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Abstract: In the age of deep learning, researchers have looked at domain adaptation under the
pre-training and fine-tuning paradigm to leverage the gains in the natural image domain. These
backbones and subsequent networks are designed for object detection in the natural image domain.
They do not consider some of the critical characteristics of document images. Document images are
sparse in contextual information, and the graphical page objects are logically clustered. This paper
investigates the effectiveness of deep and robust backbones in the document image domain. Further,
it explores the idea of learnable object proposals through Sparse R-CNN. This paper shows that
simple domain adaptation of top-performing object detectors to the document image domain does
not lead to better results. Furthermore, empirically showing that detectors based on dense object
priors like Faster R-CNN, Mask R-CNN, and Cascade Mask R-CNN are perhaps not best suited
for graphical page object detection. Detectors that reduce the number of object candidates while
making them learnable are a step towards a better approach. We formulate and evaluate the Sparse
R-CNN (SR-CNN) model on the IIIT-AR-13k, PubLayNet, and DocBank datasets and hope to inspire
a rethinking of object proposals in the domain of graphical page object detection.

Keywords: graphical page object detection; deep learning; computer vision; proposals; document
image analysis

1. Introduction

We live amid the digital age, surrounded by the digital universe, which is expanding
with the daily data we produce. In this digital age, we are creating, consuming, and
replicating data like never before [1]. The estimates tell us that from 2005 to 2020, our digital
universe has grown 300 times, from 130 exabytes to 40,000 exabytes of data. It will continue
to double every year. It is also estimated that as much as 33% of the digital universe contains
information that could be potentially valuable if analyzed. Further, almost 40% of the data
produced will be touched by the cloud in some way or another. Manually processing
such large amounts of data is laborious, time-consuming, and borderline infeasible. This
presents an excellent opportunity for data mining and analysis. To this end, the field of
document digitization has received considerable attention and made rapid strides in recent
years [2]. Document digitization is the automatic extraction of meaningful information
from scanned document images.

Information is stored in two major formats in scanned document images: text and
graphical page objects. Graphical page objects can be tables, figures, natural images,
equations, formulas, logos, etc. [2–4]. They contain valuable information, but this infor-
mation can only be extracted when these objects are correctly identified in the respective
images [5]. Figure 1 shows the importance of detecting graphical page objects before
extracting information.
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Graphical page objects have high intra-class variations in shape, type, and scale [2,6].
Tables come in different shapes, sizes, and layouts (bordered or borderless) [3,6–8]. There
are also significant amounts of inter-class similarities [6]. Further, natural images can have
superimpositions of vectors or diagrams. Figures can be arbitrary or abstractions of natural
images. Equations and formulas can be single or multiple lines. A significant inter-mixing
of classes can also occur, for instance, a logo inside a table or figure. Figure 2 illustrates the
challenges in graphical page object detection.

(a)

(b)

Figure 1. This figure shows the importance of detecting graphical page objects: (a) shows a document
image from the IIIT-AR-13k [9] dataset. In contrast, (b) shows the result of Tesseract-OCR [10] on the
document image. Note that the naive application of Tesseract-OCR on the document image leads to
poor extraction of information.
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Figure 2. Challenges of graphical page object detection. Natural images are outlined in blue, logos
in yellow, and signatures in orange. Natural images and signatures have text superimpositions
in the second and third rows. The natural image in the fourth row has text and vector graphic
superimposition.

Deep learning has been one of the most popular and explored solutions to object
detection in the natural image domain. In recent years, it has seen rapid improvements.
Graphical page object detection is a challenging downstream domain adaptation task
of generic object detection in the natural image domain. This fact is not lost on many
researchers, and they have come up with many adapted models for graphical object
detection [2,11].

Document images are sparse in contextual information as compared to natural images.
The graphical page objects of different classes, such as tables, figures, and text, are logically
clustered together in document images. The same is not always true with natural images.
The different graphical page objects show a wider variety of scale than objects in natural
images. Further, most top-performing deep learning models on natural images have strong
and deep backbones with texture-driven region proposal networks (RPNs) [4]. By design,
these RPNs propose regions in natural images rich in texture, contrast, and color. Selective
search in Fast R-CNN [12], and the RPN in Faster R-CNN [4,13] are examples of such.

