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Abstract: Since ETSI introduced the architectural framework of network function virtualization 

(NFV), telecom operators have paid more attention to the synergy of NFV and cloud computing. 

With the integration of the NFV cloud platform, telecom operators decouple network functions from 

the dedicated hardware and run virtualized network functions (VNFs) on the cloud. However, vir-

tualization degrades the performance of VNF, resulting in violating the performance requirements 

of the telecom industry. Most of the existing works were not conducted in a cloud computing envi-

ronment, and fewer studies focused on the usage of enhanced platform awareness (EPA) features. 

Furthermore, few works analyze the performance of the service function chain on a practical cloud. 

This paper facilitates the OpenStack cloud with different EPA features to investigate the perfor-

mance effects of VNFs on the cloud. A comprehensive test framework is proposed to evaluate the 

verification of functionality, performance, and application testing. Empirical results show that the 

cloud system under test fulfills the requirements of service level agreement in Rally Sanity testcases. 

The throughput of OVS-DPDK is up to 8.2 times as high as that of OVS in the performance test. 

Meanwhile, the hardware-assisted solution, SR-IOV, achieves the throughput at near the line rate 

in the end-to-end scenario. For the application test, the successful call rate for the vIMS service is 

improved by up to 14% while applying the EPA features on the cloud. 

Keywords: enhanced platform awareness; test framework; cloud computing; network function  

virtualization; performance evaluation 

 

1. Introduction 

In 2012, the European Telecommunications Standards Institute (ETSI) launched an 

industry working group to comply with the Network Function Virtualization (NFV) 

framework and standardization [1]. The primary goal of NFV technologies is to decouple 

network functions from the dedicated hardware to be run on commodity servers as soft-

ware. With the help of NFV, telecom operators exploit commercial off-the-shelf servers 

and virtualization technologies to provide a variety of network functions. Therefore, tel-

ecom operators reduce capital expenditure while improving flexibility from the benefits 

of NFV technologies [2]. Cloud computing also provides scalability and availability for 

NFV services to be more reliable in business operations [3,4]. These advantages are attrac-

tive for telecom operators towards NFV on the cloud. 

OpenStack, an open-source cloud operation system, plays a critical role in network 

function virtualization infrastructure (NFVI) and virtualized infrastructure managers 

(VIM) [5] of the ETSI framework. Telecom operators build an on-premises cloud on mul-

tiple nodes and deploy virtual network functions (VNFs) on top of the NFVI. However, 

the network functions in virtual machines (VMs) require a hypervisor or virtual machine 

manager (VMM) to mediate available virtual and physical resources. This extra layer 

brings challenges to the performance degradation of VNFs [6] on a cloud system. The 

Citation: Chung, W.-C.; Wang, Y.-H. 

The Effects of High-Performance 

Cloud System for Network Function 

Virtualization. Appl. Sci. 2022, 12, 

10315. https://doi.org/10.3390/ 

app122010315 

Academic Editors: Pedro Valero-

Lara and Antonio J. Pena 

Received: 17 September 2022 

Accepted: 11 October 2022 

Published: 13 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 10315 2 of 24 
 

performance on computation and networking is dramatically reduced without any im-

provement. 

Many works attempt to improve the efficiency of virtual resources on the cloud from 

different perspectives. The workflow scheduling problem is addressed in [7–9] to improve 

the workload execution on the cloud system. The authors of [10–14] focus on VM place-

ment to improve the power consumption for the cloud system. Some works [15–19] fur-

ther take the load-balancing issue into consideration for better resource utilization in VNF 

placement. Previous works have proposed effective mechanisms and algorithms to im-

prove the resource management of VNF on the cloud. However, rare works emphasize 

performance enhancement techniques from scratch for system virtualization. 

Intel Corp. devotes massive efforts to enhanced platform awareness (EPA) [20] for 

virtualization technologies. The bottlenecks of computation performance are enhanced by 

CPU pinning for allocating dedicated CPU cores to a virtual machine (VM), and 

hugepages for improving effective memory access. A practical cloud system with en-

hanced technologies for computation has been preliminarily verified in [21]. For the en-

hancement of network performance, Open vSwitch with DPDK (OVS-DPDK) and single 

root I/O virtualization (SR-IOV) are two effective technologies to overcome the communi-

cation bottleneck. However, most of the previous works mainly focus on the perspective 

of network devices [22–25] rather than a comprehensive verification of the overall cloud 

system under test (SUT). 

In addition, a telecom service usually requires chaining of network functions, named 

the service function chain (SFC) [26], to serve the NFV application. The length of a service 

chain has an impact on network performance. When the path of a service chain contains 

only one VNF on the cloud system, the packets are sent from a traffic generator to the 

target VNF via a physical network interface controller (NIC). The packets are then trans-

mitted back to the traffic generator through a physical top-of-rack (TOR) switch. This com-

munication scenario is called a physical–virtual–physical (PVP) flow. If the SFC is com-

pounded by two VNFs, the packets are sent from a traffic generator to one VNF and for-

warded to another VNF before transmitting back to the traffic generator. This scenario is 

a typical physical–virtual–virtual–physical (PVVP) flow. When the service path becomes 

longer, the workload of components in this path is heavier. Thus, the performance is de-

teriorated, but less attention has been paid to this in the literature. 

Considering the telecom service as the use case, the telecom operators replace the 

proprietary hardware with commodity servers for hosting VNFs for the SFC. Before de-

ploying telecom services on the cloud, the operator has to verify and validate if the cloud 

system is adequate for the carrier-grade services. According to the ETSI testing specifica-

tion [27], both functionality and performance tests are the basis of the verification process 

on the NFV cloud. The functional tests aim to check if the system works correctly. After 

verifying that the system is operational, evaluating the performance of the system is also 

necessary. In many use cases, network performance is a critical concern in deploying and 

orchestrating cloud services. However, the performance is degraded due to the virtual-

ization overhead. Telecom operators need a systematic approach to verify the network 

performance with different enhanced technologies of the cloud system. 

