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Abstract: The rapid development of the civil aviation industry has increased the pressure on air-
space resources in China. The traditional sector capacity assessment method does not take into ac-
count the impact of bad weather, resulting in flight plans often deviating markedly from the pre-
dicted plans, causing flight delays and affecting the punctuality rate of flights. To solve this issue, 
we propose a novel evaluation method based on an improved Weather-Impacted Traffic Index 
(WITI) model to calculate sector capacity. The WITI model is optimized in order to calculate the 
weather-influence coefficients under different types of bad weather. These coefficients were also 
considered in a controller workload model. Finally, the model was trained using a deep-neural-
network algorithm, which is combined with a linear regression algorithm to calculate sector capac-
ity under different bad weather conditions. The novel approach leads to the output results being 
within a specified error range, which greatly improves their accuracy. This method was applied to 
the actual case data of Yinchuan Hedong International Airport to consider different types of bad 
weather and quantify their severity, which more specifically assesses the sector capacity under the 
condition of bad weather. 
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1. Introduction 
The rapid development of civil aviation is resulting in increased air traffic flows. In 

order to correctly manage air traffic and also improve its efficiency and safety, a method 
for reliably evaluating sector capacity has recently become a focus of research. According 
to statistics, the most serious factor affecting the flight irregularity rate in 2019 was 
weather [1]. Bad weather can greatly reduce the ability of a sector to accommodate flights, 
and flights in the affected airspace often choose to divert, detour, or return in order to 
avoid adverse outcomes [2]. All of these factors increase the workload of air traffic con-
trollers and flight delays, and in broader terms, seriously affect the development of the 
civil aviation transportation industry [3]. Therefore, evaluating the sector capacity based 
on bad weather is both necessary and meaningful. 

Sector capacity has been studied since 1970. Janic and Tosic established a simple 
mathematical model that took into account the sector structure of the airspace, traffic flow 
characteristics, and control rules [4]. The initial research into sector capacity only involved 
theoretical analyses. The gradual development of the civil aviation industry has increased 
the required airspace capacity [5], and more scholars are now studying practical sector 
capacities. Tofukuji predicted the maximum capacity at Tokyo Airport in the actual oper-
ating environment by analyzing whether the controller’s workload was the limiting factor 
of capacity [6,7], which enhanced the practicality of capacity assessments.  

Developments in machine learning are allowing neural network algorithms to be 
used to improve controller workload evaluation models and thereby also the accuracy of 
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workload evaluations [8]. Amitabh develops GEOSECT software that assesses controller 
workload and assists in the delineation of control sectors based on GEOSECT assessments 
[9]. In the same year, a sector capacity evaluation model based on the complexity of the 
airspace established using the k-means algorithm divided the workload of the controller 
into radar and non-radar control work [10]. Yang divided the controller workload into 
four types based on static sector coupling and dynamic sector coupling: background load, 
base load, cyclic load, and conflict load, and obtained an improved four-element control-
ler workload model under the condition of multisector coupled operation [11]. Aiming at 
the problem that sector capacity assessment is independent of each other, Li gave a capac-
ity assessment method under the condition of sector coupling [12]. 

Most of the popular control sector capacity assessment methods consider only the 
controller’s speech, operation, and cognitive load. Moreover, current sector capacity eval-
uation models only include the number of aircrafts that can be accommodated in a sector 
under normal circumstances, and rarely consider the influence of the weather. There are 
a few methods for quantitatively describing the influence of weather on sector capacity, 
but they are difficult to use as a reference factor for sector capacity evaluation. In 2011, RA 
used the airway convective weather avoidance model to convert the airspace that the air-
craft could not pass into the weather avoidance area, and then used the airway congestion 
algorithm to calculate the flow control area. Then the simple average method is used to 
converge into the blockage of a single flow control area. The capacity of the flow control 
area is defined as: a 100-blocking value, which provides a new idea for the prediction of 
sector dynamic capacity under bad weather [13]. Chen proposed a new algorithm to solve 
the uncertainty problem of airport capacity under bad weather by using the opportunity-
constrained optimization method. Based on the existing deterministic integer program-
ming optimization model of airport capacity under bad weather, he established a chance-
constrained model that includes probabilistic sector capacity constraints. Then, in order 
to effectively solve such a large-scale opportunity-constrained optimization problem, a 
method based on polynomial approximation is adopted [14]. 

The FAA established the Weather-Impacted Traffic Index (WITI) concept and model 
in 2004 based on live weather information and traffic demand, and this was developed by 
the MITRE company to measure the impact of weather on traffic flow in the US national 
airspace system. The WITI is widely used in airspace capacity predictions, and representa-
tive prediction models include capacity prediction using WITI based on traffic flow, pre-
dictive analysis of WITI and flight delays, and capacity prediction methods using WITI to 
build scenario trees [15]. However, the classic WITI model only includes the impact of 
weather on sector capacity under the influence of thunderstorms. In actual operation, 
there are many other types of bad weather conditions that affect flight operations, and 
these different types of bad weather will affect sector capacity to varying degrees. In 2019, 
Zhang proposed a multi-sector dynamic capacity evaluation method to solve the problem 
that the existing capacity evaluation technology is not comprehensive enough. Through 
the concept of sector-capacity influencing factors and sector coupling, a workload model 
of the multi-sector controller was established. Then, by quantifying the degree of conges-
tion of the airspace unit, the availability of multiple sectors in severe weather is obtained 
[16].  

