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Abstract: Industrial control systems (ICS) are facing increasing cybersecurity issues, leading to
enormous threats and risks to numerous industrial infrastructures. In order to resist such threats
and risks, it is particularly important to scientifically construct security strategies before an attack
occurs. The characteristics of evolutionary algorithms are very suitable for finding optimal strategies.
However, the more common evolutionary algorithms currently used have relatively large limita-
tions in convergence accuracy and convergence speed, such as PSO, DE, GA, etc. Therefore, this
paper proposes a hybrid strategy differential evolution algorithm based on reinforcement learning
and opposition-based learning to construct the optimal security strategy. It greatly improved the
common problems of evolutionary algorithms. This paper first scans the vulnerabilities of the water
distribution system and generates an attack graph. Then, in order to solve the balance problem of
cost and benefit, a cost–benefit-based objective function is constructed. Finally, the optimal security
strategy set is constructed using the algorithm proposed in this paper. Through experiments, it is
found that in the problem of security strategy construction, the algorithm in this paper has obvious
advantages in convergence speed and convergence accuracy compared with some other intelligent
strategy selection algorithms.

Keywords: industrial control systems; optimal protection strategy; reinforcement learning; differential
evolution algorithms; opposition-based learning

1. Introduction

Now with the development of the Industrial Internet, the network attacks on industrial
control systems are more widespread, and the network attacks faced by industrial control
systems are very different from those faced by traditional IT systems. The biggest possible
loss after an attack is information leakage, data tampering, etc., and major dangerous
accidents often do not occur directly, because the most important thing in traditional IT
information systems is the confidentiality of information. Unlike IT systems, cyber attacks
against ICS often lead to serious consequences, such as environmental pollution, equipment
damage, and even casualties. Among the well-known cyber attacks on ICS include the
Iranian “Stuxnet” [1] incident in 2010 and the Ukraine power grid cyber attack [2] in 2015.
Therefore, the network security problem of ICS needs to be urgently solved. Due to the
dynamic nature of ICS systems, the size of the attack surface and the diversity of attack
vectors, addressing the cybersecurity of ICS is a particularly difficult task. New system
vulnerabilities are reported daily, while cybersecurity problems are often not bounded by
physical boundaries, as the source of malicious action can be anywhere in the world. Given
these threats, it is extremely important to have appropriate security strategies in place in
advance [3–5]. Therefore, how to find the best strategy set among many security strategies
has a wide range of application scenarios in industrial control prevention and response.

Evolutionary algorithms have strong scalability and are not limited by the nature of
the problem, and they have great advantages in the field of finding the best security strategy.
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In the aspect of evolutionary algorithm, to find the best security policy set, predecessors
have conducted a lot of related research. Dewri proposed Genetic Algorithm (GA) [6] and
Poolsappasit et al. proposed an optimal security protection strategy selection model based
on a Bayesian attack graph and used a particle swarm algorithm to find the optimal strategy
set [7]. The evolutionary algorithms used above are relatively easy to fall into the local
optimal solution, they are greatly affected by the initial number of sample populations, and
there is a problem in that the convergence speed is not fast enough.

In addition, inspired by the predation behavior of bats, Yang proposed a novel bionic
algorithm—the Bat Algorithm (BA) in 2010 [8]. Due to its simple structure and strong
applicability, BA has been widely used. However, similar to many intelligent algorithms,
BA itself also has problems such as easily falling into local optimum, slow convergence
in later stages, having a single coding scheme, lack of a theoretical basis for parameter
determination. Liu et al. proposed a differential evolution algorithm with a two-stage
optimization mechanism [9]. In the first stage, the search range of the algorithm can be
increased to avoid premature convergence, and the convergence speed can be accelerated
in the second stage. Good results are obtained, but the effect of the size of the initial
population on the algorithm is not fully accounted for.

Dixit et al. proposed an algorithm to improve DE by using PSO [10] and achieved
good results. Among them, a sigmoid function is used to control the mutation strategy,
which is actually very similar to our improvement on CR in this paper, which ensures
population diversity to a certain extent. However, they do not have guidelines for setting
control parameters, and they use the trial and error method to randomly select values.
This can indeed reduce the ability to fall into local optimization, but it will reduce the
convergence speed to a certain extent. Moreover, the NP in the experiment is a fixed value
of 100, which can not guarantee that the performance of the algorithm can still remain
stable in the case of very small samples.

Therefore, in terms of using evolutionary algorithms to select the best strategy, there
is not yet a good and general evolutionary algorithm. With the deepening of the research
on reinforcement learning [11–13] and opposition-based learning [14–16] in recent years,
the method of using opposition-based learning combined with evolutionary algorithm has
appeared [17–19], but it has not been widely applied in practice. There are also examples
of combining reinforcement learning and evolutionary algorithms to solve problems [20].
Huzhenzhen et al. used the differential evolution algorithm improved by reinforcement
learning to extract the parameters of the photovoltaic model [21]. Huynh used rein-
forcement learning to improve the differential evolution algorithm [22]. Five benchmark
examples for minimizing the weight of truss structures are verified, and good results have
been achieved. We draw on the ideas in [21,22] to apply reinforcement learning to the
differential evolution algorithm, and we find that the methods proposed in [21,22] can
complement each other’s shortcomings. So, we make improvements on this basis and form
the prototype of the algorithm in this paper. However, the main function of reinforcement
learning is to improve its convergence speed, and it is not a good solution to the problem of
premature convergence, so we need an algorithm that can improve both the convergence
speed and the convergence accuracy