In this regard, this paper investigates the enhancement of network techniques to mit-

igate the deterioration in a practical cloud system. A comprehensive testing framework is 

proposed to evaluate the cloud system with different EPA technologies in three areas, 

which are functionality, performance, and application. The functionality tests focus on 

instantiating VMs, building a tenant network, and the connectivity of VMs. In perfor-

mance tests, both PVP and PVVP scenarios are considered to estimate the network 

throughputs. As for the application test, this paper not only deploys a virtual IP multime-

dia subsystem (vIMS) on the cloud, but also evaluates the performance of the vIMS via a 

session initiation protocol (SIP) stress benchmark. The performance metric of successful 

call rate is measured for the vIMS test. Empirical results show that the throughput of the 

PVP test performs near the line rate when applying the SR-IOV acceleration, while OVS-
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DPDK approaches 90% of the line rate when packet size is 1518. Increasing the number of 

lcores and pmd-cpus further enhances the performance by about 50% in OVS-DPDK. In 

addition, the successful call rates in vIMS validations with different techniques are similar 

in lower call rates. When the call rate exceeds 100, the improvement brought by OVS-

DPDK is up to 14%. To sum up, the contributions of this paper are: 

• Proposing a comprehensive testing framework to investigate a practical cloud system 

on different areas of performance effects. 

• Conducting performance comparisons between the generic and the enhanced cloud 

system for NFV. 

• Considering both PVP and PVVP packet paths for different SFC scenarios. 

• Deploying the vIMS application on the enhanced cloud system to show effective per-

formance. 

The rest of this paper is organized as follows. Section 2 presents the background and 

discusses related works to support our research. The comprehensive testing framework 

and the test methodologies are proposed in Section 3. Section 4 introduces the experiments 

and results. Finally, Section 5 concludes this paper with summarizing remarks. 

2. Background and Related Works 

This section first introduces the background of enhancement technologies and then 

discusses the most relevant works to improve the performance of virtualization on the 

cloud. 

2.1. Background 

Regarding the virtualization of network functions, VM and container are two com-

mon technologies for running applications on a shared resource. The VM shares the un-

derlying hardware via the VMM. Each VM is running with a guest operating system and 

dependencies of the application. On the other hand, the container simply packages the 

user program and corresponding dependencies to run the application. Multiple contain-

ers on the same host share the same application runtime environment of an operating 

system. Therefore, the container consumes less warmup time and fewer system resources 

[28]. However, running a container relies on sharing the host operating system, which 

may lead the system to a security issue. Most of the cloud service providers tend to pro-

vide the container service based on a VM for better isolation and easy management in the 

data center. Tackling the performance degradation of a VM is a pressing matter. Accord-

ingly, this paper takes the VNF as an example to verify the proposed framework. 

Regarding the enhanced technologies for the computation, EPA features involve typ-

ical mechanisms in the operating system such as CPU isolation, CPU pinning, and 

hugepages. The resource allocation scheme with a nonuniform memory access (NUMA) 

awarded topology is also considered as the performance impact in cloud computing. As 

for network improvement, many technologies are proposed for providing high-speed net-

working in the literature. This paper takes Open vSwitch (OVS), OVS-DPDK, and SR-IOV 

as examples for accelerating the packet processing in the cloud system. The basic concept 

of each enhanced technology adopted in this paper is introduced as follows. 

• CPU Isolation 

When the system administrator sets the isolated CPU mask, the system cannot assign 

regular jobs to the isolated CPU cores. In other words, each isolated CPU core remains 

idle if the system does not dispatch any specific process to the isolated CPU core. There-

fore, the system administrator must set the isolated CPU properly; otherwise, the setting 

wastes computing resources for the system. 

• CPU Pinning 

CPU pinning enables the system to assign a job to specific CPU cores. In general, CPU 

isolation and CPU pinning are complementary. CPU isolation reserves a set of CPU 
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resources, while CPU pinning allows the specific process to acquire the dedicated re-

sources. If the system administrator enables these two settings, the VM process does not 

have to compete for CPU resources with others [29]. Accordingly, eliminating the CPU 

resource competition keeps the VM process away from the context switch overhead. 

• Nonuniform Memory Access 

NUMA is a memory architecture in a multi-CPU computer system. Figure 1 depicts 

a host consisting of two NUMA nodes. Each NUMA node has its CPU cores and memory 

resources. Memory access is faster if CPU cores access the memory on the same NUMA 

node. However, if CPU cores have to access the memory from another NUMA node, the 

crossing Quick Path Interconnect (QPI) access results in increasing access latency. 

 

Figure 1. NUMA architecture. 

• Hugepage 

The page table in the memory stores the translation between logical and physical 

addresses. The system locates the memory address according to the page number and 

corresponding frame number in the page table. Accessing a particular memory address 

requires several mappings to find the accurate translation. A translation lookaside buffer 

(TLB) is responsible for speeding up the effective memory access via caching the recent 

address translation. The more the cache hits, the less access time there is for the memory 

addressing. Hugepage technology enables a large page size to provide more memory 

space for data access [30]. Therefore, the number of TLB misses and page faults is de-

creased, so as to accelerate the effective memory access. 

• OVS 

In the past, VMs did not share a virtio ring with the user space process in a host [31], 

i.e., vswitch. The packet processing had to be handled in the kernel space. Figure 2 illus-

trates the network architecture of OVS. ovs-vswitchd is used to set up the OVS data path. 

The configuration of ovs-vswitchd is stored in ovsdb. Therefore, ovs-vswitchd connects 

to the ovsdb-server to retrieve the configuration. When a cloud system adopts the OVS 

network, the OVS kernel module looks up the flow table when a packet is received. If the 

flow matches a network rule, the packet is processed according to the actions associated 

with the flow. When the packet does not match any rule in the flow table, the OVS kernel 

module queues the packet to the user space. This procedure introduces context switches 

and results in slowing down the packet processing. 
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Figure 2. OVS architecture. 

• OVS-DPDK 

The data plane development kit (DPDK) aims to accelerate the packet processing. 

The network architecture of OVS-DPDK is shown in Figure 3. With the help of vhost-user, 

VMs share the memory space with user space processes in the host. Sharing memory be-

tween two processes is implemented by a file descriptor. The file descriptor can be ac-

cessed by the vhost process (i.e., virtual switch). The NIC driver, such as UIO or VFIO 

[32], is responsible for OVS-DPDK to handle the user space interrupt. Therefore, OVS-

DPDK can process the packets in user space and pass them through the kernel. The kernel 

bypass eliminates the overhead of system calls and context switches. OVS-DPDK also pro-

vides a poll mode driver (PMD) [33] to poll the network queue. The dedicated CPU cores 

assigned to PMD are helpful to alleviate the interrupt overhead. 

 

Figure 3. Network architecture of OVS-DPDK. 

• SR-IOV 

With the help of the input–output memory management unit (IOMMU), the VM can 

access Peripheral Component Interconnect (PCI) devices directly, called PCI passthrough. 