The assumption of logical clustering may not always hold for natural images. Thus, it
makes sense to have dense object candidates for the features maps to avoid missing objects
in the image. When coupled with strong backbones, dense object candidates in document
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images can confuse the detector head. Hence, naive adaptation of models designed for
dense natural images to the document image domain may not yield good results.

Most state-of-the-art graphical page object detection models suffer from the afore-
mentioned systemic challenges and issues. They fail to account for the differences in the
domains in an intrinsic manner. Instead, they rely on extrinsic methods such as heavy
pre/post-processing of images that are not genuinely end-to-end. In an attempt to address
these systemic issues, this paper investigates the feasibility of sparse and learnable object
candidates in scanned images of documents and attempts to justify the applicability of
the same through extensive experimentation. This paper also investigates the relationship
between meaningful gains and the feature extraction capabilities of deep backbones. The
scope of the paper has been limited to investigating the effectiveness of deep backbones
and learnable sparse proposals for the downstream task of graphical page object detection.
Our experiments show that sparse proposals-based methods such as Sparse R-CNN come
close to state-of-the-art methods while being computational cheaper.

The main contribution of the paper can be summarized as follows:

• Empirically shows that detectors based on dense object candidate priors are not well
suited for graphical page object detection. Detectors that reduce the number of object
candidate priors while also making them learnable are a better approach;

• Investigates the effectiveness of deep and robust backbones using the CBNetV2 [14] ar-
chitecture with different detection heads and backbones, such as Dual Swin-Transformer
tiny, small, base, and large;

• Experimentally shows that throwing deep and strong backbones or ensemble versions
of these backbones does not lead to better detection results;

• Empirically show that Sparse R-CNN achieves comparable performance to state-of-
the-art while being computationally efficient by a large margin;

• Investigates the generalization abilities of the ResNet-101 Sparse R-CNN [15] model
by performing exhaustive cross-validation experiments.

The remainder of this paper is structured as follows. Section 2 categorizes the prior
work in the field into traditional approaches and deep learning approaches. Section 3
describes the deep backbones investigated, such as CBNetV2 (Section 3.1). Further, this
section also describes the detection heads investigated, such as Faster R-CNN (Section 3.2.1),
Mask R-CNN (Section 3.2.2), Cascade Mask R-CNN (Section 3.2.3), and Sparse R-CNN
(Section 3.2.4). Section 4 describes the datasets employed in our experiments, the evaluation
protocol, the implementation details of the models, and qualitative and quantitative analysis
of our experiments, and it concludes with the cross-dataset evaluation for the models.
Section 5 concludes the paper and provides a brief look into future work.

2. Related Work

The problem of graphical page object detection is quite challenging. The approaches
to solving the problem can be broadly divided into two categories: traditional and deep-
learning approaches. The traditional approaches can be further divided into rule-based and
learning-based methods [2,11]. The rule-based methods rely on manually defined rules and
heuristics for the detection of graphical page objects in document images, whereas learning-
based methods rely on statistical learning from the data and standard machine learning
algorithms. With the advent of deep learning, many deep learning-based approaches to
graphical page object detection have been developed. The field has seen rapid progress in
recent years.

2.1. Traditional Approaches

Some of the earliest approaches exploited the metadata from the output of optical
character recognition (OCR) systems. Green et al. [16] used the metadata to construct
custom grammars and pre-defined heuristics to detect graphical page objects. Tupaj et al.
also exploited the metadata from OCR to preserve the geometry of white spaces in docu-
ment images. The geometrical information was then used alongside heuristics to detect
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tabular structures [17]. Kieninger et al. used the metadata to extract text-level geometry,
which was then used to locate and extract tables from document images [18]. Others, such
as Hu et al. [19], used image processing techniques to calculate the correlation between
white spaces in a document and performed a connected component analysis to predict the
presence of tables and other graphical page objects in documents.

Some early work did not use document images. Costa e Silva et al. [20] employed
statistical models such as Hidden Markov Models (HMMs) for table detection in documents.
The method works by first parsing text from document files and then computing feature
vectors by analyzing the white gaps between different objects in the document. Similarly,
Shigarov et al. [21] proposed a method that does not utilize document images. It first
extracts the metadata from documents. Next, it treats each word as an individual text
block with bounding boxes. These bounding boxes are used to extract the boundaries for
tables. Chandran and Kasturi [22] proposed a method for table structure recognition. First,
both horizontal and vertical lines and white streams are extracted from the documents.
Next, a structure interpretation step is followed to build a structure for the table form
the extracted features. The traditional methods can detect tables in documents that are
simple and do not have complex patterns or structure. Traditional methods rely on manual
handcrafted features and rules to detect graphical page objects. Hence, these methods are
highly susceptible to noise in the data.