Therefore, this paper proposes a differential evolution algorithm (RODE) based on
reinforcement learning and opposition-based learning. The modified algorithm can accu-
rately and quickly select the optimal security strategy set. Before using it, we must first
evaluate the security status of ICS. We constructed the Bayesian attack graph [7] of ICS,
calculated the probability of each attribute node being attacked, and obtained the attack
benefit. That is the value at risk. In order to weigh the benefits and costs, we quantify the
attack benefits and protection costs [23,24], and we establish an objective function: mini-
mize the attack benefits and protection costs, and the protection cost should maximize the
allowable protection cost. Finally, security strategy selection is performed by using a hybrid
differential evolution algorithm based on reinforcement learning and opposition-based
learning. We compared the effects of similar algorithms and finally verified the feasibility
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and effectiveness of the method in the real industrial control environment. In summary, the
main contributions of this paper are:

• A differential evolution algorithm based on reinforcement learning and opposition-
based learning is proposed and successfully applied to industrial control strategy
selection.

• Improve the existing enhanced differential evolution algorithm, shorten the conver-
gence speed of the algorithm, and better avoid it falling into the local optimal solution,
which is more suitable for strategy selection.

• Compared with other similar algorithms, it is proved that the differential evolution
algorithm based on reinforcement learning and opposition-based learning proposed
in this paper has more advantages in the field of industrial control strategy selection.

The rest of the paper is organized as follows. Section 2 describes the method architec-
ture for implementing optimal strategy selection. Section 3 describes how to assess the risk
of industrial control systems. Section 4 describes the construction of security measures and
objective functions, and in Section 5, the differential evolution algorithm based on mixed
strategy proposed in this paper is introduced in detail. Section 6 analyzes the experimental
results in detail, and Section 7 is the final summary.

2. Method Architectures

We build a simple framework for the realization of optimal security strategy selection,
which is mainly composed of three steps: namely, risk assessment, constructing an objective
function of attack benefit–protection cost, and optimal security strategy selection. The
risk assessment phase begins by modeling the cyber attack using an attack graph (AG).
Then, the time probability of successful exploitation of each vulnerability in the network is
calculated. After that, the attack graph is converted into a Bayesian attack graph (BAG) to
make it a quantitative model. The attack benefit is calculated according to the information
provided by the BAG, and then, in order to solve the balance problem between the attack
benefit and the protection cost, an objective function based on attack benefit–protection
cost is constructed. Finally, the objective function is minimized by the differential evolution
algorithm based on mixed strategy so as to find the optimal protection strategy set. Figure 1
depicts the main stages of the optimal decision selection framework, and in the following
sections, each step shown in Figure 1 will be explained in detail.

Figure 1. Optimal strategy selection framework for industrial control.
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3. ICS Security Assessment
3.1. Attack Graph

An attack graph (AG) is a tuple AG = (S, Sstar, Send, τ), where:

• S is the set of attribute nodes in the attack graph. Its state is 1 or 0. When S = 1, it
means that the attribute S is broken by the attacker. When S = 0, it means that the
attribute S has not been broken by the attacker.

• Sstar ⊆ S is the starting node of AG. It represents the node occupied by the attacker
when the attack started.

• Send is a set of root nodes in an AG. It represents the final target that the attacker wants
to break, and it can have multiple existences.

• τ ⊆ S× S is a collection of state transitions. Each transition between the two states
represents an exploit that represents a network state change from Spre to Spos.

3.2. The Probability of Attacking Behavior

AGs are effective modeling tools for multi-step attacks and are widely used in network
security risk assessment, but the attack graph itself cannot quantitatively represent the
security and risk level of the network [25]. Therefore, we need to obtain the success rate
of the corresponding vulnerability utilization. The vulnerability availability refers to the
probability that the attacker will succeed in the atomic attack by exploiting the vulnerability.
The vulnerability availability is related to the difficulty of the vulnerability.

This paper uses the combination of CVSS [26] and expert experience to evaluate the
vulnerability availability. CVSS provides three vulnerability assessment indicators, namely
base, temporal, and environment. Each indicator is quantified with a numerical score from
0 to 10. The sub-items of the base attribute include Access Vector (AV), Access Complexity
(AC), and Authentication (AU), and the sub-items of the temporal attribute include the
Exploit Code Maturity (E), the Remediation Level (RL), and the Report Confidence (RC).
The base score describes the intrinsic characteristics of the vulnerability, and the temporal
score describes the characteristics of the vulnerability as a function of temporal stages.
This paper uses base and temporal in CVSS and combines relevant expert experience to
comprehensively evaluate the exploitability of vulnerabilities. Therefore, the probability
obtained in this way is more in line with the actual situation at the time of evaluation.

The exploitability of a vulnerability can be expressed as Equation (1).

Exploitability = 2× AV × AC× AU (1)

where AV is the access vector, AC is the access complexity, and AU is the authentication,
as shown in Table 1.

Table 1. CVSS Score (base metric).

Index Rank Score

Access Vector (AV)
local access 0.55

adjacent network access 0.62
network accessible 0.85

Access Complexity (AC) high 0.44
low 0.77

Authentication (AU)
multiple instances of authentication 0.50

single instance of authentication 0.62
no authentication 0.85
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Since vulnerabilities in different time stages have different properties, we use the
temporal metric of CVSS. These metrics adjust the value of exploitability (Equation (1)).
The final exploitability can be expressed as Equation (2).