Direct memory access (DMA) remapping [34] allows the VM access to physical memory 
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via the virtual address. When a VM accesses the network device, the interrupt remapping 

is triggered to send an interrupt to the VM instead of the host. With DMA and interrupt 

remapping, the network interface is assigned directly to a VM so that the VMM will not 

affect the performance. 

In this regard, accessing the NIC directly to a VM can significantly improve the net-

work performance. However, allocating a dedicated physical NIC for each VM is too ex-

pensive. The SR-IOV is proposed to tackle this problem. As shown in Figure 4, a NIC with 

SR-IOV support can provide physical function (PF) and virtual function (VF) [35]. The PF 

has all the functions of the NIC and is responsible for managing the VFs. The VF is a sim-

plified PCIe function and allows the VM to access the physical NIC directly. Accordingly, 

the network performance of a VM can be improved in the cloud system. However, SR-

IOV is a hardware-assisted technique, and it is not easy to live-migrate a VM with an SR-

IOV VF. Procuring the specific NIC is also necessary while adopting the SR-IOV, so as to 

increase the cost of capital expenditure and management efforts for the cloud. 

 

Figure 4. Network architecture of SR-IOV. 

2.2. Related Works 

Although NFV realizes flexible deployment, virtualization technology introduces the 

performance overhead. Rojas-Cessa et al. [36] estimated the performance of virtualized 

and nonvirtualized routers to show the degradation caused by virtualization. Their work 

revealed the performance impact of the number of cores and different packet sizes. The 

experimental results also demonstrate the benefit of using multicores. On the other hand, 

the performance degradation of traditional Linux I/O for high-speed networking has been 

discussed in previous works [37–39]. The main reasons are summarized as the long paths, 

the frequent interrupts, and the repeated data replications. Therefore, researchers try to 

reduce the duplication of packets between the physical NIC and the user space process. 

Previous works focus on reducing or avoiding hardware interruptions after the physical 

NIC receives packets. This paper attempts to investigate the enhanced technologies on 

packet acceleration for a cloud system. 

In the past, the virtual switch ran as a user space process and could not share the 

memory with VMs. Owing to this limitation, the virtual switch had to receive packets 

from the kernel space. However, moving the packets between kernel space and user space 

introduces too many context switches to deteriorate the performance of VMs. To relieve 

the bottleneck, Virtual Open System Corp. designed the vhost-user for VM to share its 

memory with a virtual switch. Paolino et al. [31] then proposed a virtual switch, named 

Snabbswitch, and evaluated the performance of the virtual switch, such as OVS, OVS-
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DPDK, VFIO, and SR-IOV. In that work, the authors considered the scenarios of one VM 

and two VMs, in which each VM is enhanced with a 1G hugepage. However, only the 

process of Snabbswitch is allocated with the dedicated CPU cores. In addition, the exper-

iments in their work were not conducted in a cloud system. 

Pitaev et al. [40] compared the performance of three different I/O architectures: OVS-

DPDK, FD.io VPP, and SR-IOV. The experimental environment contains a host and a 

packet generator. The target VM is deployed directly on the KVM hypervisor rather than 

a cloud system. The results show that SR-IOV is better than OVS-DPDK or FD.io VPP in 

IPv4 forwarding and the SFC scenario. In addition, the limitation of OVS-DPDK or FD.io 

VPP is that enough cores must be bound for PMD to maintain high throughputs. This 

constraint also restricts the maximum number of available VMs. The container technique 

is becoming more popular. G. Ara et al. [41] evaluated the network performance of various 

vswitches such as Linux-bridge, OVS-DPDK, VPP, and SR-IOV in containers. The results 

demonstrate that SR-IOV outperforms OVS-DPDK in terms of throughput. 

R. Bonfiglia et al. [23] also tested the effects of OVS-DPDK and OVS on VMs and 

containers. The throughputs of a VM and a container are similar when both are applied 

to the OVS. In addition, the OVS-DPDK performs higher throughputs when compared to 

the OVS. Kourtis, M. A. et al. [22] went further to compare the network performance of a 

VNF with/without OVS-DPDK and SR-IOV. The authors used DPI as the VNF for testing. 

The results demonstrate that the throughput of a VM with OVS-DPDK or SR-IOV is higher 

than that of a VM without the OVS-DPDK or SR-IOV technique. Nevertheless, the previ-

ous works were not conducted on a cloud system. This paper tends to conduct experi-

ments on a practical cloud system and verify the empirical results, which are rarely given 

attention. 

The authors in [6,42] indicated that the VM in cloud computing has an issue of per-

formance degradation. F. Callegati [43] et al. compared the performance of the Linux 

bridge and OVS in OpenStack. The authors found that the performance of the Linux 

bridge is worse than that of OVS. Tsai, M. H. et al. [21] discussed the effect of enabling 

EPA on a computing-intensive cloud system. They exploited CPU pinning and hugepages 

to improve the computing capability of VMs in NFVI. The results show that the compu-

ting performance of VMs could be enhanced by up to 7%. However, the performance of 

network enhancement techniques was not further discussed in the previous work. 

To sum up, this paper synthesizes the relevant works on experimental conditions as 

shown in Table 1. The conditions include whether the enhanced techniques are applied or 

not, and whether the experiments are conducted in a cloud system. This table helps us 

find out where the discussion has been inadequate over the years. Based on the table, 

hardware accelerator architectures such as SR-IOV are rarely introduced for the verifica-

tion on a cloud system. Even if the SR-IOV is adopted, the proposed experimental envi-

ronment is not designed for ETSI NFV framework. Furthermore, EPA technologies en-

hance the performance of VNFs in either computing or networking. Previous work rarely 

considers the corresponding technologies at the same time. Therefore, this paper consid-

ers the OpenStack cloud as the system under test and attempts to assess the effect of EPA 

features for the NFV on a practical cloud system. 

Table 1. Summary of related works. 

Works Hugepage 
CPU  

Pinning 
OVS 

OVS-

DPDK 
SR-IOV In Cloud 

Tsai et al. [21] v v    v 

Kourtis et al. [22]    v   

Gallenmuller et al. [24]    v   

Kawashima et al. [25]   v v v  

Huang et al. [28]   v  v  

Paolino et al. [31] v  v v v  
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Shanmugalingam et al. [38]   v v   

Pitaev et al. [40]    v v  

Ara et al. [41]    v v  

Callegati et al. [43]   v   v 

Ours v v v v v v 

3. Methodology 

This paper designs a comprehensive testing framework for the NFV cloud. The goal 

is to verify the performance effects of a practical cloud system with different enhanced 

technologies. This section first introduces the proposed framework and then discusses the 

key factors of the network performance. 

