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Abstract: Automated driving systems have become a potential approach to mitigating collisions,
emissions, and human errors in mixed-traffic environments. This study proposes the use of a deep
reinforcement learning method to verify the effects of comprehensive automated vehicle movements
at a non-signalized intersection according to training policy and measures of effectiveness. This
method integrates multilayer perceptron and partially observable Markov decision process algorithms
to generate a proper decision-making algorithm for automated vehicles. This study also evaluates
the efficiency of proximal policy optimization hyperparameters for the performance of the training
process. Firstly, we set initial parameters and create simulation scenarios. Secondly, the SUMO
simulator executes and exports observations. Thirdly, the Flow tool transfers these observations
into the states of reinforcement learning agents. Next, the multilayer perceptron algorithm trains
the input data and updates policies to generate the proper actions. Finally, this training checks
the termination and iteration process. These proposed experiments not only increase the speeds
of vehicles but also decrease the emissions at a higher market penetration rate and a lower traffic
volume. We demonstrate that the fully autonomous condition increased the average speed 1.49 times
compared to the entirely human-driven experiment.

Keywords: automated driving; comprehensive maneuvers; deep reinforcement learning

1. Introduction

Traffic collisions have a considerable effect on human health and the economy. Ac-
cording to the World Health Organization, 50 million people were injured and 1.5 million
died in 2018 due to transport-related incidents [1]. A total of 51.1% of transport deaths
were related to urban areas and 49.8% of collisions occurred in intersections, according
to the road safety report of Korea in 2019 [2]. Intersections have complex safety implica-
tions, with numerous complicated trajectories—namely left turns, right turns, lane changes,
stop controls, and yield controls. These intersections consist of signalized junctions and
non-signalized junctions. In particular, non-signalized intersections involve more complex
interactions and have higher collision rates. Furthermore, the rules of junctions are usually
broken by a few aggressive human drivers. Hence, traffic safety at non-signalized inter-
sections is an important component of urban traffic safety. Furthermore, comprehensive
maneuvers need to be considered in order for the model to approximate reality. However,
in this study, we limited our focus to going straight and left turns for a non-signalized
intersection. More importantly, 94% of traffic collisions were mainly caused by human
factors, according to data from the National Highway Traffic Safety Administration [3]. To
address this issue, automated vehicles (AVs), which can maneuver without or with less
human input using fusion sensors (e.g., LIDAR, radar, cameras, etc.), seem to be an effective
means to improve traffic flow and mitigate human driver error [4]. The automated driving
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(AD) field has seen breakthroughs due to the development of deep learning and studies on
vehicle dynamics [5], as well as due to new sensor technologies, such as LIDAR [6].

The goal of micro-simulation is to represent the behaviors of vehicles regarding car-
following and lane-change behaviors. Additionally, car-following models, which are a
basic component of micro-simulations, can be used to describe driver behaviors under
vehicle platooning. They show the behavior of following vehicles according to that of
leading vehicles. The main purpose of car-following models is to generate the desired
velocity and acceleration based on longitudinal components. Mathew and Ravishankar [7]
implemented a car-following behavior model under a mixed-traffic environment according
to longitudinal behavior. In particular, adaptive cruise control (ACC) was originally a
car-following model that described the relative longitudinal distance between vehicles.
The ACC model was also introduced to the advantage driver assistance system (ADAS)
embedded into a Tesla autopilot vehicle in 2014. Rajamani and Zhu [8] implemented the
ACC model for a semi-automated vehicle according to leading vehicles in the same lane.
In addition, David [9] introduced a cooperative ACC system related to leading vehicles
in the same lane as well as in different lanes. Nevertheless, they relied upon maintaining
a constant distance. In order to address this issue, the intelligent driver model (IDM)
suggested by Treiber and Kesting [10] has real parameters. Moreover, IDM was also used
for a BMW autopilot feature.

