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Abstract: In hydrating Portland cements, more than one of the AFm family of calcium aluminates may
exist. Depending on the amount of carbonate and sulfate present in the cement, the most common
phase to precipitate is monosulfate, monocarbonate and/or hemicarbonate. It has been reported
in the literature that hemicarbonate often appears in measurements such as XRD but not predicted
to form/equilibrate in thermodynamic models. With the ongoing use of commercial cements such
as CEM I and CEM II containing more and more limestone, it is important to understand which
hydrate solids physically precipitate and numerically predict over time. Using 27 cement samples
with three w/c ratios analysed at 1, 3 and 28 days, this paper shows that although hemicarbonate
was observed in a hydrating commercial Portland cement, as well as being predicted based on its
carbonate (CO2/Al2O3) and sulfate (SO3/Al2O3) ratios, thermodynamic analysis did not predict
it to equilibrate and form as a solid hydrate. Regardless of the w/c ratio, thermodynamic analysis
did predict hemicarbonate to form for calcite contents < 2 wt.%. It appears that the dominant
stability of monocarbonate in thermodynamic models leads to it precipitating and remaining as a
persistent phase.

Keywords: cement; hydration; thermodynamics; PHREEQC; mineralogy

1. Introduction

Thermodynamic modelling of cement hydration has been investigated over the past
two decades [1–4] and is considered a reliable means of predicting changes in anhydrous
clinker, hydrated phase assemblages and pore solution chemistry of cement systems. This
modelling approach requires only oxide proportions, water/cement (w/c) mass ratio,
curing temperature, relative humidity and Blaine fineness as input parameters into suitable
geochemical software and an appropriately formatted thermodynamic database.

The widely used and freely available geochemical software PHREEQC [5,6] has been
shown by the current authors to be capable of predicting the hydration behaviour of
Portland cement over time using an appropriate thermodynamic database and the molar
reaction equations for the four main clinker phases alite (Ca3SiO5, C3S), belite (Ca2SiO4,
C2S), aluminate (Ca3Al2O6, C3A), and aluminoferrite (Ca4Al2Fe3O10, C4AF). PHREEQC
employs law of mass action equations to perform complex geochemical simulations, allow-
ing the inclusion of kinetics and rates, solid solutions and competing reactions between
solids, and liquids and gases at equilibrium, details of which can be found in [7]. In their
most recent work [5], the current authors used PHREEQC to predict various properties,
including phase assemblages and pore solution chemistry over time for CEM I cement.

The output from the thermodynamic analysis presented monocarbonate as the AFm
phase precipitating, whereas when experimentally using XRD observations, hemicarbonate
was also shown to form. Research in this area [8–11] shows which AFm phase—and several
may coexist—is sensitive to the mix of hydroxide, alumina, sulfate or carbonate, or mixtures
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thereof. Matschei et al. [10] showed that only 3.9 and 7.7 wt.% of carbonate are sufficient to
form hemicarbonate or monocarbonate, respectively. Carbonate AFm phases are reported
to be more thermodynamically stable than sulfate phases, such as monosulfate. With
modern commercial cements containing at least 4–5% calcite, it has a dual function of being
reactive with cement and active during hydration and as an inert filler [10].

Subsequent research by Matschei et al. [8] and [12] found that, through XRD measure-
ments, the initial formation of hemicarbonate was slowly transformed into monocarbonate.
In aqueous systems, supported by thermodynamic calculations in Portland cement, hemi-
carbonate is unstable in the presence of calcite [13] even though there is little difference in
solubility between the two carbonate phases. However, the difference in the solubility of
hemi- and monocarbonate within the pore solution is rather small. Due to little difference
in precipitation kinetics between hemi- and monocarbonate [13,14] and the slower disso-
lution of calcite above pH 9 [15], Matschei et al. [8] suggest the intermediate formation of
hemicarbonate is most likely caused by the slow dissolution of limestone as insufficient dis-
solved carbonate is available. However, over time, with increasing calcite being available,
hemicarbonate is converted to monocarbonate.

Georget et al. [11] demonstrated that due to foreign anions in its structure, hemicarbon-
ate is stabilised and forms AFm carbonate–sulfate solid solutions. As a result, AFm phases
will be stabilized with respect to ettringite and monocarbonate and these solid solutions
could explain the differences between experiments and current thermodynamic models in
long-term samples of cement blended with limestone.