3.1. Overview of Testing Framework 

Figure 5 illustrates an implementation of the proposed test framework in this paper. 

This framework is aligned with the ETSI NFV framework and mainly contains NFVI, VIM, 

VNFM, NFVO, and test host. NFVI is composed of physical servers in the cloud system. 

The virtualization layer pools and extracts the physical resources into virtualized re-

sources. The virtualized resources are allocated and managed by VIM. In this paper, 

OpenStack plays the role of VIM. The testing tools build the testing environment via 

OpenStack services. Most testing tools are installed in the test host, which is independent 

of the nodes of a cloud system. Therefore, the testing is triggered on the host and con-

nected to OpenStack services via the external network and a TOR switch. Only if the tools 

are authorized with a credential file are the test processes then activated and verified on 

the OpenStack system. According to the ETSI TST specification, the proposed framework 

considers a complete cloud system under test. The verifications of the cloud SUT empha-

size three areas: functionality, performance, and application testing. 

 

Figure 5. Proposed testing framework for comprehensive verifications on the NFV cloud. 

3.1.1. Functionality Verification 

In the functionality test, the verification focuses on testing the basic operations of a cloud 

system. The main goal is to verify the core service operations in a cloud system via a set of test 

tools. For example, the system under test in this paper is an OpenStack cloud. The Functest 

[44] provides a set of test cases to verify core services for operating the OpenStack cloud. If the 

services of OpenStack are active properly, the testing process further evaluates the operating 

performance of each service, e.g., the turnaround time of each test case. This performance eval-

uation checks if OpenStack services finish the specific operations in time. If the operations 

break the time limits, the relevant services work incorrectly. This paper applies Rally Sanity to 

check if the services fulfill the predefined SLA. 
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For the test cases in Functest, this paper adopts Healthcheck and Rally_Sanity to test 

the primary functionalities of an OpenStack cloud system. In Healthcheck test suite, Con-

nection_check is used to check the connectivity of OpenStack Endpoints. Vping_ssh tests 

whether the VM can be accessed via SSH from the external network. Vping_userdata is 

used to verify if the VMs can communicate with each other through the internal network. 

Rally_Sanity evaluates the operating performance of OpenStack services. The primary ser-

vices include Nova, Neutron, Cinder, Keystone, and so on. Nova is used to provide com-

puting instances. Neutron is responsible for the networking as a service. Cinder provides 

the block storage service. Keystone is used to provide the authentication service. These 

test cases of Rally_Sanity measure the time taken by each scenario to make sure that all 

tests fulfill the SLA. 

3.1.2. Performance Verification 

In the performance test of a SUT, the verification focuses on testing the network per-

formance of VNFs. The main goal is to benchmark the target VNF and evaluate the per-

formance metric. This paper adopts NFVBench [45] to evaluate the throughput of VNFs 

on the SUT. In NFVBench, TRex is applied as a traffic generator and a TestPMD as a target 

VNF to forward the received packets. When launching the performance test, TRex sends 

packets from the test host to the target VNF. Before reaching the VNF, the packets are 

transmitted throughout the TOR switch and the OpenStack cloud system. VNF then uses 

L2 Forward to send the packets back to the traffic generator. 

In practice, a telecom application usually deploys multiple VNFs and connects these 

VNFs to the SFC. When the number of VNFs in the SFC increases, the packet path of this 

SFC is longer. The length of a packet path has an impact on the network performance. 

This paper considers different traffic flows for performance test scenarios: PVP and PVVP 

tests. The experiment of the PVP scenario is used to estimate the performance of end-to-

end traffic. As shown in Figure 6, the traffic generator installed on the test host sends out 

the packets to the target VM deployed on a cloud system. When the VM receives packets, 

the VM sends the packets back to the traffic generator through the TOR switch. 

 

Figure 6. Packet path in PVP scenario. 

The PVVP scenario is conducted for the multiple VNFs of a simple SFC scenario as 

shown in Figure 7. The traffic generator sends out the packets to the first VM. When the 

first VM receives packets, the first VM forwards the packets to the other VM via the east–

west traffic in OpenStack. The VM then sends the packets back to the traffic generator 

through the TOR switch. Lengthening the packet path increases network communications 

in the data plane. If a component in the packet path cannot handle the packets, the 
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throughput worsens. Therefore, this experiment involves both evaluations of the north–

south traffic and the east–west traffic in the SUT. 

 

Figure 7. Packet path in PVVP scenario. 

3.1.3. Application Verification 

Regarding the application test, the verification focuses on deploying the NFV appli-

cation on the cloud system. The main goal is to validate the feasibility and effectiveness 

of SUT. This paper applies the Clearwater vIMS to act as the telecom service. The archi-

tecture of Clearwater vIMS is shown in Figure 8. 

 

Figure 8. Architecture of Clearwater vIMS. 

The main function of Bono is Proxy Call Session Control Function (P-CSCF). P-CSCF 

acts as an edge proxy and is responsible for the network address translation and the con-

nection between the user equipment and the Clearwater system. Sprout is the SIP route 

in Clearwater. Sprout is responsible for user authentication and SIP registration. The ma-

jor functions of Sprout are the Interrogating Call Session Control Function (I-CSCF) and 

the Serving Call Session Control Function (S-CSCF). S-CSCF manages and controls the 

communications, while I-CSCF sends SIP requests to the appropriate S-CSCF according 

to the information stored in Homer. Application servers provide advanced features. The 

features include call forwarding, call recording, etc. Homer is used to store the settings 

files of the application service. Dime acts as a diameter gateway and is composed of 

Homestead and Ralf. Ralf is used to trigger functions, while Homestead is an HSS cache 
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for storing user information. Vellum is responsible for the state storing and exploits Cas-

sandra to store all long-lived data. Lastly, Ellis is responsible for user sign-up and pass-

word management. 

In this paper, the SIP stress is used to benchmark the vIMS application. SIP stress 

simulates the phone calls among multiple user equipments (UEs) and records the num-

bers of outgoing calls, successful calls, failed calls, etc. The successful call rate is measured 

as the performance metric of vIMS. A higher successful call rate indicates better perfor-

mance. To deploy the Clearwater vIMS on the cloud system, this paper adopts Cloudify 

Manager [46] to manage and orchestrate VNF resources in OpenStack. Deploying vIMS 

requires customized configurations according to the SUT environment, e.g., authentica-

tion endpoint, credential file of the cloud, VM flavor, connection keypair, etc. After setting 

the corresponding information of the SUT, Cloudify Manager deploys the vIMS template 

according to the configurations. After the deployment is successful, the SIP stress is acti-

vated. 

