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Featured Application: A real-time approach based on an improved label template matching algo-

rithm with an RGB-D sensor was proposed to recognize and locate pallets in a warehouse envi-

ronment in this paper. The application of this technology can reduce labor and cost savings, as 

well as provide a level of warehouse automation. 

Abstract: (1) Background: Forklifts are used widely in factories, but it shows the problem of large 

uncertainties when using an RGB-D sensor to recognize and locate pallets in warehouse environ-

ments. To enhance the flexibility of current autonomous forklifts in unstructured environments, the 

improved labeled template matching algorithm was proposed to recognize pallets. (2) Methods: The 

algorithm comprises four steps: (i) classifying each pixel of a color image with the color feature and 

obtaining the category matrix; (ii) building a labeled template containing the goods, pallet, and 

ground category information; (iii) compressing and matching the category matrix and template to 

determine the region of the pallet; and (iv) extracting the pallet pose from information in respect of 

the pallet feet. (3) Results: The results show that the proposed algorithm is robust against environ-

mental influences and obstacles and that it can precisely recognize and segment multiple pallets in 

a warehouse with a 92.6% detection rate. The time consumptions were 72.44, 85.45, 117.63, and 

182.84 ms for detection distances of 1000, 2000, 3000, and 4000 mm, respectively. (4) Conclusions: 

Both static and dynamic experiments were conducted, and the results demonstrate that the detec-

tion accuracy is directly related to the detection angle and distance. 
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1. Introduction 

Forklifts are one of the most popular types of handling equipment on the market [1], 

and the demand for them tends to increase year by year [2], because they offer many ben-

efits, such as improved productivity and reduced manual handling [3]. The Research and 

Markets research agency predicts that the forklift market will record sales of about 2.2 

million units in 2023, with a compound annual growth rate of about 9%. According to a 

report by the PR Newswire agency, the forklift market will grow at a rate of 7.8% annu-

ally, increasing from 2 billion USD in 2020 USD to 2.9 billion in 2035 [4]. The application 

of such a large number of forklifts has and will result in their involvement with high ac-

cident and fatality rates around the world [5–7]. Researchers have reported that most ac-

cidents can be attributed to human operator errors, such as a lack of attention, mispercep-

tion, or misjudgment [8,9]. The US Occupational Safety and Health Administration 

(OSHA) also reported that a significant number of forklift accident cases are caused by 

Citation: Zhao, J.; Li, B.; Wei, X.;  

Lu, H.; Lü, E.; Zhou, X. Recognition 

and Location Algorithm for Pallets 

in Warehouses Using RGB-D Sensor. 

Appl. Sci. 2022, 12, 10331. 

https://doi.org/10.3390/ 

app122010331 

Academic Editors: Weiran Yao, 

Weiran Yao and Xiaojie Su 

Received: 13 September 2022 

Accepted: 11 October 2022 

Published: 13 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 10331 2 of 19 
 

reduced situation awareness of the forklift operator [10,11]. The prevalence of this type of 

accident clearly highlights the importance of developing automatic-drive forklifts. 

The use of automatic-drive forklifts still requires the development of key technolo-

gies for tasks such as autonomous navigation, pallet location, and pallet recognition. Au-

tomated guided vehicles (AGVs) have been proposed since the early 1950s, and the first 

AGV was created in America [12,13] to help improve the autonomous navigation of fork-

lifts. Researchers have intensely studied optimal control theories and optimization meth-

ods for solving AGV path planning and navigation problems in recent years [14–17]. 

Zhang et al. [15] proposed a learning-based algorithm to solve global path planning prob-

lems, which involved training a deep convolutional neural network with dual branches 

(DB-CNN). However, it is more difficult to recognize and locate pallets in actual ware-

houses because pallets are placed with high uncertainty. To address this issue, the authors 

of [18,19] defined a semi-structured environment representing work conditions that con-

tained information about pallets and the environment as a priori information, including 

the desired pose, goods loaded on pallets, and goods on a shelf or the ground.  

The present investigation aimed to address three key issues that must be overcome 

in semi-structured environments. First, a forklift algorithm has to identify pallets with 

uncertainty and subsequently maintain a continuously accurate estimation of the pose 

parameters while approaching and picking up pallets [19]. The pose of a target pallet can-

not be predetermined due to errors in human operation. Second, a forklift algorithm 

should identify various pallets because several types of pallets and goods are used in 

warehouses. Third, the algorithm should have the ability to segment multiple pallets. Seg-

menting pallets situated within a small distance of each other is difficult. If the pallet de-

tection algorithm cannot overcome these problems, then the fork may damage goods and 

lead to security incidents. 