In addition, AD obtained a higher performance with the development of the deep
learning field. In particular, the challenge of AD is how to train and validate AVs in a real-
world situation. To address these problems, simulation has become a positive approach as
a digital twin. For example, VISSIM was used to model connected and automated vehicles
(CAVs) to investigate their safety [11]. Nevertheless, VISSIM focused on parameter settings.
Additionally, Wymann et al. [12] implemented the open racing car simulator (TORCS)
through an application programming interface (API). The car learning to act (CARLA),
which supported imitation learning and reinforcement learning (RL), was applied for
training and evaluating AD [13]. A simulation of urban mobility (SUMO), which is an
open-source simulator, can model various scenarios for a large area [14]. The recently
developed Flow tool is an open-source framework that connects a simulation environment
(e.g., SUMO, AIMSUM) and an RL library. The Flow tool was implemented for the AD in a
mixed-traffic environment [15]. Thus, the fusion of SUMO and Flow represents an effective
means to improve the AD domain.

Importantly, many recent innovations in artificial intelligence (AI) have tried to en-
hance the development of the AD domain. For instance, the long short-term memory
(LSTM) algorithm was applied to improve the navigation of AVs [16]. Moreover, the RL
algorithm obtained an effective performance in improving complex policies in the AD field
under an uncertain environment. The RL algorithm differs from unsupervised learning and
supervised learning by optimizing the reward from the observation and state. The Markov
decision process (MDP), which was suggested by Bellman [17], formalized sequential
decision making for AD. Hubmann et al. [18] used the multi-agent MDP in a mixed-traffic
environment. However, the MDP paradigm is well-suited for full observation. For imple-
menting AVs under dynamic conditions, the partially observable Markov decision process
(POMDP) is a partial MDP observation [19]. This forecasts the surrounding participants for
AD under mixed-traffic conditions. More recently, breakthroughs in deep neural networks
(DNNs) have allowed us to enhance extraction features using multiple hidden layers. Based
on this development, deep reinforcement learning (DRL), which integrates DNN and RL,
can achieve effective decision making in dynamic environments. For instance, Tan et al. [20]
used the DRL method for adaptive traffic signal control. Gu et al. [21] implemented the
Double Deep Q-Network (DDQN) to achieve a better traffic signal policy. Therefore, it is
necessary to study the AD in a mixed-traffic environment using the DRL method.

Regarding comprehensive movement applications at non-signalized intersections, Shu
et al. [22] suggested the critical turning point method, which integrates a high-level candi-
date path generator through the POMDP algorithm. They considered incoming vehicle
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trajectories, such as right turns, left turns, and going straight ahead. Liu et al. [23] suggested
the DRL method for left-turn movements at a non-signalized intersection. They compared
deep Q-learning (DQL) and double DQL based on the right-of-way rule. These results
showed an improvement in the decision-making strategy, collision rate, and efficiency of
traffic. Tran and Bae [24] proposed the use of a hybrid method that integrated POMDP
and responsibility-sensitive safety algorithms. This method was applied to evaluate the
efficiency of one automated vehicle (AV) turning left at a non-signalized intersection. Our
results showed an improvement in the time performance and smoothing performance
indices. However, the scenarios were simple with only one AV.

As for hyperparameter turning studies, Tran and Bae [25,26] applied a DRL to evaluate
the efficiency of using AVs at a non-signalized intersection and in an urban network. We
also suggested a set of proximal policy optimization (PPO) hyperparameters to improve the
performance of DRL training. In particular, PPO with the adaptive Kullback–Leibler (KL)
penalty was used for a non-signalized intersection, and clipped PPO was applied for an
urban network. Our results presented improvements in the DRL training policy, smoothing
velocity, mobility, and energy. Nevertheless, we only focused on the effectiveness of vehicles
going straight ahead.

In this work, we concentrate on the efficiency of comprehensive AD maneuvers
(e.g., go straight ahead and left turn) at a non-signalized junction over different market
penetration rates (MPRs) and real traffic volumes. Firstly, we set initial parameters and
created the left-turn simulation scenarios. Secondly, the SUMO simulator ran and exported
the observations. Thirdly, the Flow tool transferred these observations into the states of the
reinforcement learning agents. Next, the multilayer perceptron (MLP) algorithm trained the
input data and the PPO paradigm updated policies to generate the proper actions. Finally,
the DRL training checked the termination and iterated the process. The main contributions
of this work are as follows:

• Considering the efficiency of comprehensive AD maneuvers (e.g., going straight
ahead and left turn) at a non-signalized intersection over different MPRs and real
traffic volumes by adopting the DRL method;

• Evaluating the performance of the set of clipped PPO hyperparameters in the context
of comprehensive AD maneuvers for a non-signalized intersection;

• The meaningful development of traffic quality at a non-signalized intersection with a
higher market penetration rate (MPR) and a lower traffic volume.