3.2. Verification Procedures and Factors 

The testing framework is made up of open-source tools and is easy to reproduce. 

First, the testing tools are containerized and can be run as docker instances on the test 

host. Second, each verification has to set the configuration file according to the SUT envi-

ronment before running the test case. Finally, the testing tools are launched to perform 

the SUT test. In some cases, the SUT system requires some adjustments according to a 

specific deployment of the cloud system. For example, the authentication endpoint varies 

among different cloud systems. The testing should modify the credential file according to 

the cloud system. As another example, enabling DPDK requires a dedicated network in-

terface. The SUT system has to attach network interface to the provider network with 

OVS-DPDK. 

Figure 9 depicts an overview of the verification procedure in the proposed test frame-

work. Before deploying the SUT system, the first step is to plan and determine which 

kinds of EPA features should be enabled on an OpenStack cloud for verification. The sec-

ond step is to deploy the OpenStack cloud with corresponding configurations to enable 

the accelerating technologies for the SUT test. The third step is verifying and evaluating 

the cloud systems with different benchmarking tools. The last step is collecting and vali-

dating the test results. The verification process will be ended until all the enhanced fea-

tures are verified and accomplished. 

 

Figure 9. Verification procedures. 

Once the deployment of a customized OpenStack is complete, the verification and 

evaluation process tests the cloud system in terms of functionality, performance, and VNF 

application. The functionality tests verify the general operations of a cloud system and the 

connectivity of VMs. If the basic functions operate correctly, the next step is to evaluate 

the performance test of VNF networks on the cloud. Afterward, the application-level test 

is optional to deploy the SFC service and trigger the corresponding tools for a stress test. 

To evaluate the impacts on the SUT verification, this paper conducts the verification fac-

tors from different perspectives: packet size, VM size, and call rate. 
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• Packet Size 

Different applications have different requirements for performance characteristics. 

The difference in these characteristics requires different packet sizes in various applica-

tions [47]. When the header of each packet is the same, the larger payload results in a 

larger packet. The application of interactive video often requires low latency. Therefore, 

the large packet size is not suitable for interactive video applications. However, the appli-

cation using small packets tends to send out huge amounts of packets. If the virtual switch 

cannot afford the massive packets, some packets are dropped and the throughput is de-

creased. In this paper, the test framework adopts the NFVBench tool to generate PVP and 

PVVP traffic to investigate the throughput impacts on different packet sizes. 

• VM Size 

In general, packet processing requires CPU resources. For example, a VM running 

the VNF uses two cores to forward the packets. The other jobs also consume CPU re-

sources on the same VM. If the target VNF only has two vCPU cores, the CPU resources 

are not sufficient for packet processing. When the number of vCPU cores is too small, the 

VM is not able to handle all the packets. As a result, the dropped packets deteriorate the 

network throughputs. Therefore, this paper compares the throughputs of 2-core VM and 

4-core VM with OVS-DPDK. This evaluation tool in this experiment is also NFVBench. 

This experiment focuses on the importance of resource allocation. In this paper, CPU pin-

ning and CPU isolation techniques are applied to limit the number of dedicated cores. 

• Call Rate 

In the application test, this paper applies the vIMS as a VNF application on the cloud. 

The test not only deploys cloud vIMS with different enhanced features, but also adopts 

the SIP stress test to evaluate the performance of the application. Figure 10 depicts the 

sequence of a phone call in this experiment. First of all, UE1 sends out the invite request 

to initiate a call session. The 100 trying prevents the retransmissions of invite requests. 

When the UE2 receives the invite request, UE2 sends the 180 ringing back and alerts the 

user. If the user answers the phone call, UE2 sends a 200 OK. When UE1 receives the 200 

OK from UE2, UE1 replies to UE2 with an ACK. After these steps are accomplished, the 

call session is established. When the conversation is finished, both UE1 and UE2 hang up 

the phone call by sending the BYE message. When a UE receives a BYE message, the UE 

replies the 200 OK to the BYE. Afterward, the session is terminated. Throughout the ex-

periment, the successful call is measured to indicate how many packets are processed 

without a loss. The growth of the call rate increases the workload of the application. The 

successful call rate is declined when the cloud vIMS cannot afford the workload. 

 

Figure 10. SIP call flow. 
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4. Experiments and Evaluations 

In NFV applications, network performance is a critical concern, and enhanced tech-

nologies are proposed to improve packet processing. These technologies bring different 

effects of performance improvement to a cloud system. This section firstly verifies the 

functional operations of OpenStack cloud and then evaluates the performance of the 

clouds with different network enhancement techniques. Lastly, the vIMS application is 

deployed to validate effective performance. The cloud system applying the OVS network-

ing is a generic case to act as the baseline in the experiment. To further improve the per-

formance, the cloud system enables CPU pinning and hugepages while applying net-

work-accelerating technologies such as OVS-DPDK or SR-IOV. 

4.1. Testbed Environment 

Table 2 summarizes the host configurations of the testbed. The test host is equipped 

with Intel i7-3770 and 16 G memory. Both control and compute hosts have two Xeon Silver 

CPUs and 160 G memory. In addition, all of these hosts have one Intel XXV710 as the 

network interface and each host is interconnected via a 10 Gbps TOR switch. The testing 

tools are installed in the test host. The OpenStack cloud system is composed of two nodes 

in the testbed. The first node acts as the control host for providing the core OpenStack 

services, such as Keystone, Nova API, Nova conductor, Neutron, and Glance. The other 

node is a compute host for launching VM resources via Nova Hypervisor. 

Table 2. Host configurations of the testbed. 

 Test Host Control Host Compute Host 

CPU Intel i7-3770 Xeon(R) Silver 4210 × 2 Xeon(R) Silver 4210 × 2 

Cores 4 10 × 2 10 × 2 

Memory 4G × 4 16G × 10 16G × 10 

Host OS Ubuntu 18.04 Server Ubuntu 18.04 Server Ubuntu 18.04 Server 

Physical NIC XXV710 XXV710 XXV710 

Table 3 summarizes the settings in the performance experiments, such as network 

enhancement techniques, scenarios, packet sizes, and enhanced configurations. In perfor-

mance testing, this paper focuses on four experiments. The first test compares the network 

performance of the cloud systems with different network acceleration techniques. The sec-

ond experiment shows the performance of different traffic flows. The traffic flows include 

PVP and PVVP scenarios. The third experiment evaluates the throughputs with different 

packet sizes. The fourth experiment shows the impact of different VM sizes. Because OVS-

DPDK requires additional configurations of lcore and pmd-cpu, the last experiment in-

vestigates the performance impact of the number of lcores and pmd-cpus in OVS-DPDK 

tests. 