Some researchers have explored various algorithms for pallet recognition based on a 

single sensor. An algorithm based on calculating geometry using pallet edges and shape 

features was investigated, but the features could be incorrectly extracted when the pallet 

was blocked or the illumination conditions changed. In [19,20], the pose of single pallets 

was estimated based on geometry features extracted from distance data provided by Li-

DAR with geometry classifiers. In addition, the authors of [21–26] obtained pallet pose 

information based on pallet size and edge features extracted from a color image provided 

by a camera. To reduce the effect of the environment, pallets were identified with marks 

attached to the pallet feet in [27–29]. However, the processes of adding and calibrating the 

mark were found to lead to higher costs and more human work.  

Additionally, some researchers have focused on recognizing pallets from images and 

extracting pose parameters using depth sensors such as laser radar and structured light. 

The authors of these studies were able to achieve more robust performance in semi-struc-

tured environments. In [18], a three-foot pallet template was created to match the scatter-

ing image of LiDAR data. In a color image, an edge template was used to match the dis-

tance-transform image. The two results were combined based on the maximum percent-

age of couple points. In [30], a pallet model was created and pose was estimated using an 

ICP method applied to LiDAR data. In [31], a classifier with a feature grid template and 

gray-scale features (normalized pair differences) was proposed, and it was shown that 

pallets could be identified with the classifier. The algorithms used color thresholds in [32–

34]. Moreover, other researchers trained a classifier [35] to detect a wooden pallet from 

images using Haar-like features, and the results were verified with an adaptive structural 

feature and direction-weighted overlapping ratio in [36]. 

The aforementioned approaches used different types of sensing, but they all involved 

single-sensor devices, such as laser scanners and cameras (monocular or stereo). A laser 

scanner only provides distance information, but it has the advantages of being stable and 

robust against light. In contrast, a camera provides vision data that include rich infor-

mation. However, an RGB-D sensor combines a camera and a distance range sensor to 

obtain both color and distance information. The camera obtains image data by CMOS, and 
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each pixel of the image records red, green, and blue color data [37–40] that are used for 

recognition. The depth sensor obtains depth information for every pixel. For tray image 

recognition, researchers have mostly focused on the recognition of a single tray at the ex-

pense of the spatial relationship between trays and the environment. For pallet image 

recognition, researchers have mostly focused on the recognition of a single pallet at the 

expense of the spatial relationship between pallets and the environment [41–43].  

This paper proposes an algorithm to recognize pallets and locate them using an RGB-

D sensor in a semi-structured environment. This algorithm was adapted to situations with 

multiple pallets and with differently shaped pallets. An accuracy experiment was con-

ducted to test the algorithm. A labeled template matching algorithm was developed to 

accelerate the matching speed, and this algorithm served as a basis for studying object 

detection in unstructured environments. The simplicity of operation should enhance the 

flexibility of autonomous forklifts and expand the applicability of autonomous forklifts in 

complex environmental conditions. 

2. Methods 

2.1. Establishing Forklift Detection Model and Situation Analysis 

Figure 1 shows the considered situation detection model of approaching a pallet. The 

model consists of a forklift, RGB-D sensor, goods, and pallets. Multiple pallets are used to 

load differently sized goods, and the pallets are located on the ground, goods, or shelves. 

Two coordinate frames were constructed: world coordinate frame {W}, where the X−Y 

plane is the ground, and sensor coordinate frame {C}, where the X−Y plane is parallel to 

the ground. The detection algorithm aims to obtain the center position of the pallet surface 

in {C} and the angle of {C} to Y−Z, which is represented as ( ��
� , ��

� , ��
� , θ). The pallet 

has four degrees of freedom: moving along the X, Y, and Z axes of {W} and rotating along 

the Z axis of {W} (Figure 1).  

In previous studies, scholars attempted to recognize single pallets without taking the 

goods, the ground, and shelves into account. However, not only pallets but also goods 

and the ground must be detected during the process of engaging a pallet. Moreover, the 

combination of pallets and goods must always be predetermined such that information in 

respect of goods and the ground can be utilized as the detection target. With more target 

information, a detection algorithm can be more robust in complicated situations. 

 
(a) 
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(b) 

Figure 1. Schematic of forklift detection situation. (a) Side view schematic. (b) Overhead view 

schematic 

2.2. Algorithm Flow 

The algorithm is divided into three steps: calculating initial data, obtaining the range 

of interest (ROI) of the pallet, and estimating pallet pose parameters. After running step 1 

once, the system loops through steps 2 and 3 to update the pose parameters of the pallet, 

as shown in Figure 2. 

In step 1, the algorithm obtains information in respect of pallets and goods and then 

selects the classifier model that classifies each pixel of the color image. The initial distance 

is a statistic from the distance data of pallet category pixels, which is the initial parameter 

for the next step. 

In step 2, the algorithm obtains a new RGB and depth image from the sensors. If the 

target distance is in the effective range, then the compression unit size is calculated based 

on the projective principle. After classifying each pixel, a category matrix records the label 

information. A template is created based on the target information. To accelerate the 

matching process, both the category matrix and template are compressed. The labeled 

template is matched to the category matrix, and the match score of pixels is calculated. If 

the match score is higher than the threshold score, then the pallet ROI is confirmed. 