PE = (E× RL× RC)× Exploitability (2)

where PE represents the probability of exploiting a vulnerability during risk assessment.
The specific content is shown in Table 2.

Table 2. CVSS Score (temporal metric).

Index Rank Score

Exploit Code Maturity (E)

Unproven (U) 0.91
Proof-of-Conc (POC) 0.94

Functional (F) 0.97
High (H) 1

Remediation Level (RL)

Official (O) 0.95
Temporary Fix (T) 0.96
Workaround (W) 0.97
Unavailable (U) 1

Report Confidence (RC)
Unknown (U) 0.92
Reasonable (R) 0.96
Confirmed (C) 1

3.3. Bayesian Attack Graph

The Bayesian attack graph adds the conditional probability table (CPT) of the node
to the attack graph, which can not only describe the causal relationship of the multi-step
atomic attack of the attack behavior but also calculate the potential various attack paths, as
well as the node and overall risk values, transforming the attack graph from a qualitative
structure to a quantitative structure. The added conditional probability distribution table is
in the form of a table representing the conditional probability distribution of the value of
Pr(Si|Pa[Si]). It reflects the probability of a state node being attacked given its set of parent
nodes, where Si represents the state in the BAG and Pa[Si] represents its parent node. Each
node in the BAG has a corresponding CPT that specifies the probability of compromising
the state of the network given different combinations of states of its parent node.

A Bayesian attack graph is a directed acyclic graph that can be formally defined as a
tuple BAG = (S, E, ε, P) [25], where s represents the set of nodes. The edges of the Bayesian
attack graph are represented by a set of ordered pairs E. A conjunction or disjunction
between edges pointing to a node is represented by ε with possible values {AND, OR}.
P is the conditional probability table of BAG nodes. Define ei as the exploitability that
can transform Si ∈ Pa[Sj] from state Si to Sj, whose value can be given by Equation (2).
The conditional probability distribution function of Sj is Pr(Sj|Pa[Sj]), which is defined
as follows.

3.4. Probability Calculation

If Sj has multiple parents, and the relationship between the incoming edges of node
Sj is AND (ε = AND), it means that all parents of Sj are to be used, and its value can be
expressed by Equation (3).

Pr(sj|Pa[sj]) =

 0, ∃si ∈ Pa[sj], si = 0
∏

Si=1
PE(ei), else (3)
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If the relationship between the input edges to node Sj is OR ( ε = OR), it means that at
least one parent node of Sj is used, and its value can be expressed by Equation (4).

Pr(sj|Pa[sj]) =

 0, ∀si ∈ Pa[sj]|si = 0
1− ∏

Si=1
[1− PE(ei)], else (4)

where PE(ei) is the exploit success probability of the current attribute node.
The prior probability of attribute node Si refers to the probability that attribute node

Si can be reached under static conditions. It is expressed as attribute node Si, and the joint
probability of all attribute nodes in the path to attribute node Si. The prior probability of
attribute node Si can be expressed by Equation (5).

P(Si) =
n

∏
i=1

P(Si|Par(Si)) (5)

4. Constructing the Attack Benefit–Defense Cost Objective Function
4.1. Security Strategy Analysis

A safety strategy (ST) is a set of measures to reduce risk, and the state of STi is defined
as a Boolean variable with possible states of {1, 0}. The True state means that the STi has
been implemented, and the False state means that the STi has not been implemented. The
safety strategy ST is expressed as ST = {STi|i = 1, 2, . . . , n}, where STi = {1, 0}, and
the implementation of each STi also has to pay the corresponding implementation cost
COST(STi). The cost of each STi is a factor that depends on the entire organization [19],
including direct and indirect costs, and it should be determined by an expert on a case-by-
case basis.

Implementing STi against a vulnerability would increase the effort required by an
attacker to exploit the vulnerability, resulting in a decrease in the exploitability of the
vulnerability. The ability of ST to reduce the probability of vulnerability being exploited
is measured by P(STi), and its value can be obtained from relevant security documents
or expert experience. When protective countermeasures are enabled, the exploitability of
the vulnerability is bound to be reduced, and the degree of reduction is denoted by P(STi).
The prior probability of its attribute node will also be reduced; that is, the probability of the
node being attacked by the attacker will be reduced, and the corresponding attack benefit
will also be reduced. There are the following inequalities (6) for this.

P(Si|STi = 0) > P(Si|STi = 1) (6)

Among them, P(Si|STi = 0) represents the probability that the node Si will be suc-
cessfully used when the protection countermeasure is not activated, and P(Si|STi = 1)
represents the probability that the node Si will be successfully used when the protection
countermeasure is activated.

4.2. Cost--Benefit Analysis
4.2.1. Cost Analysis

Implementing a security strategy inevitably incurs protection costs. The cost of protec-
tion is expressed as COST, COST = {COST1, COST2, . . . ., COSTi}, where COSTi represents
the cost of implementing the security Strategy STi. Therefore, the total protection cost
of implementing the security strategy STn = (ST1, ST2, . . . ., STn) can be expressed by
Equation (7).

C(STn) =
n

∑
i=1

STi × COSTi (7)
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4.2.2. Benefit Analysis

The attacker’s attack benefit AG(Sj), which indicates the profit obtained by the attacker
after successfully attacking the attribute node, can be expressed by Equation (8).