Table 3. Experimental settings in performance tests. 

Network Technique Generic OVS/OVS-DPDK/SR-IOV 

Scenario PVP/PVVP 

Packet Size 64/128/256/512/1024/1280/1518 

vCPU (DPDK) 2/4 

lcore + pmd-cpu (DPDK) 2 + 2/4 + 4 

Table 4 summarizes the experiment to estimate the performance of vIMS with differ-

ent network techniques. The vCPU of a VM is set to 1 or 2. The call rate varies from 80 to 

140. In the OVS-DPDK scenario, all the components are deployed with the features of CPU 

pinning and hugepages. This experiment also considers the impact of lcore and pmd-cpu. 
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In this experiment, the pmd-cpu and lcore are set to 4. Each NUMA node has 2 lcores and 

2 pmd-cpus. 

Table 4. Experimental settings in application tests. 

Enhancement Tech Generic OVS/OVS-DPDK 

vCPU 1/2 

Call Rate 80/100/120/140 

lcore + pmd-cpu (DPDK) 4 + 4 

4.2. Results of Functional Verifications 

After the deployment of a cloud system, the first experiment is to verify the operation 

of the SUT. All test cases should be passed if no error occurs during the functional tests. 

The results of the functionality test are summarized in Table 5. The test cases of 

Healthcheck and Rally_Sanity are shown in Appendixes A and B. The result of 

Healthcheck verifies all the operations of OpenStack are correct. Rally_Sanity checks if all 

the tests meet the requirements of the SLA. Because all the scenarios pass the tests of 

Rally_Sanity, the OpenStack services can finish their jobs in time. 

Table 5. Result of the functionality test. 

Test Suite Pass/Total Result of Test Cases 

Healthcheck 9/9 Appendix A 

Rally_Sanity 56/56 Appendix B 

4.3. Results of Performance Verifications 

This section presents the performance evaluation and analysis. Firstly, the perfor-

mance results of different network techniques are evaluated in the experiments. After-

ward, the impacts of each verification factor are discussed in terms of packet size, VM 

size, traffic flow, and enhanced data plane. 

4.3.1. Different Network Techniques 

The experiment uses a VM with two cores and different improvement technologies. 

The test scenario is PVP. As a baseline, the VM in the OVS scenario does not apply en-

hancement techniques, while the others enable CPU pinning or hugepages. Experimental 

results in different packet sizes are shown in Figures 11–13. The reason behind each ex-

periment is discussed as follows. 

 

Figure 11. Throughputs of different technologies in PVP scenario when packet size is 64. 
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Figure 12. Throughputs of different technologies in PVP scenario when packet size is 512. 

 

Figure 13. Throughputs of different technologies in PVP scenario when packet size is 1518. 

Because OVS receives packets in kernel space, this method still needs a context switch 

if a packet does not match any rules. The kernel-user space interrupt degrades the network 

performance. As shown in these three figures, the throughputs with OVS are the lowest. 

When the packet size is 64, the throughput is only 0.16 Gbps. The throughput varies with 

the increment in packet size. The maximum throughput is 2.8 Gbps when the packet size 

is 1518. These results show a low performance without any enhancement. 

The difference between OVS and OVS-DPDK is to exploit vhost-net or vhost-user for 

NIC emulation. OVS uses vhost-net to enable the virtual switch to process the packets in 

kernel space. This method introduces the overhead of context switches and deteriorates 

the performance. On the contrary, OVS-DPDK uses vhost-user to enable the guest to com-

municate with the virtual switch. Therefore, OVS-DPDK mitigates the performance deg-

radation. On the other hand, the VM with OVS is not improved with CPU pinning and 

hugepages. CPU pinning helps the VM possess dedicated cores. These cores avoid the VM 

sharing CPU resources with other processes in the host. Therefore, the overhead of context 

switches is relieved. Hugepages are used to speed up memory access. 

Considering the enhancement of the virtual switch, the throughputs of using OVS-

DPDK are better than that of OVS. The throughput of OVS-DPDK is 1.4 Gbps when the 

packet size is 64. This throughput of OVS-DPDK is 8.2 times as high as the throughput of 

OVS. The maximum throughput with OVS-DPDK is 9.9 Gbps when the packet size is 1518. 

This value is 3.5 times as high as the throughput with OVS. Therefore, the throughput of 

OVS-DPDK ranges from 3.5 to 8.2 times as high as the OVS. However, the throughputs 

with OVS-DPDK are lower than a hardware-based solution. 
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SR-IOV is the hardware-assisted solution. This technique improves network perfor-

mance significantly and allows a VM to access the physical NIC directly via the virtual 

function. The throughput of SR-IOV approaches 9.5 Gbps when the packet size is 64. 

When the packet size is higher than 64, the throughputs are 9.9 Gbps. As shown in the 

results, the performance of SR-IOV is near the line rate. With SR-IOV, the system assigns 

dedicated virtual functions to the VMs. These virtual functions help the VM access the 

physical NIC directly. Therefore, the impact of VMM is relieved. 

4.3.2. Different Packet Sizes 

As shown in Figures 11 and 13, the throughputs of OVS are 0.16 Gbps and 2.8 Gbps 

when the packet sizes are 64 and 1518. In the OVS network, the throughput in packet size 

1518 is 16.4 times as high as the throughput in packet size 64. In addition, the throughput 

of OVS-DPDK in packet size 64 is only 1.4 Gbps. When the packet size is 1518, the through-

put of OVS-DPDK is 9.93 Gbps. In the OVS-DPDK network, the throughput in packet size 

1518 is 7 times as high as the throughput in packet size 64. Regarding SR-IOV, the through-

puts are 9.5 Gbps, 9.96 Gbps, and 9.96 Gbps when the packet sizes are 64, 512, and 1518. 

Therefore, the impact of packet size is less significant when packet processing capacity is 

higher. 

Because the VM accesses the physical NIC directly, the performance of SR-IOV is 

near the line rate in all cases of different packet sizes. On the contrary, the throughputs of 

OVS and OVS-DPDK dramatically decrease when the packet size is small. That is because 

the sender generates more packets when the packet size is small. A large workload of 

packet processing is not affordable for virtual switches because the capacity of each virtual 

switch for processing packets is limited. The more packets per second the sender gener-

ates, the more packets are dropped. Therefore, the throughput of small packet size is lower 

than that of a large one. 