This paper is structured as follows: the car-following model, reinforcement learn-
ing algorithm, and proposed method architecture are presented in the following section.
Section 3 refers to the hyperparameter setting and evaluation indicators. Then, Section 4
contains the experiments and results. Finally, the discussions and conclusions are shown in
Section 5.

2. Methods
2.1. Car-Following Model

The car-following model, which is also called the time-continuous model, can simulate
the behavior of a driver following a leading vehicle. Another form of car-following model
is safety distance or collision avoidance. This means that the driver tries to maintain
a safe distance from the leading vehicle to avoid collisions. The car-following model
was determined by an ordinary differential equation that showed the position dynamics
as follows:

..
xa(t) =

.
va(t)= F(va(t), sa(t), va−1(t)), (1)

where sa refers to the bumper-to-bumper distance to the leading vehicle, va is a host vehicle’s
actual speed, and va−1 refers to the leading vehicle’s speed.

To deal with realistic driving interactions, we applied the IDM paradigm to this
traffic simulation, considering the longitudinal dynamic for the behavior of human-driven
vehicles (HVs) [27]. In this work, the velocity, headway, and identification of the leading
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vehicle were obtained by the “get” function in the SUMO simulator. The command of
acceleration (aIDM) was determined as follows:

aIDM= a

[
1 −

(
v
v0

)δ

−
(

s∗(v, ∆v)
s

)2
]

, (2)

where v refers to the actual velocity, v0 is the desired velocity, δ is the acceleration exponent,
s* is the desired headway, and s is the actual headway. In addition, the formula for desired
headway is expressed as follows:

s∗(v, ∆v)= s0+max
(

0, vT +
v∆v

2
√

ab

)
, (3)

where s0 refers to the minimum headway, T is the time headway, ∆v is the different velocity,
a is the acceleration term, and b is the comfortable deceleration.

In this study, the typical parameters for IDM were taken from Treiber and Kesting [10]
and are shown in Table 1.

Table 1. The typical parameters for the IDM algorithm at a non-signalized intersection.

Parameters Value

Desired velocity 15 m/s
Time headway 1.0 s
Minimum headway 2.0 m
Acceleration exponent 4.0
Acceleration 1.0 m/s2

Comfortable acceleration 1.5 m/s2

Desired velocity 15 m/s

2.2. Reinforcement Learning Algorithm

RL is one of main types of machine learning and associates automated agents with
their surrounding environment to maximize the reward. The goal of the RL algorithm
is to carry out appropriate decision making. To deal with uncertain conditions for AVs,
the POMDP paradigm enables us to carry out appropriate decision making in an updated
belief state. The major components of the POMDP algorithm consist of a set of belief states
(B), actions (A), transition functions of states (T), rewards (R), sets of observations (Z), and
probability functions of observations. Note that the belief states must be updated after
implementing the action and obtaining the observation over time. The POMDP paradigm
refers as a tuple (B, A, T, R, Z, O). The expected return relied on the Monte Carlo algorithm,
as follows [18]:

Q(b, a) ≈ R(b, a)+γ ∑oεO τ(b, a, o) V∗(τ(b, a, o)), (4)

π(b) := argmaxaQ(b, a), (5)

where π(b) refers to the optimal policy, γ refers to the discount factor that ranges from 0 to
1, V* is the optimal value function according to the Bellman equation, τ is the transition
function of the belief state, and argmax presents the optimal long-term return.

2.3. Proposed Method Architecture

More recently, the DNN algorithm enables automatic feature extraction through
multiple layers. This means that different hidden layers can show different transformations
according to their input. For instance, the artificial neural network (ANN) was designed
to obtain a reliable performance from more data. The ANN paradigm tries to achieve the
desired output through the input data. In this study, the MLP was designed to generate a
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set of acceleration policies related to updated states converted from the SUMO simulator
over time. The MLP method was suggested by Rumelhart et al. [28].

Additionally, the backpropagation process was also used to optimize the policy
through the PPO algorithm. The PPO algorithm relies upon policy gradient methods
to estimate the parameterized policy function to improve the convergence under nonlinear
functions. The policy gradient is expressed as follows:

g = E[∇θ logπθ(at|s t)Aπ,γ(at|s t)], (6)

where E[.] refers to the expectation operator, πθ refers to the stochastic policy, logπθ refers
to the probabilities of the stochastic policy, and Aπ,γ refers to the advantage function.