This paper proposes a new method to address this problem. We use a modified WITI 
model to take into account different types of bad weather in the capability assessment and 
identify and quantify the effects. This is then added as a variable to the controller’s work-
load model, which is trained using the DNN (deep neural network) algorithm to obtain 
more accurate predictions of the sector capacity. This approach leads to the output results 
being within a specified error range, which greatly improves their accuracy. In short, this 
new method takes into account different types of bad weather, quantifies their severity, 
and, more specifically, assesses the sector capacity under the condition of bad weather. 

The remainder of this paper is organized as follows: Section 2 optimizes the WITI 
model based on the Gaussian mixture clustering algorithm, classifies different types of 
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bad weather according to different intensities of meteorological radar echoes, and calcu-
lates the weather-influence coefficient. Section 3 adopts the DNN algorithm, with input 
variables such as the selected sector flow, the number of commands, the command dura-
tion, the optimized weather-influence coefficient, and the number of diverted flights used 
to generate the controller workload as the output, so as to obtain a more accurate predic-
tion of the sector capacity. Section 4 presents numerical calculations and simulation ex-
periments. Finally, conclusions are drawn and ideas for further work are proposed in Sec-
tion 5. 

The architecture diagram of the overall system is shown in Figure 1. 

 
Figure 1. The architecture diagram of the overall system. 

2. Improved WITI Model Considering Gaussian Mixture Clustering 
2.1. Gaussian Mixture Clustering 

The finite mixture model (FMM) is a method in which a complex density distribution 
is assessed by combining multiple simple distributions. Based on the FMM, the Gaussian 
mixture model is obtained by limiting all distributions to the Gaussian distribution [17]. 

We first perform a cluster analysis of bad weather. It is assumed that sample set 
1 2{ , ,..., }nD x x x=  contains n  unlabeled samples. Each sample 

1 2{ ; ;...; }i i i imx x x x=  is a m-di-
mension feature vector containing echo intensity and weather data information. The clus-
tering algorithm divides sample D into k clusters { | 1,2,..., }lC l k= , where 

l l l lC C′ ′≠∩ = ∅  
and 

1
k
l lD C== ∪ . Accordingly, {1, 2,..., }ja k∈  is used to represent the “cluster mark” of 

sample jx , 
j ajx C∈ . Therefore, the clustering result can be represented by a cluster label 

vector 
1 2{ ; ;...; }na a a a=  containing n elements; this represents the final classification result 

of bad-weather types. 
The specific calculation formula is as follows: 
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where x is the vector in sample space D (i.e., echo intensity and weather phenomenon 
data), iλis the mixing coefficient, and ( , )iP x u i  is the i -th Gaussian distribution that 

both points to iu and covariance i : 
1
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If the values of parameters iλ , iu , i , and i are determined, Equation (2) can be 
used to obtain the probability ( , )iP x u i of each Gaussian component generating sample 
X and density ( )p x of the Gaussian mixture distribution. 

Let sample data set j be used to calculate the probability that the Gaussian component 
of generated sample nx  according to the Bayesian theorem, and record the largest 
Gaussian component of njγ as the category of nx . This is based on the principle of Gauss-
ian mixture clustering. 

The parameter estimation takes the maximum-likelihood estimation as the optimiza-
tion objective and uses the expectation maximization algorithm to solve the problem [18]. 
The initial parameters of Gaussian mixture clustering are set, and the posterior probability 

njγ that sample nx a belongs to Gaussian component j is calculated using the current pa-
rameters: 

( | )n j n np c j xγ = =  
( ) ( | , )

( )
n i

n

p c j p x j
P x

μ==
 

1

( | , )

( | , )
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λ μ
=

= 
 

 

(3)

Mean jμ  and covariance j are calculated as 

1
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=

= 
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(6)

The clustering results are then obtained by iterating to convergence. 
The Gaussian mixture clustering model can be used to classify bad weather in the 

sector according to the echo intensity and weather phenomenon. By inputting the sample 
data of the echo intensity and weather types in the sector, the bad weather is combined 
with the WITI model to measure the severity of the bad weather according to the echo 
intensity, so as to realize the classification of bad weather and calculate different weather 
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types. The influence of bad weather on sector capacity can be quantified by using the 
weather-influence coefficient according to different categories. 

2.2. Improved WITI Model 
The WITI has been used to measure the impact of weather on the traffic flow of the 

national airspace system of the US, which has demonstrated that it is suitable for large-
scale and long-term weather impact analyses [19]. 