AG(Sj) = value× P(Sj) (8)

Among them, value refers to the value of the attacked node Sj, which can be deter-
mined by experts according to its importance and its own asset value, and P(Sj) represents
the prior probability of the attribute node Sj. The attack gains of all attribute nodes can be
expressed by Equation (9).

AGs(STn) =
n

∑
Sj∈S

P(Sj|STj)× AG(Sj) (9)

Among them, STn is the security strategy set, and P(Sj) is the prior probability of the
node after taking the security strategy.

4.3. Building a Cost–Benefit Function

Our goal is to select the most cost-effective strategy set to reduce the risk of attack, so
the main problem is how to balance the benefits and costs of constructing strategies. Since
adopting a security strategy will reduce the attacker’s attack benefit, the risk of the system
being attacked will decrease, and at the same time, the corresponding cost will inevitably
increase. For this reason, the following fitness function is used:

min(αAGs(STn) + β(STn)) (10)

C(STn) < B (11)

Among all strategies, a sub-strategy set is selected to minimize the sum of the attack
benefit and the strategy cost without exceeding the cost budget.

Among them, α and β are the preference weights of the total attack benefit and the
total cost of the security strategy, respectively, 0 ≤ α, β ≤ 1, α + β = 1.

5. Build an Optimal Security Strategy
5.1. Differential Evolution Algorithm

The differential evolution algorithm, as an efficient global optimization algorithm
based on the natural evolution of species, is simple and efficient in practical applications [21].
It evolves a population of Np D-dimensional parameter vectors, mainly through mutation,
crossover, and environmental selection operations. That is, first randomly generate initial
test solutions; then, generate new test solutions through mutation and crossover operations.
Next, determine which test solutions enter the next generation population to become
candidate solutions through selection operations, and then repeat the iterative operations
of mutation, crossover, and selection until all the experimental solutions are selected. The
solution stops when the accuracy of the current solution meets the requirements or when a
certain number of iterations is reached.

1. initialization
Randomly select Np D-dimensional population individuals in the search space as
the initial solution. The random initialization of the i-th individual Xt=0

i is a D-
dimensional vector, which is denoted as Xt=0

i = {X0
i,1, X0

i,2, . . . , X0
i,D}, and it can be

expressed by Equation (12) [22]

Xt=0
i,j = Xmin,j + randi,j[0, 1](Xmax,j − Xmin,j), (12)
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where Xmin,j and Xmax,j are the predetermined lower and upper bounds of the search
space for the j-th design variable, respectively, and randi,j[0, 1] is a random number
generated in [0,1].

2. Mutations
In the individual population Xt

i = {Xt
1, Xt

2, . . . , Xt
Np
}, three individuals are selected

according to the mutation strategy to create a mutation vector Vt
i , and the three

individuals are different from each other. There are several basic evolution strate-
gies [27,28] in DE. The mutation strategy selected in this paper is “DE/best/1/bin”,
and it can be expressed as Equation (13):

Vt
i = Xt

best + F(Xt
r2 − Xt

r3), (13)

where i = 1, 2, . . . Np, r2, r3 are arbitrary and unequal random integers in the set
{1, 2, . . . Np}, and Xt

best is the best individual. F is the scaling factor, which is a positive
control parameter for scaling the difference vector, and it is often selected as 0.8. Then,
we check whether the mutation vector violates the boundary constraint, and the
violated individual returns the corresponding value according to the condition. The
formula can be expressed by Equation (14).

V


2xmin,j − vt

i,j, i f vt
i,j < xmin,j

2xmax,j − vt
i,j, i f vt

i,j > xmax,j

vt
i,j , otherwise

(14)

where vt
i,j is the j-th component of vt

i ; xmin,j and xmax,j are the maximum upper limit
and the minimum lower limit of the search space of the j-dimensional variable, re-
spectively.

3. Crossover
The crossover operation is very similar to the crossover operation of the classical
genetic algorithm, and its purpose is to diversify the individuals of the current popu-
lation. However, the crossover here is different from the crossover operation of the
genetic algorithm. The crossover operation here is for a certain dimension of the entire
population, while the crossover in the genetic algorithm is for each individual in the
population, and the experimental solution generated after the crossover operation is:

ut
i,j =

{
vt

i,j, i f randi,j[0, 1] ≤ Cr ∨ randi(1, D) = j
xt

i,j, otherwise
(15)

4. Selection
The experimental solution produced after cross mutation may not be better than the
initial solution. Therefore, it is necessary to compare the fitness values of the two
objective functions and select individuals with better fitness values as offspring, which
can be expressed as:

xt+1
t =


ut

i , if f (ut
i) ≤ f (xt

i )

xt
i , otherwise

(16)

5.2. Reinforcement Learning and Q-Learning

Reinforcement learning is that the agent learns in the way of “trial and error” [29],
and it interacts with the environment by sending out actions so as to obtain corresponding
rewards or punishments. If you receive rewards, it will encourage you to continue this
action, and if you receive punishments, you will avoid continuing this action. The goal
of reinforcement learning is to let the agent continue to try and learn and finally obtain
the maximum reward. Figure 2 shows the main components of reinforcement learning,
including learning subject, action, environment, state and reward.
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Figure 2. Reinforcement learning description graph.