In step 3, the foot coordinates of the pallet are obtained from the ROI using the pallet 

geometry information. In sequence, the pallet center coordinate and the pallet angle are 

calculated. A sliding average filter is constructed to filter the pose parameters. Finally, the 

distance of the target is updated to step 2 to calculate the template size. 

This algorithm achieves real-time parameter updates. All the details are described in 

following sections. 
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Figure 2. Flow chart of the proposed algorithm. 

2.3. Classifier Training 

2.3.1. Analysis and Feature Selection 

The choice of features has a considerable impact on the speed and accuracy of an 

algorithm. Due to real-time and pixel-level accuracy requirements, the features should be 

easily extracted, pixel-level, and distinguishable. Three different types of pallets are pre-

sented in Figure 3. As mentioned above, the objects to be recognized are pallets, goods, 

and the ground/shelf. The most common features can be divided into three parts: shape, 

texture-based features, and color. The features are next discussed with reference to the 

real situation.  

(1) It is difficult to apply the same shape feature to represent all pallets and quickly 

extract information because a pallet’s shape and size are variable from changing angles.  
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(2) Texture-based features are generally local features that use a statistical vector to 

express the gray change in the cell of each pixel, such as histogram of oriented gradient 

(HOG), local binary patterns (LBP), and scale-invariant feature transform (SIFT). These 

features are widely used in complex object recognition tasks [44,45]. However, pallets are 

often composed of plastic with a smooth and flat surface. Occasionally, texture infor-

mation may not be enough for the algorithm to segment the target and background, and 

more time is needed for classification due to expensive computation.  

(3) Because a source image is recorded in the RGB channel format, it can be trans-

formed into HSI color space to help easily segment a target with little computational cost. 

As shown in Figure 2, the color feature can fit most situations. Therefore, effective color 

components R, G, B, H, and S were selected as the input features to train the classifiers in 

this study. 

   

(a) (b) (c) 

Figure 3. Pallet examples in warehouse. (a) Example a. (b) Example b. (c) Example c. 

2.3.2. Classifier Construction and Category Matrix Creation 

This study uses a data set with the aim of performing pixel classification. The data 

set contains 21 RGB images of three types of pallet taken at different distances. The dataset 

was collected and photographed with a Bumblebee XB3 camera (supplied by the Point 

Grey company) in the XiZhou agriculture material warehouse, XinTang, Guangdong. The 

dataset was annotated with Photoshop (Adobe Systems Incorporated). The pixels corre-

sponding to goods, pallet, pallet hole, and the ground are represented as A, B, C, and D, 

respectively. Each category contains more than 20,000 pixels as the classifier sample and 

the sample size of each category is balanced. This study divides the training and testing 

into 80% and 20%, respectively. 

The input vector x is presented as x�� , which contains R, G, B, H, and S color infor-

mation of pixels, which is shown in Equation (1). The output is the category correspond-

ing to each pixel, which is represented by numbers, as shown in Equation (2).  

x�� =  

⎣
⎢
⎢
⎢
⎡
�
�
�
�
� ⎦

⎥
⎥
⎥
⎤

 (1)

where i and j represent the pixel’s column and row, respectively.  

�� =  �

1 �� ∈ �
2 �� ∈ �
3 �� ∈ �
4 �� ∈ �

 (2) 

This study uses support vector machine (SVM) as the pixel classifier. SVM classifier 

is a supervised machine learning technique, and it is one of the most popular discrimina-

tive classifiers [46]. This classifier applies the kernel trick to maximum-margin 
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hyperplanes to solve linear and nonlinear classification problems. A linear discriminant 

function is defined as shown in Equation (3). 

�(�)  =  ���(�� ∗ x + �∗) (3) 

where ��  and �∗ are the optimal parameters of maximum-margin hyperplanes, which 

were obtained from Equation (4). 

��� ���
�,�

1

2
‖�‖� 

������� ��   ���(����� + �) ≥ 1, ∀�, � 

(4) 

The classifier was trained with an SVM model from sklearn, which is an open source 

library. 

Different pallet loading scenarios are trained with corresponding different classifica-

tion models. In the standardized warehouse, goods and pallets correspond to each other, 

and different pallets are generally used for different goods, as shown in Figure 3, so the 

target goods can be used as a priori information to determine the type of pallets selected 

and choose the corresponding classification model. 

The RGB images acquired by the RGB-D sensor are input to the SVM classification 

model to obtain the category corresponding to each pixel point. The categories are stored 

into the category matrix to realize the category information and spatial relationship stor-

age. Figure 4 shows the result of the classification of Figure 3a into a category matrix, and 

the colors of different categories are the same as the templates. 