In the original WITI model, the sector airspace within the research scope is divided 
into several very small areas using a grid, where each area is a computing unit. It is as-
sumed that the sector airspace network has m rows and N columns, and the grid of the i
-th row and j -th column is denoted as grid ij . This approach means that the continuous 
sector airspace system is discretized into grid points. 

The weather information and traffic flow information in the grid are calculated and 
superimposed on the research sector airspace system. The weather information on grid 
ij  is recorded as 

ijW , and the traffic flow information is recorded as 
ijT . Initially, weather 

information refers to severe convective weather, which can be identified and gridded on 
the weather radar. Traffic flow information refers to the number of flights passing through 
the grid during the t -th time period. Based on the WITI model, the value of WITI ( k ) 
during the k -th time period is  

1 1
( ) ( ) ( )

m n

ij ij
i j

WITI t T t W t
= =

=
 

(7)

Traffic flow information 
ijT  in the model refers to the number of aircraft flying 

through grid ij during the t -th time period of the reference weather, while weather in-
formation ( )ijW t  is a Boolean variable: 

0,  ?       
1,  ?      

 
( )ij

grid ij has no bad weather during time period t
grid ij has bad weather d

W t
uring time period t


= 
  

The classical WITI model can only be used to calculate the effect of thunderstorm 
weather on the sector capacity, in terms of the number of flights. However, in the actual 
situation, there are many types of bad weather conditions that affect flight operation; that 
is, this is not limited to thunderstorm weather. This problem is addressed by using a 
Gaussian mixture clustering model to optimize the situation. According to the clustering 
results, the bad weather is classified according to the echo intensity, and bad weather of 
type a  is obtained. By calculating the weather-influence coefficient ( )ij aW t，

 under differ-
ent bad weather conditions, the optimized WITI model is obtained: 

1 1
( ) ( ) ( )

m n

ij ij a
i j

WITI t T t W t
= =

′ = ,

 
(8)

,

( )
( )

( )
ij

ij a
p ij

F t
W t

F t
′

=，

 
(9)

where ( )ijF t′  is the number of affected aircraft and , ( )p ijF t  is the number of scheduled 
flights during the t -th time of grid ij . 

3. Sector Capacity Evaluation Method Based on the DNN Algorithm 
3.1. Route-Availability Model 

The route-availability model is first used to identify the flights that need to be re-
routed due to bad weather in the sector. When the aircraft enters the control sector, re-
routing, returning, and forced landing will occur due to the weather. Resolving conflicts 
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between the rerouted aircraft requires the controller to issue multiple instructions to ad-
just flight plans, which will increase the workload of the controller. In addition, the capac-
ity of the sector changes. The main task in this section is to statistically calculate the num-
ber of rerouted aircraft under different types of bad weather conditions so that the corre-
sponding sector capacities can be calculated. 

According to the theory of maximum flow and minimum cut, when the directions of 
the traffic flow in a plane are the same, the maximum flow that can pass in that plane is 
not based on the average value, but instead determined by the flow that can pass through 
the narrowest place in the plane, that is, the plane bottleneck. Therefore, according to the 
theory, it can be assumed that route L  is connected to K  rectangular regions at altitude 
level I  , and the blocking probability of route l  at this altitude is determined by the 
rectangle with the largest blocking value among the K  rectangular regions [20]. Thus, 
the blocking probability of route l  at altitude level I  can be obtained as  

1
maxLi Li

DD k
q q

≤ ≤
=  (10) (10)

where L iq  is the blocking probability of route L  at altitude level i   
If there are m available altitude levels on route L  , the blocking probability of route 

L   under the influence of bad weather can be expressed as 

1
/

M
L Li

i
q q M

=

=
 

11
(max ) /

M
Li
DD ki
q M

≤ ≤=

=
 

32

11 1
max /

5.36

LiM
Dn

LiD ki n Dn

M
d

μ
≤ ≤= =

  
=   ×  
 

 

(11)

where Lq  is the blocking probability of route L . 
The availability of route L   in bad weather is expressed by rRA : 

1r LRA q= −  
32

11 1
1 max /

5.36

LiM
Dn

LiD ki n Dn

M
d

μ
≤ ≤= =

  
= −   ×  

 
 

(12)

In order to facilitate the subsequent calculations and enhance the visibility of the 
available capacity of the route, different types of bad weather are classified into grades 1, 
2, and 3, and the fuzzy mathematics method is used to classify them. Fuzzy mathematics 
is a mathematical method used to investigate certain types of uncertain quantities. There 
is no clear numerical boundary to define the grade that each weather type belongs to, 
which makes the fuzzy mathematics method inherently suitable for solving this problem. 

Fuzzy subsets are set up according to the following requirements: Let U be the uni-
verse of discourse, called mapping [ ]: 0,1A Uμ → , [ ]( ) 0,1Aa aμ ∈ , and determine a fuzzy 

subset of u  where ( )A aμ  is called the membership degree A of a pair. When ( )A aμ  is 
closer to 0, it is less likely that a belongs to a  , while when ( )A aμ  is closer to 1, it is more 
likely that a belongs to a  ; ( )A aμ  = 0.5 represents the most-fuzzy condition, also known 
as the fuzzy point. 