A very common method in reinforcement learning, Q-learning [30], is a model-free
reinforcement learning algorithm that achieves the maximum cumulative expected value by
telling the agent what action to take under what circumstances. Q-learning is a value-based
learning algorithm that usually uses the Bellman equation [31] for updating. The update
Equation (17) can be expressed as follows:

Qt+1(st, at) = Q(st, at) + α[rt + γ max
a

Q(st+1, a)−Q(st, at)] (17)

Among them, rt is the reward or penalty value returned by the environment after the
agent performs the action, α is the learning rate, γ is the discount factor, and the value
range of the two is [0, 1], and Qt+1(st, at) is the total cumulative reward obtained by the
agent at time t. The learning rate α determines how aggressively the agent reacts after
receiving the reward; the higher the value, the more the Q value in the Q table fluctuates at
each learning stage. So, the value of α should not be fixed; we dynamically adjust the value
of α according to the literature [22] so that the value of α will be set to a higher value in the
early stage of the evolution process, with the iteration—the number of times it increases
and decreases—is linear, because the optimal action strategy will gradually converge as the
iteration progresses. Its adjustment formula is:

α(t) = 1− 0.9
( gen

G

)
(18)

where gen and G are the number of function evaluations used and the maximum number
of function evaluations, respectively.

5.3. Opposition-Based Learning

Since opposition-based learning was proposed, it has been widely used in various
evolutionary algorithms [32] and has been proved to be an effective search method.

At present, there are two main purposes of opposition-based learning. One is to speed
up the convergence speed [33]. The reason is that when solving the problem, the initial
value is often set by random setting or accumulated experience. Therefore, we can try to
obtain a better solution x∗ by introducing the reverse solution of x. If the reverse solution x∗

of x has a better effect, let x∗ replace x and enter the next generation. This will have a nearly
50% higher probability of being closer to the global optimal solution, thus speeding up the
convergence of the optimization algorithm. The second purpose is to jump out of the local
optimal solution. The reason is that when the population evolves to a certain extent, it may
have fallen into the local optimal solution. At this time, taking the reverse solution of the
population has a certain probability of jumping out of the local optimal solution. At present,
most intelligent optimization algorithms combined with opposition-based learning ignore
its second function. This paper integrates the two functions into the proposed algorithm,
and it has achieved very obvious results. The inverse solution can be calculated as follows:

x∗ = a + b− x (19)
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where a is the minimum value and b is the maximum value. Again, this definition can be
extended to higher dimensions with the formula:

x∗j = aj + bj − xj (20)

Suppose f (x) is the fitness function of a given problem, Pi(xi1, xi2, . . . xin) is the i-th
individual of the current population, OPi(x∗i1, x∗i2, . . . , x∗in) is the reverse individual corre-
sponding to Pi; if f (OPi) is better than f (Pi), then OPi is used to replace Pi, and we enter
the next generation of the population.

5.4. Mixed Strategy Differential Evolution Algorithm (RODE)

Differential evolution algorithms have shown excellent performance in terms of final
accuracy, computational speed and robustness when optimizing various objective func-
tions. Canonical DE requires very few control parameters (three to be precise: scale factor,
crossover rate, and population size). According to paper [34], the performance of the
differential evolution algorithm largely depends on the choice of control parameters, such
as scale factor (F) and crossover probability (CR). For this reason, there have been a lot
of discussions and suggestions on the parameter control problem, but the relationship
between parameter control and performance optimization is very complicated, and it has
not been completely solved so far. The main reason is that there is no fixed parameter
that can be applied to various problems or even different evolution stages of a single
problem [21]. Reinforcement learning happens to be model-free; it can continuously adjust
parameter values to adapt to different stages by allowing the agent to keep trial and error,
keep learning and through feedback. Therefore, we will introduce how to combine rein-
forcement learning to choose the scale factor F and the crossover probability CR without
the user setting fixed parameters.

It should be noted that this paper makes some improvements to the problem of indus-
trial control strategy selection through the enhanced differential evolution algorithm in
Reference [21] and Reference [22]. In Reference [21], the enhanced differential evolution
learning is used to extract the parameters of the photovoltaic model, but only the scale
factor (F) is learned, the cross probability (CR) is still a fixed value, and the reward values
are only 1 and 0, which cannot reflect the advantages of actions with greater contribution.
Reference [22] uses the enhanced differential evolution algorithm to verify the weight mini-
mization of five benchmark examples of truss structures, thereby proving the effectiveness
and robustness of the differential evolution algorithm based on reinforcement learning.
In the article, F and CR are listed in the action set at the same time, but the selection
action given is that seven groups contain fixed combinations of F and CR, and the reasons
for the combination are not explained. At the same time, the reward and punishment
strategy is also fixed at 1 and −1. In addition, even if reinforcement learning is introduced,
the differential evolution algorithm has a faster convergence speed and better ability to
jump out of the local optimal solution, but in the face of a small initial population and
insufficient initial sample diversity, its convergence speed and the ability to jump out of the
local optimal solution cannot achieve a very ideal effect, so we introduce opposition-based
learning to solve this problem. The opposition-based learning is first applied to the initial
population, so that the optimization algorithm can approach the optimal solution faster.
This has been proved in the literature [35]. We added opposition-based learning after the
successful crossover of the population individuals, and we set a very low probability to
trigger the effect of oppositional learning. After many experiments, we found that when
the initial population is large and the diversity is rich, setting the probability to 0.1 has the
most obvious effect; when the initial population is small and the population lacks diversity,
setting the probability to 0.2–0.4 has the most obvious effect. Figures 3–5 below show the
hybrid differential evolution algorithm (RODE) and the flow of comparing DE and RLDE.



Appl. Sci. 2022, 12, 9594 11 of 21

Figure 3. DE.