In the current study, PHREEQC was used to undertake a full thermodynamic anal-
ysis of the hydration of CEM I cement in terms of predicting changes in anhydrous and
hydrated phase assemblage and pore solution chemistry using suitable input parameters.
Cement hydration is complicated by the need to provide an account of several features,
including empirical rate equations to describe the dissolution of OPC clinker phases, oxide
components dissolved in the OPC clinker phases, oversaturation of pore solution with
respect to specific phases during the first 12 h of hydration, and the release and uptake of
the alkali elements K and Na by the C-S-H. All these features were addressed in the current
study and have been successfully implemented into PHREEQC to provide live graphical
output and comparisons with experimental data from the literature.

2. Materials and Methods
2.1. Specimen Preparation

All experiments were carried out using the same commercial Portland cement, man-
ufactured to meet the requirements of EN197-1 [16]. The chemical compositions (using
XRF) and normalised entire clinker phase are shown in Table 1. Three cement pastes were
prepared with w/c ratios of 0.4, 0.5 and 0.6 at 20 ◦C and each was subjected to TGA, XRD
and isothermal calorimetry analysis at various stages of hydration (1, 7 and 28 days).

Samples were manually mixed by hand due to their size and mixed with water to
create the three w/c ratios. Samples for XRD analysis were 5 g in mass and prepared for
analysis by pulverising using a mortar and pestle. Approximately 36–40 mg of cement was
used for each TGA analysis, again pulverised using a mortar and pestle ahead of testing.
Heat of hydration samples were prepared by preparing 50 g samples of cement with water
in a beaker for 2–3 min to create a paste. All samples were cured in sealed steel vials at
20 ◦C and removed for testing at 1, 7 or 28 days.
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Table 1. CEM I (42.5N) oxide proportions (g/100 g) and normalised clinker proportions.

Oxide g/100 g Phase g/100 g Moles
SiO2 20.19 C3S 56.62 0.2305

Al2O3 4.79 C2S 16.59 0.0963
Fe2O3 2.86 C3A 7.64 0.0283
CaO 64.59 C4AF 8.46 0.0174
MgO 1.68 Calcite 5.84 0.0583
Na2O 0.16 Gypsum 4.00 0.0233
K2O 0.63 K2SO4 1.02 0.0059

CO2 * 2.64 Na2SO4 0.16 0.0011
SO3 2.49 K2O 0.06 0.0007

Blaine fineness (m2/kg) 419 Na2O 0.09 0.0014
Loss on Ignition (LOI) 2.72 MgO 1.63 0.0405

SO3 1.86 0.0233
* Based on TGA.

2.2. XRD and TGA/DTG Analysis

XRD was carried out on unhydrated and hydrating samples with a PANalytical X’Pert
PRO diffractometer applying CuKα radiation of wavelength 1.54 Å. Diffraction patterns
were obtained between 5 and 65◦2θ with a step size of 0.02◦ 2θ. The mineralogy of the
various samples was determined by using PANalyticals X’Pert Highscore Plus software in
conjunction with the Powder Diffraction File database.

Once the various phases were identified, the crystallographic details of each phase
were refined using the Rietveld method within the Highscore software to produce a pattern
match. TGA was carried out using Netzsch’s TG 209 F1 Libra. The temperature was
increased up to 1000 ◦C at a rate of 10 ◦C/min in a flowing nitrogen environment. Derivative
thermogravimetric analysis (DTG) was used to confirm the presence of phases and hydrates
by delineating the peak boundaries.

2.3. Isothermal Calorimetry Analysis

The heat of hydration of the three samples was measured over seven days using a TAM
Air isothermal calorimetry apparatus. After preparation, approximately 5 g of each paste
was transferred to a plastic ampoule and inserted into the calorimeter at a temperature of
20 ◦C. The heat evolution after the initial 45 min was measured as a function of time.

3. Experimental Results
3.1. Solid Phases XRD

Figure 1 shows the XRD pattern at 1, 7 and 28 days for the three w/c ratios. The
main hydration products in each are portlandite, ettringite and AFm phases, assumed to
be carboaluminates rather than monosulfate as ettringite remains stable over the 28-day
period. XRD patterns between 8–13 angle 2θ in Figure 2 for the three w/c ratios show no
hemicarbonate and monocarbonate forming after one day of hydration. After seven days,
however, both are observed, and again after 28 days. At one day, all the reactive aluminates
form ettringite and, as the calcium sulphate is depleted, the remaining calcium aluminates
will hydrate and will form hemi- and monocarbonate instead of ettringite.
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3.2. Thermogravimetric Analysis