Fuzzy subset A  is uniquely determined by the membership function 
Aμ, so they are 

considered to be equivalent. For simplicity, A  and 
Aμ are usually represented by a  . 

The Zadeh representation of fuzzy subsets is used: 
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1 2

1 2

( )( ) ( ) ... n

n

A aA a A aA
a a a

= + + +
 

(13)

where ( )i
i

A a
a

 means that the membership of ia  in fuzzy set a   is ( )iA a . 

The following operation steps were performed: 
1. Input universe U, which contains 12 bad weather-influence coefficients ij aW ，

. 

2. Fuzzy subset 1A = {bad-weather grade is 1}. 
3. When the membership degree exceeds 0.65, the bad weather belongs to a. 
4. Repeat steps 2 and 3 to calculate 2A  = {bad-weather grade is 3}. 

The actual capacity of a route in a sector being influenced by bad weather can be 
calculated by using the availability model of the route. The simulation parameters can be 
set in the AIRTOP simulation model, and the flight-restricted area can be delimited to 
simulate the actual operation in the sector under bad weather conditions so as to identify 
the flights that need to be rerouted under this condition. 

3.2. DNN Algorithm 
Neural Network (NN) is made up of many human–neural connections that adap-

tively change internal node parameters based on input characteristics. Modern NNs are 
nonlinear statistical data modeling tools that are often used to model complex relation-
ships between inputs and outputs or to explore patterns in data [21]. 

A DNN can be regarded as a basic neural network model with multiple hidden layers 
and can be divided into the input layer, hidden layer, and output layer. The layers are 
interconnected, in that a neuron in layer i  must be connected to a neuron in layer i+1. 
The overall DNN model is generally complicated and difficult to understand, but splitting 
it up reveals that the whole structure comprises a single sensing mechanism; that is, the 
same linear function i iz wx b= +  plus an activation function ( )zσ . Additional hidden 
layers in the DNN model will result in a linear correlation coefficient w  and the number 
of biases b in the linear relationship of the DNN model increasing. 

The 4-layer DNN model was introduced as follows in Figure 2. 

 
Figure 2. 4 layers DNN structure. 

where the number of input variables was set as 3, the node number at the hidden 
layer was set as 4, the connection weight between each two node k

ijw  at the k   layer 
between the i -th node and the j -th node at the next layer  

To facilitate calculation, sigmoid is defined as the activation function 
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1( )
1 xH x
e−=

+
 (14)

The entire model-building process is shown in the flow chart in Figure 3. 

 
Figure 3. Flow chart of model building. 

The above analysis and description indicate that the DNN algorithm provides a good 
research model for studying the nonlinear relationship between multiple variables, and 
more accurate results can be obtained through error correction of the algorithm. This pa-
per addresses the relationship between bad weather and the controller’s workload, for 
which there is currently no perfect functional expression. Using the DNN algorithm 
model can solve this problem because the relationship between variables does not need 
to be preset, and the whole process from input variables to output results can be realized 
through the characteristics of its own algorithm. Using the controller workload trained by 
the model, the sector capacity under the influence of bad weather can be obtained by using 
linear regression. 

Input variables included sector flow (S), instruction times (N), instruction duration 
(I), optimized weather-influence coefficient (W) calculated using Gaussian mixture clus-
tering, and the number of diverted flights (C) calculated using the route-availability 
model. The training form was the DNN algorithm, the time update unit was 1 h, and the 
output data were the controller workload (L). The structure of the specific model is shown 
in Figure 4. 
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Figure 4. DNN model structure. 

4. Experiments and Results 
4.1. Data Preparation 

The analyzed research data were all of the bad-weather meteorological data of Yin-
chuan Hedong International Airport in 2019 provided by the Ningxia Air Traffic Control 
Branch. These data comprised meteorological radar echo charts, meteorological infor-
mation, flight information, and controller call records. The research data include the bad-
weather radar data of 2019, for which the data were refreshed every 6 min, giving a total 
of 15,840 data points. In 2019 there were 97,820 flights at Yinchuan Hedong International 
Airport. There are eight routes in the Yinchuan control sector: four approach routes and 
four departure routes. The call records of controllers in bad weather during 2019 were 
extracted, resulting in 20,460 pieces of data. Radar meteorological data include the date, 
time, range, and echo reflectivity. After radar data processing, radar echo reflectivity can 
be converted into information about the severity of the bad weather. The types of bad 
weather can be determined according to the meteorological information for particular 
days, and information on wind speed, visibility, cloud base height, and other factors re-
lated to bad weather can be obtained according to the collected METAR messages. 