Figure 4. RLDE.

Figure 5. RODE.

The method proposed in this paper improves some of the deficiencies in the above
literature methods so that it can better select industrial control strategies. The specific
details of the algorithm framework are given below.

Parameter Setting in Q-Learning

In Q-learning, actions will affect the income, the state describes whether the individual
mutates successfully, and the reward value reflects the impact of the action. F can be
obtained [21] by the following Equation (21):

F = F + f (21)

Among them, f is the action, and the possible values are −0.1, 0, 0.1. The action
selection strategy adopts the greedy strategy. After choosing action F, mutate to generate
new offspring, and then evaluate the fitness value of the objective function. We use R to
represent reward or punishment. If the fitness value of the offspring is better than that of
its parents, then R > 0, it is a reward; otherwise, R < 0, and it is a punishment. The value of
R is obtained by the following formula (22).

Rt = f (xt
i )− f (ut

i) (22)

Among them, f (ut
i) is the fitness value of the mutant individual i of the t generation;

f (xt
i ) is the fitness value of the parents of the mutant i of the t generation.

In the algorithm of this paper, the state setting refers to reference [21], where state =
{1, 2}. In order to increase the individual diversity of the population, we make the initial
state and F of each individual randomly assigned. If the solution of the offspring is worse
than that of the parent during the evolution, it indicates that the selected action plays a
positive role, and the state changes to 2; if the solution of the child is not as good as that of
the parent, it means that the selected action plays a negative role, and the state changes to
1. Since the state and F of each individual are different, each individual has a Q table to
update independently, and updating the Q table independently for each individual does
not increase the time complexity of the algorithm. The Q table created in this paper is
shown in Table 3 below.

Table 3. Q-table for a single individual.

State A1 A2 A3

1 Q(s1, a1) Q(s1, a2) Q(s1, a3)
2 Q(s2, a1) Q(s2, a2) Q(s2, a3)
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5.5. Setting of Parameter CR

For CR, considering that if we continue to use Q−learning to select it, the overall
algorithm complexity will be too high, and the Q table will be too complicated. Therefore,
we propose a formula to adjust it dynamically. In the initial stage, the CR should be at a
high probability, and crossover operations are encouraged to better increase the diversity
of the population. With the increase of the number of iterations, the CR should gradually
decrease, because the strategy at this time has gradually converged to the optimal; our
proposed formula is as follows.

CR = 0.9− 0.5
( gen

G

)
(23)

5.6. Framework of RODE

Algorithm 1 gives the framework of the mixed strategy-based differential evolution
algorithm (RODE).

Algorithm 1 The pseudo of RODE

Input: population N, maximum number of iterations G
Output: optimal protection strategy

1: Initialize the population randomly, actions, states, Q table and other parameters;
2: Opposition-based learning: Find the reverse solution for the initial population
3: Calculate the initial population objective function
4: for gen < G− 1 do
5: for e = 1:Np do
6: choose action, calculate F;
7: Mutation: DE/best/1
8: Vt

i = Xt
best + F(Xt

r2 − Xt
r3)

9: Crossover:
10: r = randi([1, D], 1, 1)
11: for n = 1→ D do
12: cr = rand
13: CR(e) = 0.9− 0.5 ∗ (gen/G);
14: if (cr <= CR(e)||(n == r)) then
15: u(e, n) = v(e, n)
16: else
17: u(e, n) = x(e, n);
18: end if
19: end for
20: Selection:
21: Compute objective function of NP new candidates ue
22: Calculate Reward
23: if f (ue) ≤ f (xe) then State = 2
24: Opposition-based learning:
25: if cr < {0.1, 0.2, 0.3, 0.4} then u(e) = a + b− u(e)
26: x(e) = u(e)
27: else
28: x(e) = u(e)
29: end if
30: else
31: State = 1
32: end if
33: update Q-table
34: end for
35: end for
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6. Experiment and Discussion
6.1. Experimental Scene

The experimental scene in this paper is a water distribution system, in which there are
three PLCs, which correspond to the water pump, pipeline and water tanker in the virtual
system, which simulates the real industrial control system, as shown in Figure 6.

Figure 6. Experimental scene.

6.2. Generating a Bayesian Attack Graph

We use Nessuss [36] to scan the vulnerabilities of the water distribution system, and
according to the scores in Table 1, Formula (2) is used to calculate the successful probability
of exploiting each vulnerability. Then, the network configuration and network connectivity
information of the vulnerability are input into the input.P file of the MulVAL tool, and
finally, the attack graph is obtained. The visualization of the attack graph is as shown in
Figure 7.

Figure 7. Attack Graph.
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6.3. Attack Benefits and Protection Costs

The prior probability of attacking all nodes in the graph and the cost of the security
strategy can be shown in Table 4 and Appendix A Table A1.

Table 4. Prior Probability.

Attribute
Notes

Priori
Probability

Attribute
Notes

Priori
Probability

Attribute
Notes

Priori
Probability

S1 0.5000 S2 0.1811 S3 0.5000
S4 1.0000 S5 1.0000 S6 1.0000
S7 0.3967 S8 0.5100 S9 1.0000
S10 1.0000 S11 1.0000 S12 1.0000
S13 1.0000 S14 0.3890 S15 0.5297
S16 1.0000 S17 1.0000 S18 1.0000
S19 1.0000 S20 1.0000 S21 1.0000
S22 1.0000 S23 1.0000 S24 0.0801
S25 1.0000 S26 1.0000 S27 1.0000
S28 0.0800 S29 1.0000 S30 1.0000
S31 1.0000 S32 1.0000 S33 1.0000
S34 0.0336

6.4. Result Analysis

In this paper, we set the fitness function α to 0.5, which means that the attack benefit
and protection cost are equally weighted. Cost B is set to have no upper limit. The strategy
set selected by the evolutionary algorithm is used as the input of the fitness function, and
the fitness value is obtained.