The PPO algorithm, which was supported by the Flow tool through the RLlib library,
ensures that the new policy is not too dissimilar from the old policy [29]. The surrogate
loss function is applied to update the policy using the Gaussian distribution. The PPO
paradigm consists of clipped PPO and the adaptive KL penalty. In this study, the clipped
PPO, which performs well under complicated conditions, was implemented to obtain a
new objective function through stochastic gradient descent (SGD).

LCLIP
θk

= E
[
∑T

t=0

[
min(rt(θ))Aπk

t , clip(rt(θ), 1 − ε, 1 + ε)Aπk
t
]]

, (7)

where θ refers to the policy parameter and ε refers to the clipping threshold. This algorithm
considers the probability ratio between the new policy and the old policy. When this ratio
is outside the variation between (1 − ε) and (1 + ε), the advantage function will be cut.

Through the integration of the RL and MLP algorithms, the DRL method was applied
to verify the efficiency of comprehensive AD maneuvers at a non-signalized intersection
with different MPRs and real traffic volumes. This study focused on a closed-loop online
optimization through a simulation environment (SUMO), the Flow tool, and DRL agents.
Figure 1 expresses the research proposal flow. The DRL algorithm attempts to maximize
the expected cumulative discounted reward, which is defined as follows:

θ∗ := argmaxθη(π0), (8)

where η(π0) expresses the expected cumulative discounted reward, defined as follows:

η(π0) = ∑T
i=0 γiri, (9)

where γi expresses the discount factor and ri expresses the reward.
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Figure 1. The research proposal flow architecture.

The SUMO simulator, which is an open-source microscopic simulation, uses a traffic
control interface (TraCI) to enable the DRL method through Python programming. Figure 2
expresses a typical simulation in SUMO.

In addition, the Flow tool, which was suggested by UC Berkeley, is a bridge between
the simulation environment and DRL agents. The advantage of the Flow tool is that it is easy
to implement across various types of roads. This process explores the important features of
state information to generate the optimal acceleration policy. The training process includes
six major parts: initial setting, state, action, observation, reward, and termination.
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Figure 2. A typical simulation in SUMO.

2.3.1. Initial Setting

There are various factors in the initial setting, such as beginning points, acceleration,
velocity, trajectories, traffic volume, IDM parameters, and PPO hyperparameters. In this
study, the SUMO simulator defines the nodes, edges, and routes. Then, the Flow tool
controls the acceleration policy of HVs. In addition, the RLlib library governs acceleration
decision making of AVs.

2.3.2. State

The state represents the information of AVs and neighborhood vehicles—namely, AVs’
positions, AVs’ speeds, and the headways and speeds of leading and following vehicles. In
this study, the entire identification of vehicles was obtained by the get_state function. Then,
the positions and speeds of all vehicles were generated for the updated states. The states
are defined as follows:

S =



x0
v0
dl
vl
d f
v f

, (10)

where x0 defines the coordinate of AVs, v0 defines the speeds of AVs, dl defines the bumper-
to-bumper headways of leading vehicles, vl defines the speeds of leading vehicles, df
defines the bumper-to-bumper headways of following vehicles, and vf defines the speeds
of following vehicles.

2.3.3. Action

The openAI gym, which ranges from minimum acceleration to maximum accelera-
tion, controls the acceleration actions. This means that the decision making supports the
acceleration actions of AVs under a mixed-traffic environment. In this work, the actual
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action is transferred from the specific acceleration command through the apply_RL_actions
function.

2.3.4. Observation

After executing the actions, the process collects the information of AVs and neigh-
borhood vehicles—namely, AVs’ positions, AVs’ speeds, and the speeds of leading and
following vehicles. Then, the updated state, which is the input of MLP training, is generated
from these observations. Figure 3 shows a typical observation [25].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 16 
 

where x0 defines the coordinate of AVs, v0 defines the speeds of AVs, dl defines the 

bumper-to-bumper headways of leading vehicles, vl defines the speeds of leading vehi-

cles, df defines the bumper-to-bumper headways of following vehicles, and vf defines the 

speeds of following vehicles. 