4.2. Results and Analysis 
4.2.1. Weather-Influence Coefficient 

According to the meteorological data extracted from the METAR messages, it was 
determined that the types of bad weather affecting flight operations at Yinchuan Hedong 
International Airport mainly include thunderstorms, rain, high-blowing dust, and clouds. 
According to the meteorological type, the weather can be divided into three types of bad 
weather: cloudy, sand dust (including high-blowing dust weather), and heavy precipita-
tion (including rain and thunderstorms). 

According to the weather radar echo information, the echo colors of weather radar 
echo intensities can be divided into a yellow/green system (≥31 and <45 dBZ), red system 
(≥45 and <55 dBZ), and purple system (≥55 dBZ). Most of the echo intensity data for bad 
weather exist between yellow/green and red systems, with yellow/green data accounting 
for 63.26% and red data accounting for 35.87%. The echo intensities were therefore divided 
into three grades (Table 1): low, moderate, and high. 

Table 1. Echo intensity grades. 

Echo Intensity  Echo Color Echo Color  
Low Light-yellow/green  >30 and ≤35 dBZ 

Moderate Deep-yellow/green  >35 and ≤45 dBZ 
High Red  >45 dBZ 
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The weather-influence coefficient in the WITI model was optimized mainly by refin-
ing the bad-weather types, and the severity of weather was expressed in the form of echo 
intensity. However, there was no suitable measurement relationship between echo inten-
sity and bad-weather types to classify them. The relationship between the three bad-
weather types and radar echo intensities was investigated using a Gaussian mixture clus-
tering model. 

In cloudy weather, the severity of weather can be expressed by the cloud base height, 
and so the clustering model used two indexes (cloud base height and echo intensity) in 
the clustering analysis; the results are shown in Figure 5. 

 
Figure 5. Clustering results for rainy weather. 

According to the clustering results, rainy weather could be divided into four types: 
high-cloud-base echo intensity, high-cloud-base echo intensity, middle-cloud-base echo 
intensity, and low-cloud base echo intensity; these types of weather accounted for 21.76%, 
53.98%, 13.67%, and 9.59% of cases, respectively. 

The visibility can be used to indicate the severity of sand-dust weather, and so the 
clustering model used two indicators (visibility and echo intensity) in the clustering anal-
ysis; the results are shown in Figure 6. 

 
Figure 6. Schematic diagram of dust weather clustering results. 
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According to the clustering results, dust weather could be divided into five types: 
high visibility and low echo intensity, high visibility and moderate echo intensity, mod-
erate visibility and moderate echo intensity, moderate visibility and high echo intensity, 
and low visibility and high echo intensity; these types of weather accounted for 7.32%, 
37.62%, 33.45%, 12.60%, and 9.01% of cases, respectively. 

The severity of bad weather can be expressed by the precipitation in heavy-precipi-
tation weather, and so the clustering analysis was performed using precipitation and echo 
intensity; the results are shown in Figure 7. 

 
Figure 7. Schematic diagram of clustering results for heavy-precipitation weather. 

According to the clustering results, heavy-precipitation weather could be divided 
into three types: low precipitation and low echo intensity, moderate precipitation and 
moderate echo intensity, and high precipitation and high echo intensity; these types of 
weather with low precipitation and echo intensity accounted for 29.72%, 49.67%, and 
20.61% of cases, respectively. 

Therefore, bad weather could be divided into high cloud base and low echo intensity, 
high cloud base and low–high echo intensity, middle cloud base and high echo intensity, 
low cloud base and high echo intensity, high visibility and low echo intensity, moderate 
visibility and echo intensity, moderate visibility and high echo intensity, low visibility and 
high echo intensity, and low precipitation and low echo intensity. There were 12 types of 
bad weather with high precipitation and high echo intensity, for which the weather-influ-
ence coefficient could be obtained by calculating the ratio of the numbers of affected 
flights to planned flights, as listed in Table 2. 

Table 2. Weather-influence coefficients for various types of bad weather. 

Type of 
Bad Weather (a) 

Specific Meaning 
Weather-Influence Co-

efficient ( )aW  

1 High echo intensity and high cloud base 
(including cloudy weather) 

0.19 

2 
High cloud base and low–high echo inten-

sity (including cloudy weather) 0.27 

3 
High echo intensity and middle cloud base 

(including cloudy weather) 0.39 

4 Low cloud base and high echo intensity (in-
cluding cloudy weather) 

0.51 
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5 
High visibility and low echo intensity (in-

cluding high blowing and floating dust 
weather) 

0.21 

6 Echo intensity in high visibility (including 
high blowing and floating dust weather) 

0.32 

7 
Echo intensity in moderate visibility (in-

cluding high blowing and floating  
dust weather) 

0.41 

8 
Moderate visibility and high echo intensity 
(including high blowing and floating dust 

weather) 
0.48 

9 
Low visibility and high echo intensity (in-

cluding high blowing and floating dust 
weather) 

0.59 

10 
Low precipitation and low echo intensity 

(including thunderstorms) 0.57 

11 Echo intensity in moderate precipitation 
(including thunderstorms) 

0.72 

12 High precipitation and high echo intensity 
(including thunderstorms) 

1 

Our approach for optimizing the weather-influence coefficient in the WITI model has 
overcome the deficiency of only being able to express the influence of thunderstorm 
weather on aircraft flights. The severity of bad weather has been graded and quantified 
according to the echo intensity, and so that the weather-influence coefficient can more 
accurately and clearly reflect the type and influence of the severity of bad weather in the 
study area. 