2.2. Deep Learning-Based Approaches

In deep learning, graphical object detection is seen as a downstream task of generic
object detection in natural images. One of the first works to adapt deep learning models
from the natural image domain to the downstream task of graphical object detection was
by Gilani et al. [23]. They applied Faster R-CNN to detect tables in document images.
The document images are first transformed per pixel using a distance transformation
mechanism. These transformed images are then processed by the Faster R-CNN model
to aid in table structure recognition. Schreiber et al. [24] also apply Faster R-CNN [13] for
detecting tables in scanned document images. They also proposed a novel deep learning
approach for table structure recognition. In their work, they employ pre-trained backbones
and showed that object detectors from the natural image domain could be successfully
adapted for the document image domain on the ICDAR-13 dataset [25]. Following this
in 2018, Vo et al. [26] proposed to combine Fast R-CNN [12] and Faster R-CNN using an
ensemble paradigm to capitalize on the benefits of both object detectors. They achieved
this by taking the region proposal from both Fast R-CNN and Faster R-CNN and applying
the bounding box regression on their combination. They applied their ensemble model
to the graphical page object detection problem and achieved promising results. By now,
domain adaptation from the natural image domain to the document image domain had
become quite popular. Siddiqui et al. [27] proposed DeCNT, which employed deformable
convolutions to detect tables in document images. The authors empirically showed that the
dynamic receptive field of the network due to the deformable convolutions can adapt better
to the dynamic layout of tables in documents. Sun et al. [28] also applied Faster R-CNN for
table detection, where the tabular area is retrieved by refining the coarse table detection
and corner location produced by Faster R-CNN. This refining is achieved by grouping the
corner belonging to the same table by coordinate matching and filtering out unreliable
corners. In 2019, Saha et al. [29] proposed the GOD framework in which they investigated
the performance of Faster R-CNN and Mask R-CNN [30]. They compared the two detectors
for graphical page object detection in the document images. After exhaustively evaluating
the two detectors, they concluded that Mask R-CNN performs better for graphical page
object detection than Faster R-CNN.

Detection is the basis for more complex tasks such as table structure recognition,
in which tables are first detected and then the structure is also extracted. To this end,
Shigarov et al. [31] proposed TabbyPDF, which is a web-based system for detecting and
extracting structures of tables located in PDF documents. The system uses a heuristic-based
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approach for table detection and structure recognition. Bordered tables are detected using
rule lines that compose a rectangular frame, whereas border-less tables are detected using
a bottom-up segmentation approach. The authors evaluate their approach on the ICDAR-
13 dataset. Chi et al. [32] proposed GraphTSR, a graph neural network for recognizing
the table structure in PDF files. First, through pre-processing, the cell contents and their
corresponding bounding boxes are extracted from the PDF, then an undirected graph is
produced using the cells, the edges of which are filtered using adjacent relation prediction
through the attention mechanism. Finally, the predicted table structure is extracted from
the labeled graph. TabStruct-Net, proposed by Raja et al. [33], approaches table structure
detection as a relationship problem between the row and column of the detected cell.
First, a ResNet backbone is used to detect cells from the table. Next, an alignment loss
function is introduced to ensure that detected cells belong to the same row or column,
followed by the post-processing step of producing an XML output of the table structure.
One limitation of this method is its inability to handle tables with a large number of
empty cells. Zang et al. [34] proposed SEM (split, embed, and merge), which exploits
the multimodality of tables, as they contain both visual and text features. First, a fine
grid structure of the potential rows and columns of the table is obtained. Next, using a
visual module and text module, the two modalities are fused; the fused features are used
to predict the table structure. Prasad et al. [35] proposed CascadeTab-Net, which tries
to solve the table detection and table structure recognition together. Unlike most other
detection networks that treat the problem of table detection and structure representation
separately, CascadeTab-Net uses a single-shot method for both. They utilized the Cascade
Mask R-CNN [36] detection head. More recently, CDeC-Net [37] utilized the dual-backbone
paradigm introduced by CBNetv1 [38]. It has high-resolution dual ResNeXt101 backbones
with deformable convolutions. The backbone is paired with a Cascade Mask R-CNN
detector head. It allows the network to detect objects at different resolutions and achieve
high accuracy, even at higher IoU thresholds.