The TGA traces of the unhydrated clinker are shown in Figure 3. Using the mass
loss between 350–425 ◦C and 550–725 ◦C, the percentage of Portlandite and calcite can be
determined pre-hydration using their molar mass as shown in Table 2. The TGA traces at 1,
7 and 28 days for the three w/c ratios are shown in Figure 4. As can be seen, Portlandite
undergoes dehydroxylation over this temperature range with Ca(OH)2 converted to CaO.
Table 2 shows that Portlandite increases over time, which has been observed in the XRD
scans. Between 600−750 ◦C, the mass loss can be used to determine the calcite (CaCO3)
content. As shown in Table 2, the CaCO3 content remains reasonably stable over time.
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Table 2. Proportion of Portlandite and Calcite over time from TGA (Molar mass of Portlandite, Water
and CO2 taken as 74.093, 18.015 and 44.01 g/mol, respectively).

w/c Ratio
Age Portlandite (%) c.450 ◦C Calcite (%) c.700 ◦C

Unhydrated Clinker 1.60% 6.00%

0.4
1-day 10.40 4.16
7 days 14.39 3.95

28 days 15.34 4.02

0.5
1-day 11.35 4.07
7 days 15.62 3.75

28 days 16.65 3.27

0.6
1-day 10.68 3.59
7 days 15.42 3.23

28 days 16.61 3.21

3.3. Heat of Hydration Analysis

The isothermal calorimetry heat of hydration results (Figure 5) from 45 min onwards
show the start of the acceleration period at approximately 3 h. The measurements both
show three separate peaks of heat evolution. The previous work [17,18] relates the second
peak to sulphates previously bound to the C-S-H dissolving into solution and producing
a further release of heat. The third peak at two days is thought to be due to the later
precipitation of AFm phases.
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4. Thermodynamic Modelling of Cement Hydration

The thermodynamic modelling was undertaken using the PHREEQC geochemistry
software [7] which, using appropriate input for the normative cement content, calculating
the clinker dissolution rate while accounting for accessory phases, oversaturation and
alkalis binding to the C-S-H, determines the equilibrium phase assemblages over time, as
described in detail in [5,6,19,20]. Anhydrite (CaSO4) is referred to here as gypsum. The
cemdata18 thermodynamic database [21] was used for the solubility products of solids
relevant for the cement system, including AFm and AFt phases like monosulfate, monocar-
bonate and hemicarbonate and ettringite, respectively, and hydrotalcite, hydrogarnet and
C–S–H phases.

4.1. C-S-H Gel

Holmes et al. [20] showed how C-S-H gel solubility can be modelled as a series of
discrete solid phases (DSPs) derived from the CSH3T and CSHQ end-members in the
cemdata18 database. It was shown that for OPC hydration, solid solution models are not
required, which only requires portlandite and a suitable C-S-H gel phase of fixed Ca:Si and
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H (water):Si molar ratio of between 1.6–1.8 and 2.0–2.1, respectively. Therefore, to model
the C-S-H here, the CSH165 phase is used [22] that has Ca:Si and H:Si ratios of 1.65 and
2.1167, respectively.

4.2. Thermodynamic Descriptions of SO3, MgO and Periclase

The cemdata18 database does not hold thermodynamic descriptions of the SO3, MgO
or Periclase phases. Using the thermodynamic information in Table 3, the phase descrip-
tions below were derived and copied into the PHASES data block in PHREEQC. The log K
predictions were compared against the NEA methods [23] which assume the heat capacity
of reaction is (i) equal to zero (van Hoff method) or (ii) constant (δrCp = c). As may be
seen in Figure 6, the three methods show excellent comparisons. The PHREEQC input
file also accounts for the kinetic dissolution of the clinker phases as a function of time,
oversaturation of the precipitating hydrates from 0–12 hrs and the release and uptake of
alkalis by the C-S-H gel, as described in previous publications [5,6,19,20].
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Table 3. Thermodynamic data to derive SO3, MgO and Periclase phases taken from [21].

Mineral Name
[Composition] Dissolution Reaction

SO3
[SO3]

vi Component ∆fGo
m

(J/mol)
∆fHo

m
(J/mol)

So
m

(J/K/mol)
Cp

o
m

(J/K/mol)
RMM

(g/mol) Z (-)

−1 SO3 −374,141 −451,663 79.496 No data 80.0642 0
−1 H2O −237,181.38 −285,837.3 69.92418 75.360,526 18.01528 0
2 H+ 0 0 0 0 1.00794 1
1 SO4−2 −744,459 −909,697 18.82801 −266.09072 96.0636 −2

