BERT, which uses subwords as a contextual representation model, exhibited
low performance in the word embedding benchmarks when the dataset did not include
sentences as the input.

Table 1. Task performance in the word similarity and word analogy domains on word embedding
benchmarks. The overall performance for each domain is also presented as an average. The highest
performance among the models is indicated in bold.

Model
Word Similarity Word Analogy

WS353 WS353S WS353R SimLex999 RW MEN3K Avg MSR SemEval12 Avg

SG 61.0 68.9 53.7 34.9 34.5 67.0 53.3 30.6 20.5 25.6
CBOW 62.7 70.7 53.9 38.0 30.0 68.6 54.0 44.0 18.9 31.5
GloVe 54.2 64.3 50.2 31.6 29.9 68.3 49.8 61.4 16.9 39.2
FastText 68.3 74.6 61.6 38.2 37.3 74.8 59.1 53.2 19.5 36.4
Deps 60.6 73.1 46.8 39.6 33.0 60.5 52.3 40.3 22.9 31.6
BERT-base 51.8 60.1 37.3 48.1 26.7 42.8 44.5 52.7 20.8 36.8
BERT-large 57.8 65.8 46.4 47.5 27.6 51.8 49.5 57.6 20.7 39.2

OurModel(CN-GCN) 65.9 78.8 54.7 57.0 36.5 71.0 60.7 54.6 24.4 39.5
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Our word embeddings achieved a higher average score than that of GloVe, but lower
performance in the MSR of word analogy tasks. This demonstrates the limitation in un-
derstanding the relationships between words as the word co-occurrence probability was
not reflected.

Table 2 displays the experimental results of the use of a symbolic graph. The TG-GCN,
which learned a new graph representation in combination with the SRL graph, exhib-
ited higher performance than the SynGCN. Furthermore, the CN-GCN achieved higher
performance than the SemGCN, which was trained only on four relations of WordNet.

Table 2. Performance comparison of different methods using the symbolic graph on word embed-
ding benchmarks. Bold indicates high performance.

Model WS353 MSR

SynGCN 60.9 52.8
SemGCN 65.3 54.4
TG-GCN 62.7 54.0

Our model (CN-GCN) 65.9 54.6

4.4. Analysis of Extrinsic Tasks

This section presents a comparison of four tasks to analyze whether the proposed
word embeddings were effective in the downstream task. The comparison models for each
task are briefly described, and the performance when using the proposed embeddings
is discussed.

4.4.1. Baselines
ELMo

ELMo [27] is a feature-based pretrained bidirectional language model based on LSTM.
This model provides separate forward and backward language models and trains these
using a weighted sum.

GAS

GAS [4] is a word disambiguation model. The model introduces a framework that
uses reasoning to train dictionary information for ambiguous words.

BiDAF

BiDAF [6] is the most commonly used baseline model for question-answering tasks.
This model was initially developed to perform reading comprehension tasks. It uses a bi-
attention network between the passage and question for reading comprehension.

Baseline of POS and NER

We used the model of Lee et al. [5], which proves the efficiency of the word embeddings
proposed by Vashishth et al. [8]. As this study also constructed word embeddings using
symbolic information, we compared the performance on the same model.

4.5. Analysis

Table 3 presents the experimental results for the word disambiguation. SE7 data were
used to validate the model during training, and the remaining tasks were used as the test
data. All results were evaluated using the test set, including SE7. GAS achieved the highest
performance when using the suggested word embeddings in all tasks.
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Table 3. F1-score on fine-grained English all-word word sense disambiguation (WSD). Bold indicates
high performance. The SE7 task was considered for all performances.

Model
Test Datasets Concatenation of Test Datasets

SE2 SE3 SE13 SE15 All

GAS (linear) with GloVe 72.0 70.0 66.7 71.6 70.1
GAS (concat) with GloVe 72.1 70.2 67.0 71.8 70.3
GASext (linear) with GloVe 72.4 70.1 67.1 72.1 70.4
GASext (concat) with GloVe 72.2 70.5 67.2 72.6 70.6

GASext (concat) with CN-GCN 75.6 73.5 71.4 73.5 71.0

Table 4 displays the experimental results for SQuAD 1.1. Higher performance was
achieved when using the proposed word embeddings.

Table 4. Performance evaluation on SQuAD 1.1 with BiDAF. The performance is compared for
initialization using GloVe or CN-GCN embedding. Bold indicates high performance.

Model EM-Dev (%) F1-Dev (%) EM-Test (%) F1-Test (%)

BiDAF with GloVe 62.0 73.5 65.1 75.3

BiDAF with CN-GCN 63.0 74.2 65.9 75.9

The experimental results for POS and NER are presented in Table 5. In this experiment,
the performance when using only ELMo embeddings and that when concatenating word
embeddings using symbolic graphs were compared. Higher performance was achieved
when embeddings using symbolic information were concatenated and the highest perfor-
mance was exhibited when the proposed word embeddings were used.

Table 5. Performance when initialization was performed with each word embedding in parts-of-
speech (POS) and named entity recognition (NER) tasks. Bold indicates high performance.

Embedding POS NER

ELMo 96.1 90.3

w/ Concat SemGCN embedding 96.2 90.9

w/ Concat CN-GCN embedding 97.0 91.2

5. Conclusions and Future Work

A method for constructing word embeddings using symbolic graphs with two proper-
ties was proposed. Our approach sequentially trains the syntactic and semantic relation-
ships, as well as external knowledge using a GCN. The proposed method outperformed
baseline models in word embedding benchmarks. Moreover, the performance of the model
was improved when using the suggested word embeddings in each model for the extrinsic
tasks. However, the proposed word embeddings still appeared to exhibit OOV problems.
In future work, we will develop a graph representation containing nodes at the subword
level and an efficient graph-based model.
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