4.2.2. Determination of the Number of Diverted Flights 
The types of bad weather classified using a fuzzy mathematics calculation method 

are presented in Table 3. 

Table 3. Classification of severe-weather grades. 

Bad Weather Rating Types of Bad Weather 
1 11, 12 
2 4, 8, 9, 10 
3 1, 2, 3, 5, 6, 7 

The route directions of routes are expressed by waypoints at critical points in each 
sector. The relationship between the routes and the waypoints at Yinchuan Hedong Inter-
national Airport is presented in Table 4. 

Table 4. Route classification. 

Route Path Number Path 
R1 Exit in the direction of OPULI 
R2 Exit in the direction of DOXED 
R3 Exit in the direction of DOMVA 
R4 Exit in BELIP direction 
R5 Go in the direction of OPULI 
R6 Advance in the direction of AGVEN 
R7 Heading in the direction of IDGOB 
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R8 LUVKO heading in 

The data for 2019 were imported into the AIRTOP software model on a daily basis 
for the simulations. The air traffic flow in each route was determined, as was the flow 
distribution ratio according to the flow passing through the inbound and outbound way-
points. The statistical results are shown in Figure 8. 

 
(a) 

 
(b) 

Figure 8. Flow distribution for approach and departure. (a) Departure flow distribution, (b) Ap-
proach flow distribution. 

According to the statistical results, the inbound and outbound flights of Yinchuan 
Hedong International Airport accounted for 51.21% and 48.79% of the total flights, respec-
tively. The flow distribution ratio on each route could be obtained by combining the in-
bound and outbound flow distribution for each route waypoint. The specific distribution 
is presented in Table 5. 

Table 5. Statistics of the proportion of route traffic in each route. 

Route Path Number Path Proportion of Route Traffic 

R1 Exit in the direction of 
OPULI 2.70% 

R2 
Exit in the direction of 

DOXED 13.11% 

R3 Exit in the direction of 
DOMVA 

24.80% 

R4 Exit in BELIP direction 8.75% 
R5 Go in the direction of OPULI 2.80% 
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R6 
Advance in the direction of 

AGVEN 13.16% 

R7 
Heading in the direction of 

IDGOB 26.00% 

R8 LUVKO heading in 8.68% 
According to the position of the boundary points for the approach and departure 

routes, the flight-restricted area of each route was determined in the AIRTOP model. Sim-
ulations were performed based on the annual takeoff and landing operations at Yinchuan 
Hedong International Airport in 2019, and different restricted areas were designed ac-
cording to the flow direction of the inbound and outbound routes. The specific design 
details are shown in Figure 9. 

 
Figure 9. Schematic diagram of flight-restricted areas of the approach and departure routes. 

The opening hours of restricted areas are set according to when bad weather occurs, 
and the blocking degree of restricted areas is defined according to the route-availability 
values. The flight arrivals and departures in 2019 were simulated according to the route-
availability values calculated under different grades of bad weather. When the restricted 
areas are opened and run according to the system settings, the aircraft in the system that 
is scheduled to fly over the restricted areas will be intercepted, and the intercepted aircraft 
will be those that need to be diverted due to bad weather. 

After using the data to train the simulation system, the number of diverted flights on 
different routes in different bad-weather grades could be obtained. The specific results are 
listed in Table 6. 

Table 6. Numbers of flights affected by bad weather on each route. 

Path Number 
Grade of Bad Weather 

1 2 3 
R1 6 3 2 
R2 31 15 8 
R3 59 29 14 
R4 21 10 6 
R5 7 4 3 
R6 32 16 7 
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R7 62 31 16 
R8 20 11 6 

4.2.3. Calculation of Sector Capacity in Bad Weather 
The main research data utilized were 20,460 data points extracted from the call rec-

ords of controllers in bad weather during mid-2019. The data for 24 June were selected as 
sample data, and data for another 10 days were used in the model as training data. Yin-
chuan Hedong International Airport is divided into two sectors: inner sector and outer 
sector. The operation modes of these two sectors were implemented with a time update 
unit of 1 h. The results are shown for sample data on 24 June as an example. 

Sector flow (S), instruction times (N), instruction duration (I), and optimized 
weather-influence coefficient (W) were calculated by Gaussian mixture clustering, and the 
number of diverted flights (C) was calculated using the route-availability model. The 
training form was the DNN algorithm, and the time update unit was 1 h. 

Before the experiments, we compared the DNN algorithm with the Hybrid Kernel 
SVM algorithm. We selected three groups of 360 pieces of data as test samples, and each 
group of data is equipped with the evaluation criteria of air traffic control experts. Both 
methods only take instruction times (N) and instruction duration (I) as input variables, 
and the output is the controller workload.  