2.3.3. Action 

The openAI gym, which ranges from minimum acceleration to maximum accelera-

tion, controls the acceleration actions. This means that the decision making supports the 

acceleration actions of AVs under a mixed-traffic environment. In this work, the actual 

action is transferred from the specific acceleration command through the apply_RL_ac-

tions function. 

2.3.4. Observation 

After executing the actions, the process collects the information of AVs and neigh-

borhood vehicles—namely, AVs’ positions, AVs’ speeds, and the speeds of leading and 

following vehicles. Then, the updated state, which is the input of MLP training, is gener-

ated from these observations. Figure 3 shows a typical observation [25]. 

 

Figure 3. A typical observation. 

2.3.5. Reward 

The reward is the most critical coefficient used to optimize the DRL training. The 

average speed is an essential metric for training and evaluating the performance of the 

AD in real conditions. In this study, we tried to achieve a higher average speed and punish 

traffic collisions. The L2 norm, which estimates the vector’s length in Euclidean space, was 

implemented to measure the positive distance regarding desired speed. Additionally, the 

average speed was transferred from the current speed through the get_speed function. 

The reward is defined as follows [15]: 

rt ∶=  max (‖vdes∙l
k‖

2
 - ‖vdes - v‖2,0) /‖vdes∙l

k‖
2
 (11) 

where vdes defines the arbitrary desired speed and v ∈ Rk defines the speeds of all vehicles 

at a non-signalized intersection. 

2.3.6. Termination 

The rollout termination is finally over when the training iteration is finished or a col-

lision has occurred. 

Figure 3. A typical observation.

2.3.5. Reward

The reward is the most critical coefficient used to optimize the DRL training. The
average speed is an essential metric for training and evaluating the performance of the AD
in real conditions. In this study, we tried to achieve a higher average speed and punish
traffic collisions. The L2 norm, which estimates the vector’s length in Euclidean space, was
implemented to measure the positive distance regarding desired speed. Additionally, the
average speed was transferred from the current speed through the get_speed function. The
reward is defined as follows [15]:

rt : = max
(
‖vdes lk‖2 − ‖vdes − v‖2, 0

)
/‖vdes lk‖2 (11)

where vdes defines the arbitrary desired speed and v ∈ Rk defines the speeds of all vehicles
at a non-signalized intersection.

2.3.6. Termination

The rollout termination is finally over when the training iteration is finished or a
collision has occurred.

3. Hyperparameter Setting and Evaluation Indicators
3.1. Hyperparameter Setting

We applied a set of PPO hyperparameters to enhance the performance of the DRL
method. Hyperparameter turning plays a critical role in obtaining a perfect simulation
training architecture. Nevertheless, there is no specific rule to generate the best hyper-
parameter. To solve this problem, the trial-and-error method is the most reliable in the
context of a specific scenario. In this work, we evaluated the effects of the clipped PPO
hyperparameters that were used for an urban network [26]. For instance, the time horizon
is 6000. The number of hidden layers significantly affects the accuracy and training time.
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Many neurons in the hidden layers lead to overfitting and increase the training time. The
term “256 × 256 × 256” defines setting three hidden layers with 256 neurons per hidden
layer. The GAE lambda defines the smoothing rate used to maintain stable training. The
clip parameter ranges from 0.1 to 0.3. The number of SGD iterations defines the epochs per
training round. A set of clipped PPO hyperparameters for a non-signalized intersection is
presented in Table 2 [26].

Table 2. A set of clipped PPO hyperparameters for a non-signalized intersection.

Parameters Value

Number of training iterations 200
Time horizon per training iteration 6000
Hidden layers 256 × 256 × 256
GAE Lambda 1.0
Clip parameter 0.2
Step size 5 × 104

Value function clip parameter 104

Number of SGD iterations 10

3.2. Evaluation Indicators

The average reward and measures of effectiveness (MOEs) were applied to verify the
performance of the DRL training. For instance, the DRL training worked better with a
higher reward value over different MPRs and real traffic volumes. In the MOEs evaluation,
the emissions were estimated by the Handbook Emission Factors for Road Transport
(HBEFA), which defined a timeline of speeds/accelerations for each vehicle. The MOEs are
defined as follows:

• Average speed: the mean value of the speed for all vehicles;
• Emissions: the mean value of emissions for all vehicles, including nitrogen oxide

(NOx) and hydrocarbons (HC).