 

Figure 4. Category matrix example. 

Element labels are represented with different colors. Green represents goods. Red represents 

pallets. Blue represents ground. Light blue represents pallet holes. �� and ��� represent the grid 

compressing unit size and the grid unit vector of category matrix, respectively (explained in Section 

2.5 below). 

2.4. Labeled Template Creation 

As shown in Figure 3, in a warehouse environment, pallets have the same spatial 

characteristics: goods are placed above the pallets, the pallet is set on the ground, and the 

pallets correspond to the category of the goods. Therefore, we have established a labeled 

template that preserves the dimensions of the pallet and the spatial characteristics men-

tioned above, as shown in Figure 5. The labeled template contains 4 categories: goods, 

pallet, pallet hole and the ground or shelf. The height of the goods and the ground label 

of the template are set as the height of the pallet.  
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Figure 5. Labeled template example. 

Element labels are represented with different colors. Green represents goods. Red represents 

pallets. Blue represents ground. Light blue represents pallet holes. The grids are compression units 

of label templet. �� and ��� represent the grid compressing unit size and the grid unit vector of 

Labeled templet, respectively (explained in Section 2.5 below). The pallet foot detection grids are 

explained in Section 2.7 below. 

Based on the projection principle of the camera and the spatial relationship, as shown 

in Figure 6, the pixel size of the pallet in the image coordinate system {I} is calculated with 

Equations (5) and (6), when the distance between the pallet and the camera is ��
� . The 

whole template size is calculated with Equations (7) and (8). 

 

Figure 6. Diagram of the spatial relationship between the sensor and the pallet. 

�ℎ� =  �����(
� ⋅ ℎ�

�

��
� ⋅ ��

) (5) 

��� =  �����( ℎ�
�

��
�

ℎ�
� ) (6) 

�ℎ� =  3 × ℎ�
�  (7) 

��� =  ��
�  (8) 

where ℎ�
�  and ��  �  represent height and length of pallet in camera coordinate system 

{C}, respectively. ℎ�  �  and ��  � represent the number of pixels of the pallet height and 

length in image, respectively. � represents the focal length of the RGB camera in the RGB-

D sensor. �� represents the pixel size of the CMOS in the RGB camera. 

2.5. Grid Compressing Template and Category Matrix 

Because the size of the template and category matrix has a great impact on the speed 

of the algorithm, we propose a grid compression algorithm to speed up the algorithm by 

compressing the template and category matrix with less information loss. Because the size 

of the template and category matrix has a great impact on the speed of the algorithm, we 

propose a grid compression algorithm that compresses the template and category matrix 
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to speed up the algorithm [47]. Meanwhile, the grid compression algorithm improves the 

robustness of the algorithm and reduces the impact of misclassification of pixels (shown 

in Figure 4) on the matching process. Because there are only four categories and most of 

the regions in them represent the same category, the template and category matrices con-

tain a lot of redundant information, so the matrix size can be reduced, and most of the 

information can be preserved by grid compression. 

The grid compression operation is shown in Figures 4 and 5. The template and cate-

gory matrix are compressed in the same proportion based on the grid. The size of each 

compression unit is ��  ×  �� . �� is calculated based on the size of the pallet in the tem-

plate. The calculation principle is that the compressed grid of the template has the same 

category, and it retains the pallet structure information in the template. After compres-

sion, the template and category matrix are �� times smaller. Finally, the information on 

the proportional number of categories in the compressed grid unit is retained by means 

of the homogenization vector. The grid units of the template and category matrices are 

represented by ���  and ���, respectively, as in Equations (9) and (10). 

��� =  [
��

∑ ��
�
���

��

∑ ��
�
���

��

∑ ��
�
���

��

∑ ��
�
���

] (9) 

��� =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

��

∑ ��
�
���

��

∑ ��
�
���

��

∑ ��
�
���

��

∑ ��
�
��� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (10) 

where �� represents the number of pixels of category n in the ��� , ��� grid unit. 

2.6. Template Matching 

The position of the pallet was set to be determined by matching the template and 

category matrix with the sliding window method [48,49]. The matching process was a 

convolution operation. The template matrix matches the category matrix to calculate the 

matching degree. The matching degree is evaluated by the matching score of grid units, 

and each unit’s score is calculated based on Equation (11). A higher matching score corre-

sponds to a higher probability of being a pallet. If the matching score is higher than 

MiniScore, the pallet position is determined. MiniScore is determined with a threshold, as 

shown in Equation (12). Multiple pallets can reach the peak of the matching score matrix, 

and pallets have no overlap. Thus, a non-maximum suppression algorithm is used to ob-

tain multiple pallet coordination. 

��� =  � ����(���)(���)

��,��

���,���

 (11) 

��������� =  ������ ℎ� ⋅� ��  �  (12) 

where Sij is the matching score of each unit, and sthred is the threshold of the matching score. 