In the Hybrid Kernel SVM Algorithm, we choose the convex combination form of the 
Gaussian kernel function and polynomial kernel function as the hybrid kernel function, 
which can theoretically improve the generalization ability and learning ability, and has 
the characteristics of two basic kernel functions at the same time. The hybrid kernel func-
tion is constructed as follows: 

' ' '( , ) ( , ) (1 ) ( , )poly rbfk x x mk x x m k x x= + −  (15)

There are 4 parameters to be considered in the proposed hybrid kernel function: the 
order d  of the polynomial kernel function, the kernel width s  of the RBF kernel, the 
weight coefficient m  and the penalty coefficient C . The final parameter optimization 
results are as follows in Table 7. 

Table 7. Parameter value result. 

Parameter Value 
the penalty parameter C  24 

the RBF kernel parameter s  2–8 
the order parameter d  3 

the weight coefficient parameter m  0.57 

In the DNN algorithm, according to the relationship between the input variable and 
the output variable and the requirement of the target value of the model error, the number 
of layers of the hidden layer is determined to be 2. The number of nodes in each layer is 
determined by the formula in the range of [2–5], and the size of the evaluation mean 
square error value in each case is obtained according to the calculation. When the number 
of hidden layers is 2 and the number of nodes is 3 and 4, respectively, the mean square 
error of the system is the smallest 0.2267. Therefore, the model structure of the DNN al-
gorithm is 2-{3-4}-1. According to the comparison with the expert evaluation criteria, the 
results of both methods are as follows in Table 8. 

Table 8. Validation results obtained by two methods. 

Method Validation Results 
DNN algorithm 0.92529 

Hybrid Kernel SVM algorithm 0.91835 
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It can be seen that the accuracy of the two methods is similar in this type of applica-
tion. Considering that in the follow-up experiments, the number of variables will increase. 
The DNN algorithm can provide a good research model for studying the nonlinear rela-
tionship between multiple variables, and it's error correction of it can be used to obtain a 
more accurate result. Therefore, we choose to use the DNN algorithm in this paper. Ten 
groups of 1200 pieces of data with input variables were trained using the DNN forward-
propagation algorithm. The input variables of each group were divided into sector flow, 
talk time of controllers per hour, talk times, diverted trips, and optimized weather-influ-
ence coefficients. There were 120 pieces of input sample data in each group. The workload 
of output variable controllers was calculated, and the output sample data are presented 
in Table 9. 

Table 9. Controller workload after model training. 

Time Interval Controller Workload Time Interval Controller Workload 
00:00–01:00 626.73 12:00–13:00 2030.94 
01:00–02:00 142.99 13:00–14:00 1801.13 
02:00–03:00 0 14:00–15:00 1002.32 
03:00–04:00 0 15:00–16:00 1465.82 
04:00–05:00 0 16:00–17:00 1332.77 
05:00–06:00 0 17:00–18:00 1237.27 
06:00–07:00 0 18:00–19:00 1576.34 
07:00–08:00 932.00 19:00–20:00 2385.04 
08:00–09:00 1465.82 20:00–21:00 1576.34 
09:00–10:00 1688.11 21:00–22:00 1321.13 
10:00–11:00 1702.43 22:00–23:00 1302.36 
11:00–12:00 1576.34 23:00–24:00 1002.29 

The model calculations have revealed the workload of controllers in the sector of 
Yinchuan Hedong International Airport under the influence of bad weather on 24 June 
2019. Regression analysis was carried out between controller workload and the number 
of aircraft during this period, and the functional relationship between them was deter-
mined. The corresponding sector capacity during this period was calculated by the work-
load of controllers obtained in the model training. The calculation results are presented in 
Table 10. 

Table 10. Sector capacities predicted by the model. 

Time Interval Sector Capacity/Route Time Interval Sector Capacity/Route 
00:00–01:00 12 12:00–13:00 22 
01:00–02:00 16 13:00–14:00 23 
02:00–03:00 20 14:00–15:00 20 
03:00–04:00 23 15:00–16:00 20 
04:00–05:00 26 16:00–17:00 14 
05:00–06:00 27 17:00–18:00 22 
06:00–07:00 27 18:00–19:00 24 
07:00–08:00 26 19:00–20:00 23 
08:00–09:00 26 20:00–21:00 16 
09:00–10:00 27 21:00–22:00 12 
10:00–11:00 27 22:00–23:00 14 
11:00–12:00 24 23:00–24:00 16 
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4.3. Analysis 
The capacity prediction results in Table 8 for the traditional WITI model and the ac-

tual traffic verify the feasibility of the present research model. The results are compared 
in Figure 10. 

 
Figure 10. Comparison of typical daily data. 