∆rΞo
m −133,136.62 −172,196.7 −130.59217 NAN — 0

Phase description for PHREEQC PHASE data block
SO3 + 1 H2O = + 2 H+ + 1 SO4

−2

log_k 23.3244
delta_h −172.197 kJ/mol

analytical_expression −6.821263 0 8994.406 0 0

MgO
[MgO]

vi Component ∆fGo
m

(J/mol)
∆fHo

m
(J/mol)

So
m

(J/K/mol)
Cp

o
m

(J/K/mol)
RMM

(g/mol) Z (-)

−1 MgO −569,314 −601,600 26.95 37.237 40.3044 0
−2 H+ 0 0 0 0 1.00794 1
1 Mg+2 −453,985 −465,929 −138.072 −21.662091 24.305 2
1 H2O −237,181.38 −285,837.3 69.92418 75.360526 18.01528 0

∆rΞo
m −121,852.7454 −150,166.3 −95.09782 16.461435 — 0

Phase description for PHREEQC PHASE data block
MgO + 2 H+ = + 1 Mg+2 + 1 H2O

log_k 21.3476
delta_h−150.166 kJ/mol

analytical_expression −10.72611 0 8100.045 1.979844 0

Periclase
[MgO]

vi Component ∆fGo
m

(J/mol)
∆fHo

m
(J/mol)

So
m

(J/K/mol)
Cp

o
m

(J/K/mol)
RMM

(g/mol) Z (-)

−1 MgO −569,314 −601,600 26.95 37.237 40.3044 0
−2 H+ 0 0 0 0 1.00794 1
1 Mg+2 −453,985 −465,929 −138.072 −21.662091 24.305 2
1 H2O −237,181.38 −285,837.3 69.92418 75.360526 18.01528 0

∆rΞo
m −121,852.7454 −150,166.3 −95.09782 16.461435 — 0

Phase description for PHREEQC PHASE data block
MgO + 2H+ = + 1Mg+2 + 1H2O

log_k 21.3476
delta_h −150.166 kJ/mol

analytical_expression −10.72611 0 8100.045 1.979844 0

5. Analysis Output
5.1. Comparison between Measured and Predicted Portlandite and Calcite Contents

As shown in Table 2, the percentages of portlandite and calcite were measured using
TGA to be 1.44 and 4.75%, respectively, in the unhydrated clinker, although some pre-
hydration is thought to have occurred. Figure 7a–c and Table 4 compare the measured and
predicted Portlandite and calcite contents over the initial 28 days for the three w/c ratios.
There is reasonably good agreement between both for these minerals. Calcite is predicted
to dissolve quicker than measured. This may lead to higher amounts of Ca-rich hydrates
being formed than maybe would be seen experimentally.
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Table 4. Comparison between measured and predicted portlandite and calcite contents over time.

Portlandite Calcite
w/c

Ratio
Time (Days) Measured

(%)
Predicted

(%)
Measured

(%)
Predicted

(%)

0.4
1 day 10.41 6.44 4.16 3.19
7 days 14.39 12.34 3.95 2.67
28 days 15.34 13.41 4.02 2.65

0.5
1 day 11.35 5.59 4.07 2.78
7 days 15.62 10.77 3.75 2.32
28 days 16.65 11.85 3.27 3.27

0.6
1 day 10.68 4.94 3.59 2.46
7 days 15.42 9.52 3.23 2.05
28 days 16.61 10.50 3.21 1.95

However, the thermodynamic model only predicts the formation of monocarbonate.
This can be attributed to the drawbacks in modelling carbonate-AFm as its formation is
strongly dependent on kinetics, whereas thermodynamic modelling is usually only carried
out with a thermodynamic stable state.