2.7. Pose Parameters of Pallet Estimation 

The pallet pose parameters include the center coordinates of the pallet detection sur-

face ��  and the inclination angle θ of the pallet to be measured, which is shown in Figure 

1. These parameters are calculated from the depth information of the pallet foot, which is 

extracted from the RGB-D camera depth data. In order to reduce the influence of the angle 

between the sensor and the pallet, the center grids of the pallet feet are selected as the 

detection sampling area, as shown in Figure 1. 
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In the camera coordinate system {C}, the calculation formula of the pallet pose 

parameter is shown as Equations (13) and (14), respectively. ��  is calculated by averag-

ing the corresponding point cloud data in the detection grid of the center pallet feet. � is 

calculated by fitting the slope of all point clouds within the detection grid of the pallet feet 

in the x-y plane of the camera coordinate system {C}. The average filter is used to smooth 

the successive detection results, and the estimated value of the results will be updated 

every cycle. The calculation formula is shown in Equations (15) and (16). Note that when 

dynamically detecting pallets, the detection results of each loop will be transformed to 

world coordinates before estimation. 

�� =  [ �̅�
� ���

� ��̅
� ] (13) 

� =  arctan (
� ∑ ��

� ��
� − ∑ ��

� ∑ ��
�

�∑ ��
� �

− (∑ ��
� )�

) (14) 

��� =  
��� + ����� + ⋯ + ���

�
 (15) 

�� =  
�� + ���� + ⋯ + ��

�
 (16) 

���  and �� represent the estimated values obtained for the Nth detection. ���  and 

�� represent the estimated value of ��  and � after filtering, respectively. 

3. Algorithm Performance Test 

Four experiments were designed to test the performance of the algorithm: (1) algo-

rithm comparison, (2) multiple pallet recognition, (3) accuracy test in static experiment, 

and (4) accuracy test in dynamic experiment. 

3.1. Template Matching Algorithm Comparison 

To demonstrate the advantages of the proposed algorithm, a comparison was per-

formed with the template matching algorithms proven by OpenCV 3.0. Those algorithms 

were tested with the labeled template without compressing the template and category 

matrix. Gray template and color template tests were not performed because of their low 

success rates in changing environments. Three typical situations were tested: large angle, 

background changes, and obstacle obstruction. The figures below present comparisons of 

these situations. 

3.2. Multiple Pallet Recognition Algorithm Comparison 

To illustrate the performance of the proposed recognition algorithm in recognizing 

multiple and different pallets in a warehouse environment where different goods are 

stored, the proposed algorithm is compared with the deep learning-based yolov5 ap-

proach in this paper. 

A pallet dataset was photographed with a Bumblebee XB3 camera in the XiZhou ag-

riculture material warehouse (located in XinTang, Guangdong, China). The test dataset 

contained 21 pallet pictures with different distances and arrangements. The training set 

contains 122 images captured in the warehouse. 

Since the dataset is too small, yolov5 uses mosaic data enhancement, which is stitched 

with 4 images, randomly scaled, randomly cropped, and randomly lined up, to enrich the 

dataset. It also uses a pre-trained model to speed up the training speed. yolov5 takes the 

input images through the focus structure, downsamples the images, and then sends them 

to the backbone. The backbone uses CSPDarknet53, and resizes all the input images into 

640 × 640 size, and the training batch size is 64, with 300 epochs of training, a learning rate 

of 0.01, a decay of 0.0005, and a momentum of 0.937. 
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To verify the performance of the proposed method, precision and recall are used as 

evaluation metrics in this study. 

Precision indicates the proportion of the correct detection results in the total detection 

results, and recall indicates the proportion of the correct detection results in all the ground 

truths. They can be denoted as the following equations: 

�������� =  
��

�� + ��
 (17)

������ =  
��

�� + ��
 (18)

where TP, FP, and FN represent the number of correctly detected objects, falsely detected 

objects, and missed detected objects, respectively. 

3.3. Accuracy Test in Static Experiment 

Accuracy and time consumption are important indicators for a pallet recognition al-

gorithm. An experiment was designed to test the relationships between detection accu-

racy, pallet distance, and angle. This experiment was conducted in a room to easily control 

the environmental conditions. The sensor and pallet were set as shown in Figure 1. The 

pallet was moved to change the distance ��  and the angle θ after fixing the sensor. The 

result was transformed into {W} space with the pose of the sensor. 

The distance ��  values were chosen as 1000, 2000, 3000, and 4000 mm because the 

detection range of the depth sensor is 500−4500 mm. θ was chosen as 0, ±5°, ±10°, ±15°, 

±20°, and ±25°. The estimation results and errors obtained by the algorithm were recorded 

and counted. The overall computation time and the computation time of the main pro-

cesses of the algorithm—classifying the source image, creating the template, compressing, 

matching, extracting ROI, and estimating pallet parameters—were also recorded. 