4. Experiments and Results
4.1. Simulation Experiments

A non-signalized intersection has interrupted flow. In particular, all vehicles rely upon
the right-of-way rule that follows the traffic regulations and avoids collisions. The DRL
agents updated the state every time step of 0.1 s. The number of iterations was 200. The
continuous routing function was implemented to keep all vehicles within the network.
Table 3 shows the initialized parameters for the simulation [25].

Table 3. Initialized parameters for the simulation.

Parameters Value

Lane width 3.2 m
Number of lanes in each direction 2
Length in each direction 420 m
Maximum acceleration 3 m/s2

Minimum acceleration −3 m/s2

Maximum speed 12 m/s
Horizon 600
Traffic volume 1000 veh/h

We replicated the automated decision making through the SUMO simulator, RLlib
library, and the Flow tool. The simulation process tries to execute various scenarios in as
real a manner as possible to obtain the appropriate interaction of AVs through a variety
of assumptions. This has become a potential way to assess the AD under a mixed-traffic
environment. Nevertheless, there is a variety of experiments that we must consider in
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reality. Thus, we cannot model a totally real experiment. Nevertheless, within the limits
of our work, these experiments considered going straight and left-turn movements that
affected a non-signalized intersection. We demonstrated how an increase in the MPRs
improved the performance of the proposed method. Figure 4 shows the leading AVs at a
non-signalized intersection. The experiments consider platoons of mixed traffic in each
direction. One vehicle platoon approaches an unsignalized junction and makes a left turn.
In addition, three vehicle platoons driving straight forward follow different directions.
These experiments consider mixed-traffic conditions and fully autonomous conditions.
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The entirely human-driven vehicle (HV) experiment was implemented to evaluate
the superiority of the leading AV experiment (the proposed experiment) based on the DRL
method. This experiment corresponds to 0% MPR over different real traffic volumes, such
as 100 veh/h, 500 veh/h, and 1000 veh/h. Figure 5 expresses the entirely HV experiment
in the context of a non-signalized intersection.
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To evaluate the performance of hyperparameters and the effects of comprehensive
AD movements for traffic flow, the proposed experiment was compared to the experiment
with a going straight movement according to Tran and Bae [25] based on the DRL method.
Figure 6 expresses a comparison experiment in the context of a non-signalized intersection.
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Figure 6. A comparison experiment with go straight movements in the context of a non-signalized
intersection: (a) mixed-traffic conditions with market penetration rates ranging from 20% to 80%;
(b) fully autonomous conditions with a 100% market penetration rate.

4.2. Experimental Results

The results express the DRL performance in terms of training policy, mobility, and
emissions. We carried out the training and verified the efficiency of leading AVs under
mixed-traffic conditions through different MPRs and real traffic volumes. This simulation
also evaluated the effect of a set of PPO hyperparameters in the context of comprehensive
AD maneuvers for a non-signalized intersection.

4.2.1. Training Policy Evaluation

To verify the DRL training policy, the average reward was implemented over different
MPRs and real traffic volumes. The training policy became better as the average reward
became higher. Figure 7 expresses the average reward with different MPRs and real traffic
volumes. As seen in this figure, the reward achieved a higher value as the MPRs and traffic
volumes increased. In particular, the fully autonomous condition outperformed the others.
This means that the fully autonomous condition obtained the highest value of reward of
43,087.05 with a traffic volume of 1000 veh/h. Moreover, the fully autonomous condition
increased the average reward 4.7 times compared to the 20% MPR. Therefore, the efficiency
of the leading AVs was clearer at a higher MPR and traffic volume.