4.3.3. Different VM Sizes 

Considering that the packet processing consumes CPU resources, the next experi-

ment tests the throughputs of VMs with different numbers of cores. Because the through-

put of the VM with SR-IOV is too high while the throughput of the VM with OVS is too 

low, this experiment only presents the performance of applying OVS-DPDK, as shown in 

Figure 14. Results show that the throughput grows in all packet sizes when the VM size 

increases. 

 

Figure 14. Throughputs of VMs with different cores in the PVP scenario. 

The throughputs of a 2-core VM are 1.4 Gbps, 5.9 Gbps, and 9.93 Gbps when the 

packet sizes are 64, 512, and 1518, respectively. Regarding a 4-core VM, the throughputs 

are 1.42 Gbps, 6.7 Gbps, and 9.96 Gbps when the packet sizes are 64, 512, and 1518, 
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respectively. The improvement ranges from 0.2% to 16% in this experiment. The reason is 

that if the VM only has two CPU cores, the preemption occurs frequently while the CPU 

core is processing. Therefore, the throughput is decreased if the CPU resources are lim-

ited. Increasing the number of CPU cores relieves the overhead of preemption so that the 

throughput is enhanced. 

4.3.4. Different Traffic Flows 

The experiment deploys two VMs with different improvement technologies to eval-

uate the throughput, as shown in Figures 15–17. The SR-IOV brings the best performance 

among all technologies. The throughputs of OVS and OVS-DPDK increase when the 

packet is larger. However, the packet path in this experiment is longer than that of the 

PVP scenario. If the traffic flow is longer, the workload of the components in this path is 

too heavy to decline the throughputs. When the packet sizes are 64, 512, and 1518, the 

throughputs of OVS are 0.147 Gbps, 1 Gbps, and 2.58 Gbps, respectively. The throughputs 

are 0.8 Gbps, 3.5 Gbps, and 6.2 Gbps of OVS-DPDK when the packet sizes are 64, 512, and 

1518, respectively. Therefore, in the PVVP scenario, the improvement brought by OVS-

DPDK ranges from 2.4 to 5.5 times the OVS. Regarding the SR-IOV, the throughputs are 

above 8 Gbps in all packet sizes. However, the throughputs of SR-IOV are still the best. 

 

Figure 15. Throughput of different technologies in PVVP scenario when packet size is 64. 

 

Figure 16. Throughput of different technologies in PVVP scenario when packet size is 512. 
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Figure 17. Throughput of different technologies in PVVP scenario when packet size is 1518. 

Regarding packet loss, the loss rate of OVS or OVS-DPDK decreases when increasing 

the packet size. Meanwhile, SR-IOV has the lowest drop rate among the other network 

technologies. The reason is that SR-IOV mitigates the interference of VMM. Therefore, VM 

can access the physical NIC directly. On the other hand, the OVS has the highest drop 

rate. That is because OVS introduces a lot of context switches between the kernel-user 

space. OVS-DPDK mitigates the context switches between the kernel-user space and polls 

the queues of NICs with dedicated cores. Therefore, the drop rate of OVS-DPDK is lower 

than that of OVS. 

4.3.5. Enhanced Data Plane 

Although OVS-DPDK eliminates the context switch in the kernel-user space, the per-

formance is still affected by the configurations of OVS-DPDK. Applying OVS-DPDK re-

quires CPU resources for lcore and pmd-cpu. The lcore is used by non-datapath threads 

to remove the idle and wrong flows while the pmd-cpu needs to poll the queues of phys-

ical NICs and virtual NICs. If the number of pmd-cpu is too small, the lack of pmd-cpu 

will decrease the throughput. Therefore, this experiment is to verify the performance im-

pact of lcore and pmd-cpu to enhance the data plane. 

As shown in Figure 18, the throughput increases when the number of lcore and pmd-

cpu grows. When the packet sizes are 64, 512, and 1518, the throughputs of 2 lcores and 2 

pmd-cpus are 1.4 Gbps, 5.9 Gbps, and 9.9 Gbps. Under the same packet sizes, the through-

puts of 4 lcores and 4 pmd-cpus are 1.9 Gbps, 9 Gbps, and 9.9 Gbps. Therefore, the 

throughputs of 4 lcores and 4 pmd-cpus are improved by up to 50%. Furthermore, the 

enhancement of increasing lcore and pmd-cpu is even more obvious than increasing the 

VM size. The reason is that each VM consumes the virtual NIC resource and increases the 

workload of pmd-cpu. When the number of pmd-cpus is small, the pmd-cpu may not 

process so many packets. Thus, the packets are dropped if pmd-cpus are not affordable. 
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Figure 18. Throughputs of OVS-DPDK when lcore and pmd-cpu increase. 

4.4. Results of Application Verifications 

After testing the network performance of a SUT, this experiment deploys vIMS as a 

cloud application to show the improvement of a virtual switch. Subsequently, the SIP 

stress is installed to benchmark the successful call rate (SCR) of the vIMS with different 

call rates. A higher successful call rate means better performance. 

In this experiment, each component of vIMS has only 1 vCPU. As shown in Figure 19, 

the successful call rate declines along with the increment in the call rate. When the call rate is 

lower than 100, the workload is affordable for both OVS and OVS-DPDK. Therefore, the suc-

cessful call rates are higher than 95%. In addition, the successful call rate is significantly im-

proved from 72% to 86% by OVS-DPDK when the call rate is 120. That is because the compo-

nents of vIMS with OVS-DPDK are enhanced by DPDK, CPU pinning, and hugepages. These 

technologies improve both networking and computing. Therefore, the successful call rate with 

OVS-DPDK performs better than OVS. 

 

Figure 19. Successful call rate of vIMS with OVS and OVS-DPDK. 

When the call rate is higher than 120, the missing call rate of OVS ranges from 27% 

to 48%. The reason is that interactive video applications tend to use smaller packets [47]. 

When many small packets are transmitted to the application, the workload of packet pro-

cessing is increased. Therefore, the missing call rate also increases when the virtual switch 

cannot afford the loading. While applying OVS-DPDK, the missing call rate is reduced by 

up to 14%. The next experiment further improves the performance of vIMS with OVS-

DPDK in different VM sizes. Previous experiments illustrate that the VM size brings im-

pacts on the performance of VNF. Therefore, this experiment increases the number of CPU 

cores for each component in vIMS. As shown in Figure 20, the vIMS performance is im-

proved if the VM size is increased to 2 CPU cores. The successful call rate increases from 

61% to 79% when the call rate is 140, which means that the enhancement is 18%. 
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Figure 20. Successful call rate of vIMS with different VM sizes using OVS-DPDK. 