The proposed algorithm was compiled based on OpenCV 3.0, running on a PC with 

16 GB of RAM, an Intel Core i7-6820 processor, and a Windows 10 operating system. The 

sensor was a Kinect 2 (Microsoft, America), which can obtain RGB images with a reso-

lution of 1920 × 1080 pixel and depth images with a resolution of 512 × 424. Kinect 2 

detects the distance based on the time of flight, the depth detection range is 0.5–4.5 m 

and detection accuracy is ±4 mm. The depth image size was 512 × 424. The pallet size 

was 1300 × 1300 × 150 mm. 

3.4. Accuracy Test in Dynamic Experiment 

In this paper, dynamic performance refers to the algorithm’s measurement accuracy 

when the RGB-D sensor was approaching the pallet. In this experiment, the RGB-D sensor 

moved close to the pallet with a changeable distance and angle between the pallet and 

sensor to show the influence of changing distance and angle on the engaging process. To 

concisely show the parameters of the experiment, all results data were transformed into 

{W} space, as shown in Figure 1. The detection result was transformed from {C} space, 

with the RGB-D sensor position and angle in {W} provided by location sensor NAV350 

(SICK, Germany, scanning frequency: 8 Hz, positioning accuracy ±4 mm), a laser scan-

ner sensor that could obtain the position and angle of the RGB-D sensor by detecting re-

flection marks fixed in the room. 

The position of the pallet was fixed at (0, 0, 75), and θ was 90°. The sensor moved in 

from 4 m to 1.5 m and changed angle in three different ranges: 0−10°, 20−30°, and 0−40°. 

The pose of the sensor and the error of each parameter were recorded. 

4. Results 

4.1. Template Matching Algorithm Comparison 

The results of the experiment are shown in Figure 7. Both the OpenCV algorithm and 

the proposed algorithm recognized the pallet when the angle between the sensor and 
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pallet was in the range 0−10°. However, as the angle increased, the OpenCV algorithm 

occasionally failed to detect the pallet. When the angle was larger than 15°, the OpenCV 

algorithm drifted and lost the target but the proposed algorithm was able to identify the 

pallet (see Figure 7a,d). Moreover, the OpenCV template matching algorithm could have 

been influenced by the background and blocked by obstacles, as shown in Figure 7b,e. 

The proposed algorithm was able to resist the impact of the environment and change in 

pallet, as shown in Figure 7c,f. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 7. Comparison of experimental results under typical situations. The blue box represents the 

results of the recognition algorithm. (a) Recognition result with the template matching algorithm 

provided by OpenCV when the pallet angle was 15°. (b) Recognition result with the template match-

ing algorithm provided by OpenCV when the pallet was subject to environmental influence. (c) 

Recognition result with template matching algorithm provided by OpenCV when the pallet was 

blocked by obstacles. (d) Recognition result with the proposed algorithm when the pallet angle was 

15°. (e) Recognition result with the proposed algorithm when the pallet was subject to background 

disturbance. (f) Recognition result with the proposed algorithm when the pallet was blocked by 

obstacles. 

4.2. Multiple Pallet Recognition 

The multiple pallet recognition results are shown in Figure 8, where red rectangles 

indicate the ROI of pallets marked by the algorithm. The precision and recall of the pro-

posed method in this paper are 0.989, 0.926. Seventy-five pallets were recognized from 

eighty-one pallets. The precision and recall of the yolo v5 are 0.964, 0.986. 



Appl. Sci. 2022, 12, 10331 13 of 19 
 

  

(a) (b) 

  

(c) (d) 

Figure 8. Multiple pallet recognition results contrast: The red box represents the results of the recog-

nition algorithm. (a,c) is the recognition result of the proposed method, and (b,d) is the recognition 

result of yolov5. 

4.3. Accuracy Test in Static Experiment 

The estimation errors are shown in Figure 9. The curves were calculated based on the 

results of performing detection 50 times. Ex, Ey, Ez, and Eangle represent the errors of 

�� , �� , �� , and θ, respectively. The error was larger with a longer detection distance. 

When the distance was less than 2000 mm, the algorithm showed better and more stable 

performance. The error was larger when the pallet angle and distance increased. When 

the angle was larger than 20°, the standard deviation (STD) of each error increased. The 

maximum values of Ex, Ey, Ez, and Eangle were 94.64 mm, 44.74 mm, 63.11 mm, and 6.07 

mm, respectively. The correlation coefficient (COF) between the error and angle of the 

pallet is shown in Table 1. The COF represents the correlation between two variables. The 

error had a positive correlation to the angle of the pallet, except for Ex, Ey, Ez, and Eangle 

at 3000 mm and for Ey and Eangle at 4000 mm. 