As our work focuses on graphical page object detection, to this end, Table 1 shows a
comparison of the different approaches we investigate in our work with prior work in the
domain. The table lists the key characteristics of each approach along with its limitations
and advantages that are drawn from the experiments we carry out for each approach and
its corresponding methods.

Table 1. Comparison of the key characteristics of the explored approaches with prior work in the
domain, along with their advantages, limitations, and results.

Approach Methods Advantages Limitations Results

Dual
Backbone
Architectures

Faster R-CNN,
Swin-T Mask R-CNN, and
Swin-S Cascade Mask R-CNN

Ability to capture different
features with the use
of two parallel backbones

Features extracted by the
parallel backbones are
not informatively distinct

Parallel backbones do not
lead to better performance in
document images

Transformer
based
Architecture

Sparse R-CNN paired
with Swin Tiny,
Swin Small, Swin Base (1k),
Swin Base (22k),
and Swin Large

Ability to extract fine features
and patterns with the
help of attention that scales
linearly w.r.t. image size

Extraction of fine features
and patterns by the strong
backbones end up confusing
the detection heads. Slow,
memory intensive and
high GFLOPs

Transformer based
backbones do not lead to
better performance
in document images

YOLOF [39] SSD with a dilated encoder
and uniform matching

Fast and low GFLOPs
Large-sized objects raise
problems as YOLOF
has limited range scale,
results in poor performance

Performance is worse than
standard two-stage
object detection
methods such as Faster
R-CNN and Mask R-CNN
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Table 1. Cont.

Approach Methods Advantages Limitations Results

CDeCNet [37]
ResNext backbone with
Cascade Mask R-CNN
detection head and
deformable convolutions

High-resolution backbone,
cascading detection head
that is robust to false positives,
and deformable convolutions
that address the issue of
the limited range scale

Slow, memory, intensive
and high GFLOPs

State-of-the-art results at
high computational costs

SR-CNN r101 Sparse R-CNN with a
ResNet-101 backbone

Has a balanced, strong
backbone in comparison
to ResNext, DB, or
Transformer based
detection backbones.
Learnable proposals

As the proposal boxes
are learnable it needs
sufficient data for each
class to learn the
learnable proposal feature

Close to state-of-the-art
with 6× less GFLOPs
than CDeCNet

2.3. Related Datasets

Table detection and structure recognition is a well studied area, and many standard
benchmark datasets are available: UNLV [40], Marmot [41], ICDAR-13 [25], ICDAR-POD-
17 [5], ICDAR-19 [42], and TableBank [43]. UNLV is one of the earliest datasets in the
document object detection domain. The dataset consists of almost 10,000 document images.
However, only 427 of them contain tables, and hence we only list the images containing
tables in Table 2. Marmot, on the other hand, is one the largest early datasets for table
detection in document images. It was introduced by Peking University and consists of
2000 images for which a ratio of almost 1:1 is maintained between the positive and negative
samples. The original dataset suffered from incorrect ground truth annotations, hence we
list the corrected version of the dataset from [24], which has 1967 images, in Table 2. ICDAR-
2013 [25] is another popular dataset for both table detection and structure recognition. The
dataset was constructed by converting PDF files to images. The dataset has 229 training
images and 233 validation images. ICDAR-2017-POD (Page Object Detection) [5] is another
dataset that, along with tables, also has information for the boundaries of formulas and
figures. The dataset consists of 2417 images in total, where 1600 are for training and 817 are
for validation. ICDAR-19 [42] is the latest dataset to come out of the ICDAR in 2019. The
dataset consists of two types of document images: modern and historical. The modern set
of documents is collected from scientific and commercial documents, whereas the historical
documents are a collection of images of handwritten documents. TableBank, introduced by
Li et al. [43], is one of the most well known datasets in the table detection literature. The
dataset has 417,000 training document images pooled from word and latex documents. It
has 2000 images for both validation and test.

Table 2. Statistics of related datasets. T: indicates table, F: indicates figure, L: indicates list, S: indicates
signature, NI: indicates natural images, Ti: indicates titles, Tx: indicates text, Ab: indicates abstract,
Au: indicates author, C: indicates caption, D: indicates date, E: indicates equation, Fo: indicates footer,
P: indicates paragraph, R: indicates reference, S: indicates sections.