The time node of the comparison curve was selected from 09:00 to 23:00 on 24 June, 
during which six types of bad weather appeared. This began at 11:00, after which the sec-
tor capacity began to change accordingly; there was no influence of bad weather in the 
sector from 09:00 to 11:00. The predicted results for the traditional WITI model were con-
sistent with the actual observations, and the sector capacity was 27 operations/hour. At 
11:00 the sector capacity predicted by WITI model changed to 19 operations/hour and then 
remained constant. Meanwhile, the predicted results for the DNN model varied from 12 
to 27 operations/hour according to different sector capacities of severe-weather types. In 
order to further compare the prediction fit of the sector capacity between the traditional 
prediction model and the DNN model, representative time segments were selected from 
the database for data comparisons; the results are shown in Figure 11. 

 
Figure 11. Comparison of data over multiple days. 

It can be seen from Figure 11 that when bad weather occurred, the forecasting capac-
ity of the traditional forecasting model was 19 operations/hour, and this did not change 
with different types of bad weather. The forecasts of the DNN model varied from 12 to 23 
operations/hour according to different types of bad weather. This is because, in the tradi-
tional WITI model, the weather-influence coefficient only has a value of 1 or 0; that is, it 
can only identify whether or not there is bad weather in the sector, without quantifying 
its severity. The prediction result for the sector capacity was 19 operations/hour when bad 
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weather was present and 27 operations/hour when it was not present. The DNN model 
adds the optimized weather-influence coefficient to predict the sector capacity under cor-
responding conditions according to different types of bad weather, which makes the pre-
diction result closer to the actual operating situation. 

By sorting and analyzing the training data, the sector capacity prediction results un-
der different types of bad weather could be obtained; the results are presented in Table 11. 

Table 11. Sector capacities under different types of bad weather. 

Type of Bad Weather 
(a) Specific Meaning Sector Capacity (Opera-

tions/Hour) 
0 Normal weather 27 

1 
High echo intensity and high cloud base (includ-

ing cloudy weather) 
22 

2 
High cloud base and low–high echo intensity (in-

cluding cloudy weather) 
23 

3 
High echo intensity and middle cloud base (in-

cluding cloudy weather) 
20 

4 
Low cloud base and high echo intensity (includ-

ing cloudy weather) 
18 

5 
High visibility and low echo intensity (including 

high blowing and floating dust weather) 
24 

6 
Echo intensity in high visibility (including high 

blowing and floating dust weather) 
22 

7 
Echo intensity in moderate visibility (including 

high blowing and floating dust weather) 
23 

8 
Moderate visibility and high echo intensity (in-

cluding high blowing and floating dust weather) 
23 

9 
Low visibility and high echo intensity (including 

high blowing and floating dust weather) 
16 

10 
Low precipitation and low echo intensity (includ-

ing thunderstorms) 
16 

11 
Echo intensity in moderate precipitation (includ-

ing thunderstorms) 
14 

12 
High precipitation and high echo intensity (in-

cluding thunderstorms and thunderstorms) 
12 

The input variables of the model are the sector flow, instruction times, instruction 
duration, optimized weather-influence coefficient, and the number of diverted flights, and 
the output variable is the controller workload. The first three input variables are basic 
variables for calculating controller workload, while the weather-influence coefficient re-
flects the actual sector capacity affected by weather during the specific time period, and 
the number of diverted flights reflects that controllers need to issue instructions to coor-
dinate aircraft conflicts during this time period. 

After model training, the controller workload involves predicting the sector capacity 
for the day, and at the same time, the traditional controller model is used to predict the 
sector capacity of the day. Comparing the two groups of data with the actual sector values 
revealed that the results predicted by the controller workload model considering the in-
fluence of bad weather were more consistent with the actual situation. 

5. Conclusions 
This study analyzed a sector capacity model based on an improved WITI index under 

the influence of bad weather with the aim of identifying the sector capacity for different 
types of bad weather. Weather-radar echo charts and the controller’s call records were 
taken as the research objects, and the WITI model was optimized by extracting weather 
information data from these charts, so that it can quantify the adverse effects of different 
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types of bad weather. By combining a route-availability model and AIRTOP software 
modeling, the aircraft operations that need to be diverted under bad weather conditions 
were obtained through simulations. Finally, the DNN algorithm was used to calculate the 
influence of bad weather and the number of diverted flights, so as to obtain the controller 
workload in the presence of bad weather, and the sector capacity was calculated according 
to the controller workload model. 

This research paper has described a theoretical model for calculating the sector ca-
pacity in bad weather. Most importantly, the model can be used to evaluate the sector 
capacity more accurately for different types of bad weather. Providing data support for 
making flight plans in bad weather will help to improve the punctuality rate of flights and 
travel efficiency. 

At present, this paper studies the capacity of a single airport within a sector, and the 
research on severe weather currently focuses on thunderstorms and floating dust. In fu-
ture work, we will consider airports with different levels of busyness in different geo-
graphical locations, such as Shanghai Hongqiao International Airport and Chengdu 
Shuangliu International Airport, and explore the impact of different bad weather types 
on sector capacity 
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