5.2. Phase Assemblages

A typical phase assemblage over time for the three w/c ratios is shown in Figure 8.
The main AFm phase predicted to precipitate is monocarbonate. In Portland cements,
sulfates will react with aluminates to form ettringite. The addition of calcite in the CEM I
cement promotes the formation of carboaluminates. Along with sufficient SO4 available
for reaction, ettringite is stabilised as seen in the XRD patterns. Thus, the formation of
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hemicarbonate is observed in measured data but not always predicted by thermodynamic
modelling, reflecting its kinetic persistence experimentally. Additionally, it has been demon-
strated above that the dissolution of calcite is much higher than that measured, which
would further support the precipitation of monocarbonate over hemicarbonate due to the
higher CaCO3 content. The calculated saturation indices of hemicarbonate and monocar-
bonate are shown in Figure 9a–c. As shown, monocarbonate is predicted to form after
2–3 days while hemicarbonate is undersaturated and would not precipitate as it is not
thermodynamically stable.
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Matschei et al. [8] developed predicted phase assemblages that will typically occur in
hydrated OPC, as shown in Figure 10, and the dependence on initial sulfate (SO3/Al2O3)
and carbonate CO2/Al2O3) contents to determine which AFm phase(s) will form. The
total molar amount of Al2O3 reacted was taken as cumulative reacted gypsum, initial C3A,
C4AF and SO3 contained in each of the 47 PHREEQC solutions. CO2 was taken as the
cumulative amount of reacted calcite. As shown, the cement here falls within Zone I, with
the AFm phase predicted to form as hemicarbonate (Hs) and monosulfate (Ms) along with
AFt. As shown, the ‘turning point’ is at ~2 days, which is the same time as monocarbonate
forms and calcite begins to dissolve into the solution, as shown in the phase assemblage
in Figure 8. The full change in carbonate and sulfate over the 1250 days of hydration
is shown in Figure 11, where significant changes in the latter during the initial hour of
hydration, particularly as the accessory clinker phases (lime, calcite, gypsum, periclase,
arcanite and thenardite) reach equilibrium with the pore solution in the first time-step
and are immediately available to contribute to the formation of hydrate phases. Indeed,
Figure 12 shows how the immediate release of sulfate from Na2SO4, K2SO4 and SO3 has
partly precipitated as gypsum, as the volume of gypsum is higher than expected in the first
hour of hydration.
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Matschei et al. [8] found that OPC with very low carbonate contents will form hemi-
carbonate during hydration but it was not stable at 25 ◦C in the presence of excess calcite.
While it is not explicitly stated what defines ‘excess calcite’, modern commercial CEM I
cement can contain up to 5% calcite, in accordance with BS EN 197 [16].

Lothenbach et al. [21] demonstrated the difference in solid phase assemblage in thermo-
dynamic models using the cemdata07 [24] and cemdata18 database. Using the cemdata07
database, their work predicted approximately 25% of the overall volume of hydrated paste
was taken up by monosulfate and hemicarbonate. As calcite proportions in the cement
increased to 4%, monosulfate and hemicarbonate were converted to monocarbonate. Using
cemdata18, however, very minor (<5%) proportions of monosulfate and hemicarbonate
were predicted for similar calcite levels. Additionally, the volume of monocarbonate was
less, as it replaced the other AFm phases.

To provide some predictions of monosulfate, monocarbonate and hemicarbonate
formation from the thermodynamic point of view, Figures 13–15 presents the carbonate
and sulfate ratios for (a) 0 wt.%, (b) 2 wt.% and (c) 5 wt.% calcite contents for the CEM I
cement described in Table 1 with w/c ratios of 0.4, 0.5 and 0.6.
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Figure 15. Thermodynamic predictions of carbonate and sulfate ratios for (a) 0%, (b) 2% and (c) 5%
calcite for the w/c = 0.6 cement.

The results show that three distinct zones are created where only AFt (ettringite),
gypsum and calcite (zone I), AFt, monocarbonate (Mc) and calcite (zone II) and AFt,
monosulfate, hemicarbonate (Hc) and calcite (zone III) are present. As may be seen,
hemicarbonate and monosulfate are thermodynamically predicted to form at c.2 days only
in zone III for the 0 wt.% calcite in all cases, where beyond this, only monocarbonate is in
equilibrium. There is little difference between the ratios for the 2 wt.% and 5 wt.% calcite
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contents. Typical corresponding phase assemblages for each calcite content is shown in
Figure 16.
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6. Conclusions

Results from 27 cement samples with three w/c ratios at 1, 3 and 28 days has shown
that, due to a number of reasons, such as kinetics, thermodynamic equilibrium and the
faster dissolution of calcite than measured, monocarbonate is often predicted to form over
hemicarbonate, regardless of w/c ratio. Additionally, the overriding stability of mono-
carbonate in thermodynamic models also leads to its predicted formation, even though
hemicarbonate is observed in experimental measurements. Furthermore, while hemicar-
bonate is predicted to form in OPC models, it only appears in systems with <2 wt.% of
calcite, where it is replaced by monocarbonate. In the XRD readings above, hemicarbonate
is shown to exist in a CEM cement with a calcite content of just under 5 wt.%.

During early hydration, AFt and AFm phases are predicted to precipitate. This is
confirmed thermodynamically as the immediate dissolution of SO3, Na2SO4 and K2SO4
partly precipitates as gypsum in the first hours of hydration. After approximately two
days, monosulfate and hemicarbonate phases are expected to form due to their sulfate
(SO3/Al2O3) and carbonate CO2/Al2O3) ratios. However, the thermodynamic model only
predicts monocarbonate is calculated to equilibrate.
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