5. Conclusions 

As ETSI proposes the NFV architecture using virtualization technologies, the perfor-

mance degradation of virtualization is a challenge to meet the SLA of the telecom indus-

try. This paper attempts to conduct the performance effects of EPA techniques for the NFV 

cloud. The EPA techniques adopted in our testbed include CPU pinning, CPU isolation, 

hugepages, OVS-DPDK, and SR-IOV. This paper further proposes a test framework for 

the comprehensive verification and evaluation of the cloud system under test in terms of 

functionality, performance, and application. The major advantages of this framework are 

threefold. First, this framework is based on open-source projects to eliminate the expendi-

ture on system verification and evaluation. Second, the framework is easy to implement 

and expandable. The testing procedures are triggered on the test host with the test con-

tainers for different benchmarking tools. Third, for the performance testing, the verifica-

tion not only compares the impacts of different network techniques, but also considers the 

length of packet path, different VM sizes, and performance tuning of packet processing, 

e.g., lcore and pmd-cpu. 

Results show that all the cases in functional tests are passed. The test cases in 

Rally_Sanity also fulfill the requirement of SLA. Throughputs of OVS-DPDK are up to 8.2 

times as high as that of generic OVS networking. Regarding the performance at the appli-

cation level, the SCR of vIMS is improved by up to 14% with OVS-DPDK. Our experiments 

further obverted that the throughput is limited when the packet size is small. This deteri-

oration happens when the virtual switch cannot process a huge number of packets. The 

throughput declines when the packets are dropped. Regarding the end-to-end scenarios, 

the length of a traffic flow in PVP or PVVP has different impacts on the throughput with 

different networking techniques. The results and findings of this work are valuable for 

further reference in workload scheduling, resource placement, or load-balancing mecha-

nisms. To extend this work, deploying a feature cloud and verifying the SUT automati-

cally are interesting works. Further research will be to model the specific application per-

formance based on the proposed testing method and the enhanced technologies, which 

are also left for future work. 
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Appendix A 

Table A1. Result of Healthcheck 

Test Cases Project Tier Result 

connection_check functest healthcheck PASS 

tenantnetwork1 functest healthcheck PASS 

tenantnetwork2 functest healthcheck PASS 

vmready1 functest healthcheck PASS 

vmready2  functest healthcheck PASS 

singlevm1 functest healthcheck PASS 

singlevm2 functest healthcheck PASS 

vping_ssh functest healthcheck PASS 

vping_userdata functest healthcheck PASS 

Appendix B 

Table A2. Result of Rally_Sanity 

Scenario Errors  Success (SLA)  

Authenticate.keystone 0 ✔ 

Authenticate.validate_cinder 0 ✔ 

Authenticate.validate_glance 0 ✔ 

Authenticate.validate_heat 0 ✔ 

Authenticate.validate_neutron 0 ✔ 

Authenticate.validate_nova 0 ✔ 

CinderQos.create_and_list_qos 0 ✔ 

CinderQos.create_and_set_qos 0 ✔ 

CinderVolumes.create_and_delete_snapshot 0 ✔ 

CinderVolumes.create_and_delete_volume 0 ✔ 

CinderVolumes.create_and_delete_volume-2 0 ✔ 

CinderVolumes.create_and_delete_volume-3 0 ✔ 

CinderVolumes.create_and_extend_volume 0 ✔ 

CinderVolumes.create_from_volume_and_delete_volume 0 ✔ 

CinderVolumeTypes.create_and_list_volume_types 0 ✔ 

CinderVolumeTypes.create_volume_type_and_encryp-

tion_type 
0 ✔ 

GlanceImages.create_and_delete_image 0 ✔ 

GlanceImages.create_and_list_image 0 ✔ 

GlanceImages.create_image_and_boot_instances 0 ✔ 

GlanceImages.list_images 0 ✔ 

HeatStacks.create_check_delete_stack 0 ✔ 

HeatStacks.create_suspend_resume_delete_stack 0 ✔ 

HeatStacks.create_update_delete_stack 0 ✔ 

HeatStacks.list_stacks_and_resources 0 ✔ 

KeystoneBasic.add_and_remove_user_role 0 ✔ 

KeystoneBasic.create_add_and_list_user_roles 0 ✔ 

KeystoneBasic.create_and_delete_role 0 ✔ 

KeystoneBasic.create_and_delete_service 0 ✔ 

KeystoneBasic.create_and_list_tenants 0 ✔ 

KeystoneBasic.create_and_list_users 0 ✔ 
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KeystoneBasic.create_tenant 0 ✔ 

KeystoneBasic.create_tenant_with_users 0 ✔ 

KeystoneBasic.create_update_and_delete_tenant 0 ✔ 

KeystoneBasic.create_user 0 ✔ 

KeystoneBasic.get_entities 0 ✔ 

NeutronNetworks.create_and_delete_networks 0 ✔ 

NeutronNetworks.create_and_delete_ports 0 ✔ 

NeutronNetworks.create_and_delete_routers 0 ✔ 

NeutronNetworks.create_and_delete_subnets 0 ✔ 

NeutronNetworks.create_and_list_networks 0 ✔ 

NeutronNetworks.create_and_list_ports 0 ✔ 

NeutronNetworks.create_and_list_routers 0 ✔ 

NeutronNetworks.create_and_list_subnets 0 ✔ 

NeutronNetworks.set_and_clear_router_gateway 0 ✔ 

NeutronSecurityGroup.create_and_delete_secu-

rity_group_rule 
0 ✔ 

NeutronSecurityGroup.create_and_delete_security_groups 0 ✔ 

NovaKeypair.boot_and_delete_server_with_keypair 0 ✔ 

NovaServerGroups.create_and_delete_server_group 0 ✔ 

NovaServers.boot_server_and_list_interfaces 0 ✔ 

NovaServers.boot_server_associate_and_dissociate_float-

ing_ip 
0 ✔ 

NovaServers.boot_server_from_volume_and_delete 0 ✔ 

NovaServers.pause_and_unpause_server 0 ✔ 

Quotas.cinder_update 0 ✔ 

Quotas.cinder_update_and_delete 0 ✔ 

Quotas.neutron_update 0 ✔ 

Quotas.nova_update 0 ✔ 
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