Datasets Labels Training Validation Test

UNLV T 427 - -
Marmot T 1967 - -
ICDAR-13 T 229 233 -
ICDAR-POD-17 T 1600 817 -
ICDAR-19 T 1200 439 -
TableBank (word + latex) T 417 K 2 K 2 K
IIIT-AR-13k T, F, L, S, and NI 9 K 2 K 2 K
PubLayNet T, F, Ti, Tx, and L 340 K 11 K 11 K
DocBank T, Ab, Au, C, D, E, F, Fo,

L, P, R, S, and Ti
400 K 50 K 50 K
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More recently, datasets for graphical page object detection have also emerged that,
alongside tables, also have other page objects, such as figures, text, signatures, dates, equa-
tions, etc. Such datasets include IIIT-AR-13K [9], PubLayNet [44], and DocBank [45]. Table 2
shows the statistics of the various datasets. As our goal is to investigate graphical page
object detection in document images, we restrict ourselves to IIIT-AR-13K, PubLayNet, and
DocBank datasets, as they facilitate the general page object detection task (including tables).

3. Method

In recent years, many novel backbone networks have been developed that have
consistently improved the performance of object detection [14]. First, the effectiveness of
deep and robust backbones and their ensemble versions in the document image domain
is investigated. To this end, Section 3.1 discusses the CBNetv2 compositing architecture
this work investigates. Different detector heads are employed upon these deep backbones,
which use novel methods for detection and segmentation. Section 3.2 discusses the different
detection heads this study investigates.

3.1. CBNetv2: Composite Backbone Network v2

A key driver of advancements in object detection is the improvement in the backbones
of the detectors that extract the features [14]. These improvements are often structural in
nature. They also require high computing resources and expertise to achieve and validate.
Another approach would be to use pre-existing, well-designed, validated deep backbones
and design efficient ensemble techniques. CBNetv2 [14] is a step in this direction. The key
idea of CBNetv2 is that it finds novel composition styles to ensemble identical existing pre-
trained backbones [14], which allows for greater flexibility and generalization capabilities
as different detector designs can be explored to suit the task.

As seen in Figure 3, in CBNetv2 there are K identical backbones of which K− 1 are
assisting backbones. Each backbone has its own feature pyramid network (FPN) consisting
of L stages, and the output of each stage is denoted as xl . Let a composition connection be
denoted as hl(x), which takes x = {xi|i ∈ [1, L]} as inputs that come from each stage of the
FPN of the assisting backbone and outputs a feature map yl . Further, let g represent a 1× 1
convolution layer and a batch-normalization layer. The proposed composition connections
are discussed in Section 3.1.1.

Figure 3. The detection pipeline and architecture of CBNetV2 consists of the lead network and the
assistant network. The lead and assistant networks are used during training, where the assistant
backbone and detection head provide additional supervision. During inference, only the lead network
is used.

3.1.1. Composite Connections

There are many ways to achieve feature fusion across backbones. The most simple
is fusing features of the same level across the backbones. Equation (1) formulates this as
the Same Level Composition. In a deep backbone, the higher-level features amass greater
semantic meaning. Adjacent Higher-Level Composition, as seen in Equation (2), fuses
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the higher-level feature of the adjacent backbone with that of the lower-level feature of
the current backbone. The converse of Adjacent Higher-Level Composition is Adjacent
Lower-Level Composition, as formulated in Equation (3). Dense features can be built by
combining the features from all the higher levels of the assisting backbones with that of
the lower ones of the lead backbone. Termed as Dense Higher-Level Composition, it is
formulated in Equation (4). Equation (5) describes the Fully Connected Composition, which
tries to build comprehensive features by connecting features from all levels in the assisting
backbones to that of the lead backbone. The authors in [14] show that Dense-Higher-Level
Composition and Fully Connected Composition achieve the best results when tested on the
COCO dataset [46]. Taking computational complexity into account, the authors in [14] use
Dense Higher-Level Composition. Our implementation of the model also utilize the same.

hl(x) = g(xl) where l ≥ 2 (1)

hl(x) = U(g(xl+1)) where l ≥ 1 (2)

hl(x) = D(g(xl−1)) where l ≥ 1 (3)

hl(x) =
L

∑
i=l+1

U(gi(xi)) where l ≥ 1 (4)

hl(x) =
L

∑
i=2

I(gi(xi)) where l ≥ 1 (5)

3.1.2. Assistant Supervision

The authors in [14] recognize the positive correlation between depth and increased
performance. However, increased depth leads to a regularization problem, requiring novel
methods to improve convergence [47]. To tackle regularization and also increase depth,
the authors propose assistant supervision. All the backbones and their detection heads are
used during training, and the total loss minimized is given in Equation (6). In contrast,
only the lead backbone is used during the inference, as given in Equation (7).