The time consumptions of the proposed algorithm were 72.44, 85.45, 117.63, and 

182.84 ms and the STDs were 0.81, 0.59, 14.45, and 13.02 at 1000, 2000, 3000, and 4000 mm, 

respectively. Less time was consumed when the distance was smaller. Moreover, the com-

putation time had no relation to the angle of the pallet. 
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(a) (b) 

  

(c) (d) 

Figure 9. Measurement error curve of the algorithm for different distances and angles of the pallet. 

(a) Curve chart of measurement error in X−axis direction versus pallet angle. (b) Curve chart of 

measurement error in Y−axis direction versus pallet angle. (c) Curve chart of measurement error in 

Z−axis direction versus pallet angle. (d) Curve chart of angel measurement error versus pallet angle. 

Table 1. Correlation between parameter error and pallet angle. 

Distance COF of Ex COF of Ey COF of Ez COF of Eangle 

1000 0.9190 0.8059 0.8000 0.7473 

2000 0.8836 0.8320 0.8521 0.8843 

3000 0.7580 −0.7414 0.5723 −0.7307 

4000 0.8839 −0.0472 0.9140 0.9283 

4.4. Accuracy Test in Dynamic Experiment 

In Figure 10, the first row shows the coordination of the RGB-D sensor and the de-

tection result of the pallet in {W} space. The third row shows the error of the pallet Ex, Ey, 

Ez, and Eangle in the approach process. 

When the sensor approached the pallet and the angle was in the range 3.08°−7.02°, as 

shown in Figure 8a, the estimated pallet position was (0.14, −6.74, 58.16) and the angle was 

92.01°. The error became smaller when the sensor was closer to the pallet. The maximum 

errors in the X axis, Y axis, Z axis, and angle were 6.38 mm, 15.92 mm, 54.56 mm, and 

2.82°, respectively. 

When the sensor approached the pallet along a line, and the angle was in the range 

12.41°−19.03°, as shown in Figure 9b, the estimated pallet position was (16.85, −24.12, 

61.08), and the angle was 93.39°. The error became smaller when the sensor was closer to 

the pallet. The maximum errors in the X axis, Y axis, Z axis, and angle were 46.37 mm, 

48.42 mm, 33.09 mm, and 5.55°, respectively. 
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When the sensor approached the pallet along a curve, as shown in Figure 9c, and the 

angle varied in the range 2.84°−35.98°, the estimated pallet position was (3.87, 40.50, 51.62), 

and the angle was 90.91°. The error increased when the angle increased. The maximum 

error in the X axis, Y axis, Z axis, and angle were 47.80 mm, 102.70 mm, 32.74 mm, and 

6.51°, respectively. 

In the experiments, the angle changed in different ranges. The algorithm showed bet-

ter performance, and the accuracy was less than 50 mm when the angle was steady and 

changed in ±20°. When the angle changed in a large range, the Y axis error had a dramatic 

variation because of the drift of pallet center recognition. As shown in Figure 9c, the algo-

rithm recognized the pallet even when the angle reached 35.98°, and the maximum Y error 

was 102.70 mm. The performance in the dynamic test matched the tendency observed in 

the static test. 

   
(a) (b) (c) 

  

(d) (e) (f) 

Figure 10. Verification of the algorithm’s performance in measuring accuracy when the angle dy-

namics change. (a) Sensor position as well as pallet positioning results data in the sensor angle range 

of 0−10° during sensor approach. (b) Sensor position as well as pallet positioning results data in the 

sensor angle range of 10−20° during sensor approach. (c) Sensor position as well as pallet position-

ing results data in the sensor angle range of 0−40° during sensor approach. (d) Error of pallet posi-

tioning results corresponding to Figure 9a. (e) Error of pallet positioning results corresponding to 

Figure 9b. (f) Error of pallet positioning results corresponding to Figure 9c. 

5. Discussion 

5.1. Comparative Performance Analysis 

The template matching method provided by OpenCV 3.0 has a strict requirement 

that the template must be similar to the target in the image; pallet images change with 

angle changes. In addition, those matching methods are designed for gray or color images, 

not a label matrix. This method shows worse performance when the pallet angle is larger 

than ±15°. Occasionally, the matching result is easily affected by environmental interfer-

ence. 

In contrast, the proposed algorithm compresses the category matrix and template to 

reduce the environment effect, and the matching method is a probability calculation that 

is more suitable for a label matrix. Consequently, the proposed algorithm was shown to 

perform better in the face of pallet and environmental changes. 
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Moreover, the grid compression matching algorithm has many advantages. For in-

stance, the label pallet template has more rich information—including spatial relation-

ships among goods, the ground, pallet feet, and pallet holes—than that of an individual 

pallet. Meanwhile, it is easy to create a template other than a gray or color template be-

cause the labeled template is unchanged under different illumination conditions and only 

has four labels. The labeled template algorithm, with its strong robustness and implemen-

tation, could be applied to many object recognition problems. 