In order to prove the effectiveness of the proposed algorithm, we compare four other
evolutionary algorithms of the same type. They are differential evolution algorithm (DE),
particle swarm algorithm (PSO) [37], particle swarm algorithm based on reinforcement
learning (RLPSO) [38], differential evolution algorithm based on reinforcement learning
(RLDE) improved in this paper, and differential evolution algorithm based on mixed
strategy proposed (RODE) in this paper. The relevant parameters of its setting are shown
in Table 5. We uniformly set the initial population number of these five algorithms to 200
or 20, and we set the number of iterations to 20 uniformly.

Figure 8 shows the experimental results when the initial population is 200. It can be
seen that when the initial population is relatively sufficient, most of the algorithms have
achieved good results, among which DE, RLDE and RODE converge to the optimal solution
of 459.4463. RLPSO and PSO converge to 532.6584 and 478.0463, respectively. When the
initial population is 200, although DE, RODE, and RLDE converge to the optimal solution,
the convergence speed of RODE and RLDE is obviously better than that of DE.

Table 5. Parameter settings of investigated algorithms.

Algorithm Parameter Settings Value

PSO
w 0.9
c1 0.5
c2 2.5

RLPSO α 0.9
γ 0.1

DE F 0.8
CR 0.6

RLDE γ 0.8

RODE γ 0.8
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Figure 8. Experimental comparison with an initial population of 200.

Figure 9 shows the experimental results when the initial population number is 20. It
can be seen that when the initial population size is particularly small, that is, when the
population diversity is not rich, the performance of the algorithm is inhibited to a certain
extent. Among them, the effects of PSO, DE, RLPSO and RLDE are not as good as those
of the first experiment, and relative to the first experiment, RLDE and DE failed to jump
out of the local optimal solution even in the case of 100 iterations in this experiment. In the
thirtieth generation, RODE jumped out of the local optimal solution and still converged to
the optimal solution 459.4463, which is the same as the experimental result of the initial
population number of 200.

Figure 9. Experimental comparison with an initial population of 20.
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In order to further prove the good robustness of the RODE algorithm, we conducted
the second type of experiments. This experiment is based on the initial population size of
200 and 10, and we let each algorithm run 100 times. Our main purpose is to observe the
convergence speed and convergence accuracy of various algorithms under different initial
population sizes.

The experimental results when the initial population size is 200 are shown in Figure 10.
Among them, PSO falls into the local optimal solution 91 times, DE falls into the local
optimal solution zero times, RLPSO falls into the local optimal solution 76 times, RLDE falls
into the local optimal solution four times, and RODE falls into the local optimal solution
zero times. Although neither DE nor the RODE algorithm has fallen into local optimization,
it is obvious that RODE has converged near the optimal solution in the second generation,
and its convergence speed is significantly faster than that of DE. At the same time, it can be
seen that the convergence speed of the algorithm that introduced reinforcement learning
has been significantly improved.

(a) DE (b) PSO (c) RLDE

(d) RLPSO (e) RODE

Figure 10. Algorithm convergence test when the initial population size is 200. (a) DE algorithm
runs 100 times. (b) PSO algorithm runs 100 times. (c) RLDE algorithm runs 100 times. (d) RLPSO
algorithm runs 100 times. (e) RODE algorithm runs 100 times.

The experimental results when the initial population size is 10 are shown in Figure 11.
When the initial population size is 10, PSO falls into the local optimal solution 100

times, DE falls into the local optimal solution 75 times, RLPSO falls into the local optimal
solution 99 times, and RLDE falls into the local optimal solution 99 times. There are 16
times the RODE becomes stuck in a local optimal solution. For this reason, we can see
that when the initial population size is only 10, except for the RODE algorithm that intro-
duces opposition-based learning, the convergence accuracy of the remaining algorithms is
extremely poor. The comparison results of RODE and other algorithms are shown in the
following Table 6.
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(a) DE (b) PSO (c) RLDE

(d) RLPSO (e) RODE

Figure 11. Algorithm convergence test when the initial population size is 10. (a) DE algorithm runs
100 times. (b) PSO algorithm runs 100 times. (c) RLDE algorithm runs 100 times. (d) RLPSO algorithm
runs 100 times. (e) RODE algorithm runs 100 times.

Table 6. The number of times each algorithm falls into the local optimal solution.

Algorithm 200 10

PSO 91 100

RLPSO 76 99

DE 0 75

RLDE 4 99

RODE 0 16

Through the comparison of two experiments, we can find that when the initial popula-
tion size is large, the convergence accuracy of the algorithm is high, and the convergence
speed of the algorithm incorporating reinforcement learning is significantly improved.
When the population size is very small, the convergence performance of DE, PSO, RLPSO
and RLDE algorithms becomes particularly poor, and it is difficult for them to jump out of
the local optimal solution effectively under the condition of 100 iterations. However, RODE
can still maintain a high convergence accuracy. This is because after the introduction of
opposition-based learning, there is a high probability of jumping out of the local optimal
solution in subsequent iterations, which is not available in other algorithms.