4.2.2. The Efficiency of Leading AVs According to Measures of Effectiveness

The MOEs were applied to verify the efficiency of leading AVs according to their
mobility and emissions. The MOEs verification results over different MPRs and traffic
volumes are expressed in Figures 8 and 9. Referring to mobility, the average speed improved
at a higher MPR and a lower traffic volume. As seen in Figure 8, the fully autonomous
condition increased the average speed 1.19 times compared to the 20% MPR. In particular,
the fully autonomous condition obtained the highest value of average speed of 10.4 with a
traffic volume of 100 veh/h.
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Referring to energy, the emissions decreased at a higher MPR and a lower traffic
volume. As seen in Figure 9a, the fully autonomous condition increased the NOx by
1.13 times compared to the 20% MPR. The fully autonomous condition obtained the lowest
value of NOx of 1.01 with a traffic volume of 100 veh/h. As seen in Figure 9b, the fully
autonomous condition increased the HC 1.46 times compared to the 20% MPR. In particular,
the fully autonomous condition obtained the lowest value of HC of 0.16 with a traffic
volume of 100 veh/h. Hence, the efficiency of leading AVs was clearer at a higher MPR
and a lower traffic volume regarding MOEs verification.
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4.2.3. Comparison of the Entirely Human-Driven Vehicle Experiment

To verify the superiority of leading AVs, the entirely HV experiment was considered
over different real traffic volumes. Figure 10 shows the results of the entirely HV experiment
compared to those of the proposed experiment. As seen in Figure 10a, the fully autonomous
condition increased the average speed 1.49 times compared to the entirely HV experiment.
In particular, the entirely HV experiment obtained the lowest value for average speed of
4.4 m/s with a traffic volume of 1000 veh/h. As seen in Figure 10b, the fully autonomous
condition increased the average reward 55.70 times compared to the entirely HV experiment.
In particular, the entirely HV experiment obtained the lowest value for average reward
of 401.26 with a traffic volume of 1000 veh/h. Therefore, the leading AVs outperformed
the entirely HV experiment regarding mobility and training policy. Moreover, the average
speed and average reward decrease when the traffic volumes increase.
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4.2.4. Comparison of the Experiment with Go Straight Movements

The clipped PPO hyperparameter, which was applied for an urban network with
only go straight movements [26], was used for a non-signalized intersection with both
left-turn and going straight movements to verify the effects of the hyperparameter on
the performance of the DRL training and left-turn movements for the traffic flow. We
compared the non-signalized intersection results between the proposed experiment and
the experiment withgoing straight movement reported by Tran and Bae [25]. Table 4
expresses a comparison of the proposed experiment and the experiment with going straight
movements with a traffic volume of 1000 veh/h.

Table 4. A comparison of the proposed experiment and the experiment with going straight move-
ments with a traffic volume of 1000 veh/h.

Market Penetration Rates (%)
Average Speed (m/s)

Proposed Experiment Experiment with Going
Straight Movements

20 6.09 6.56
40 6.27 6.71
60 6.31 7.01
80 6.70 7.24

100 6.93 7.51

As seen in Table 4, the proposed experiment obtained a lower average speed compared
to the experiment with going straight movements. In particular, the proposed experiment
decreased the average speed 1.08 times compared to the experiment with going straight
movements. Thus, the comprehensive AD movements lead to a lower speed compared to
the experiment with going straight movements.

5. Conclusions

In this paper, we demonstrated that the leading AVs became more meaningful re-
garding training policy and MOEs at a higher MPR and a lower traffic volume. In other
words, the traffic flow outperformed others at a higher MPR and a lower traffic volume. For
instance, the fully autonomous condition increased the average speed 1.19 times compared
to the 20% MPR. The fully autonomous condition increased the average reward 4.7 times
compared to the 20% MPR. Additionally, the fully autonomous condition increased the av-
erage speed 1.49 times compared to the entirely HV experiment. In particular, the proposed
experiment decreased the average speed 1.08 times compared to the experiment with going
straight movements.

In summary, the leading AVs outperformed the other experiments by adopting the DRL
method in the context of comprehensive AD maneuvers at a non-signalized intersection.
This proposed experiment becomes more meaningful at a higher MPR and a lower traffic
volume. Additionally, the leading AVs can help to mitigate delay time and emissions. The
primary contribution of this work is the DRL approach for comprehensive AD maneuvers
under a mixed-traffic environment. These experimental results have proven effective for
the interaction between AVs and HVs in the near future through different MPRs. The
comprehensive AD also makes automated decisions more realistic. In further work, we
will consider the current study regarding the following aspects:

• Consider the effects of the comprehensive turning (e.g., left turn, right turn, going
straight, and lane change) for an urban network. Hence, it is necessary to make
complex scenarios as real as possible;

• Compare our method to other machine learning algorithms aiming to achieve better
performance of decision making for AVs under a mixed-traffic environment.
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