5.2. Multiple Pallet Recognition Performance in Warehouse 

In a warehouse, goods are placed in a very dense arrangement, making it difficult to 

segment pallets. Moreover, pallets are often made with plastic, so diversity and notable 

color features are the most important types of information for this pallet recognition algo-

rithm. However, color information is impacted by illumination conditions, and the classi-

fier cannot precisely categorize pixels. To resolve this issue, the labeled template is used 

as another classifier to identify the pallet and reduce the interference of incorrect classifi-

cation. 

One reason for misrecognition could be that most of the missed pallets in the test 

were not completely photographed, with matching scores less than the threshold, as 

shown in Figure 7a,c. Since the size of the template is determined according to the dis-

tance, some pallets will not be recognized when the distance between multiple pallets is 

large, as shown in Figure 7a. Another reason is that the color spaces of different labels 

overlapped in dark illumination, thus leading to incorrect classification. 

The main approaches to improve the accuracy of yolov5 is to increase the number of 

pallet samples, and moreover, the number of pallet multi-angle images should be added 

to the samples to ensure the robustness of the algorithm. The work of sample collection 

and labeling requires more workload. 

5.3. Detection Accuracy Performance 

Accuracy is an important indicator for a pallet recognition algorithm. The best algo-

rithms should be useful at long detection distances and large observable angles. A static 

experiment was performed to test the relationship between accuracy and pallet pose pa-

rameters. A dynamic experiment was performed to explore the influence of changing dis-

tance and angle on the algorithm. 

In the static and dynamic accuracy experiments, the detection accuracy was associ-

ated with the detection distance and the angle. The error had a positive correlation with 

angle of the pallet. As the detection distance was near the edge of the depth sensor‘s ef-

fective range, the depth sensor’s detection mistakes affected the detection accuracy. 

One reason for the increasing amount of detection errors as the pallet angle increased 

could have been the length change in pallets in the image with the angle change. Only one 

shape template was created to match the rotation of pallets. The length of the template 

was longer than that of the pallets in the image according to the projection principle. This 

led to the pallet foot measure-points moving, and the measurement error became larger 

as the rotation angle increased. 

In the dynamic accuracy experiment, the detection error fluctuated with the angle 

change. The performance in the dynamic test matched the tendency shown in the static 

test. There may have been three major reasons for the error in the dynamic test being 

larger than that in the static experiment. 

The first reason was the size error between the template and pallet in images with 

the change in distance and angle. The second reason was the error in the transformation 

matrix between the RGB-D sensor and the location sensor, which caused the error to in-

crease when the distance was longer. The final reason was the communication delay be-

tween the RGB-D sensor and location sensor, during which location data with noise af-

fected the detection results. 
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5.4. Real-Time Performance of Proposed Algorithm 

The time consumption of the proposed algorithm was tested in the static experiment. 

The time consumption was lower when the detection distance decreased. There was no 

relation between the time consumption and the rotation angle of the pallet. Computa-

tional resources are the main cost during template matching, and they are determined by 

the sizes of the template and category matrix. Their sizes are determined by the compres-

sion unit size, which is calculated based on the distance according to Equation (5). To 

accelerate the proposed algorithm, the matching process should be optimized. The time 

consumption results indicate that the algorithm has the ability to detect pallets in real time 

when the detection distance is less than 4 m. 

However, the developed algorithm still has some shortcomings. First, illumination 

changes throughout the entire day, and the training samples hardly cover all illumination 

conditions. Second, when the pallet color is similar to that of the ground or goods, the 

color space of each category overlaps and leads to incorrect classification. Third, the com-

pression unit size has a significant impact on pallet recognition performance, and it should 

be carefully selected by considering the size of the pallet, the camera parameters, and the 

pallet distance. 

6. Conclusions 

To recognize and locate pallets in a warehouse environment, a real-time approach 

based on an improved label template matching algorithm with an RGB-D sensor was pro-

posed. A label template, which contains the goods, pallet, ground color, and pallet infor-

mation, was created to improve the accuracy of the recognition algorithm. A compression 

matching algorithm was used to enhance the robustness against incorrect categories and 

to accelerate the matching process. During algorithm operation, pallet parameters are ex-

tracted from three pallet feet and smoothed with a sliding average filter. Experiments 

were conducted to test the performance of the algorithm. The proposed pallet algorithm 

was shown to have the ability to recognize and segment multiple pallets in a warehouse 

environment with an accuracy in which the maximum distance and angle estimation error 

were −101.1 mm and 6.07° in a range from 1 m to 4 m and an angle of within ±25°. The 

error was found to decrease with smaller distances and angle changes, and time consump-

tion was found to decrease when the detection distance was reduced, ultimately achieving 

the real-time requirement. The proposed algorithm could provide a reference for design-

ing autonomous engaging systems. 
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