Therefore, the experimental results can prove that the RODE algorithm in this paper
can largely resist the influence of the initial population, has strong robustness, and can
quickly and accurately find the optimal strategy set. The disadvantage of this method is
that it can only passively prevent attacks [39,40] in advance. If faced with frequent and
changeable attack methods, the effect will be greatly discounted. For this reason, the main
direction in the future is to study how to apply RODE to dynamic protection [41].
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6.5. Discussion

As we all know, in view of the characteristics of industrial control security defense, the
accuracy and speed of the selection strategy are particularly critical, which requires that
the selected evolutionary algorithm not only solve the problem of convergence accuracy
but also solve the problem of convergence speed, and consider the impact of population
size. However, the previous evolutionary algorithms seem to focus on solving one of the
problems, and they do not consider the effect of population size, because their tests are
all carried out under the premise that the population size remains unchanged [7], while
RODE considers the effect of population size. At the same time, reinforcement learning
and opposition-based learning are also used to solve the problems of convergence speed
and convergence accuracy, respectively. Furthermore, we verify the effectiveness of RODE
at different population sizes through the above two sets of experiments.

Last but not least, in the second experiment, comparing RLDE and RODE in Figure 10,
that is, when the population is 200, the performance of RODE and RLDE is almost the
same, indicating that RODE has played a role in reinforcement learning. Comparing RLDE
and RODE in Figure 11, that is, when the population is 10, the effect of RODE is much
higher than that of RODE, because RODE has the effect of opposition-based learning at
this time. So, we have reason to believe that RODE greatly improves the performance
of the DE algorithm, and our method also provides a good idea for improving other
evolutionary algorithms.

7. Conclusions

The scientific deployment of security strategies is the key to reducing the risk of ICS
being attacked. In this paper, a differential evolution algorithm based on reinforcement
learning and opposition-based learning is proposed to obtain the optimal security strategy
by combining fitness functions. First, a Bayesian attack graph is used to model the potential
attack paths of the industrial control system. Then, we calculate the attack benefit of each
node and the cost of implementing the security strategy, and we build a fitness function
based on the attack benefit and security cost. The fitness function can effectively evaluate
the value of the selected solution. Finally, the RODE algorithm is used to select the security
strategy scheme. The RODE algorithm is suitable for populations of various sizes. When
the population size is large enough, the reinforcement learning in RODE can speed up
the convergence rate; when the population size is relatively small, the opposition-based
learning in RODE can increase the diversity of the population, thereby improving the ability
to jump out of the local optimal solution and avoid the situation of premature convergence.
A simplified water distribution system is used to validate the RODE algorithm. The
experimental results show that the algorithm has better robustness than other algorithms
of the same type, and it can find the optimal security strategy accurately and quickly. At
present, our research is suitable for policy construction before the attack to minimize the
loss of the attack, but it still has great shortcomings in dealing with the dynamic attack
problem. To this end, in the future, we work on combining the RODE algorithm with policy
selection in the face of dynamic attacks.
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Appendix A

Table A1. Detailed parameters of protective strategies.

Protective Strategies Protective Action Cost P(STi)

ST1 Disconnect 192.168.0.1-192.168.0.10 20 0.25
ST2 Disconnect Disconnect 192.168.0.2-192.168.0.10 20 0.25
ST3 Disconnect Internet 192.168.0.10 30 0.30
ST4 Disconnect Internet 192.168.0.2 30 0.30
ST5 Disconnect Internet 70 0.40
ST6 Disable Internet 60 0.35
ST7 Disable Internet direct network access 55 0.32
ST8 Disconnect Internet 192.168.0.1 30 0.30
ST9 Disable multi-hop access 192.168.0.10 25 0.20
ST10 Disable udp 90 0.60
ST11 Disable direct network access 192.168.0.10 35 0.33
ST12 Disable direct network access 192.168.0.2 30 0.30
ST13 Disable direct network access 192.168.0.1 30 0.30
ST14 Disable netAccess 192.168.0.10 31 0.40
ST15 Disable networkService 192.168.0.10 31 0.40
ST16 Patch CVE-1999-0517 192.168.0.10 80 0.75
ST17 Disable service programs 18 0.20
ST18 Disconnect 192.168.0.10-192.168.0.1 20 0.25
ST19 Disable execCode 192.168.0.10 18 0.20
ST20 Disconnect 192.168.0.10 20 0.30
ST21 Disconnect 192.168.0.10-192.168.0.2 38 0.40
ST22 Disconnect 192.168.0.1-192.168.0.2 38 0.40
ST23 Disable multi-hop access 192.168.0.1 26 0.35
ST24 Disable multi-hop access 192.168.0.2 26 0.35
ST25 Disable netAccess 192.168.0.2 20 0.30
ST26 Disable netAccess 35 0.45
ST27 Disable networkService 192.168.0.2 38 0.40
ST28 Patch CVE-1999-0517 192.168.0.2 110 0.75
ST29 Disable execCode 192.168.0.2 60 0.55
ST30 Disable multi-hop access 10 0.20
ST31 Disconnect 192.168.0.2-192.168.0.1 90 0.38
ST32 Disable netAccess 192.168.0.1 80 0.36
ST33 Disable service program 192.168.0.1 80 0.36
ST34 Disable networkService 192.168.0.1 190 0.48
ST35 Patch CVE-1999-0517 192.168.0.1 200 0.70
ST36 Install ids 300 0.60
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