LTrain = LLead +
K−1

∑
i=1

αi L̇i
Assistant (6)

LTest = LLead (7)

3.2. Detection Heads

Object detection aims to determine the locations of objects in a given image and their
classes. This task can be broken down into two main steps: Target Region Selection and
Classification and Regression. The methods applied to address these main steps lead
to different detection head designs. Section 3.2 and its subsections discuss the different
detection heads, such as Faster R-CNN (Section 3.2.1), Mask R-CNN (Section 3.2.2), Cascade
Mask R-CNN (Section 3.2.3), and Sparse R-CNN (Section 3.2.4).

3.2.1. Faster R-CNN

Faster R-CNN [13] is a two-stage detector. It has two networks: a regional proposal
network (RPN) and a detection network. The RPN proposes regions of interest (RoI) hence
performing the target region. The detection network uses the ROIs proposed by the RPN
for object bounding box regression and classification. Faster R-CNN builds upon Fast
R-CNN [12]. In Fast R-CNN, there is a decoupling of the selective search and the detection
network. The false negatives of the selective search directly affect the network’s detection
accuracy. Hence, this decoupling is not a great idea. It would be better if there were a
correlation between the two.
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Therefore, the core idea is that Faster R-CNN does not utilize selective search for RoI
proposals. As seen in Figure 4, it utilizes a small RPN instead. It hence drastically reduces
the time cost for generating region proposals. The RPN outputs a set of rectangular object
proposals, each with its objectiveness score. The regressor and the classifier then take these
object proposals and objectiveness scores from the RPN. Finally, the classifier outputs the
probability of predicted ROI as an object (foreground) or background. In contrast, the
regressor outputs the predicted bounding boxes.

Figure 4. The detection pipeline for the Faster R-CNN detection head. Faster R-CNN builds upon
Fast R-CNN by replacing the slow selective search with a small RPN, which reduces the time and
cost of generating object proposals.

3.2.2. Mask R-CNN

Semantic segmentation is the process of classifying each pixel of an image as belonging
to a particular label. This labelling does not differentiate among instances. Hence, it can be
considered a classification problem on a per-pixel basis. Mask R-CNN [30] is a detection
head for semantic and instance segmentation. Mask R-CNN builds upon the groundwork
laid by Faster R-CNN.

As seen in Figure 5, Mask R-CNN extends Faster R-CNN with the addition of two
more convolution layers after the RoI align layer. The additional convolutional layers
produce the segmentation masks. The RoI align layer is a novel addition in Mask R-CNN.
The layer does not digitize the cell boundaries of the target feature maps like the RoI pooling
layer in Faster R-CNN. Instead, it utilizes interpolation to calculate the cell boundaries.

Figure 5. The detection pipeline for the Mask R-CNN detection head. Mask R-CNN extends Faster
R-CNN to the image segmentation domain by adding the mask branch, which produces masks for
semantic segmentation.

3.2.3. Cascade Mask R-CNN

Most deep learning detectors, such as Fast R-CNN, Faster R-CNN, and Mask R-CNN
as previously discussed, tend to show a degradation in performance with increasing
intersection over union (IoU) thresholds. This occurs for two main reasons: the overfitting
during training due to exponentially vanishing positive samples and the mismatch during
inference between the IoUs set for training and the ones given as input at inference time.

Cascade R-CNN [36] attempts to address these problems. Figure 6 shows that the
core idea is refinement through cascading. A series of heads take the RoI features from the
region proposal network (RPN). Each head has its classification and regression networks.
The first head (Head 1) takes the RoI features and performs the first round of classification



Appl. Sci. 2022, 12, 10578 11 of 23

and regression. The output of the first head is treated as an input for the subsequent heads,
producing a cascade effect.

This cascading architecture is essentially a resampling procedure. The architecture
provides good positive samples to the next head, as later heads are more prone to false
positives. This enables each subsequent head to operate at a higher IoU threshold. Further,
this also tackles the mismatch between training and inference as the architecture and IoU
thresholds are the same during training and inference. Finally, the last head’s classifica-
tion and bounding box predictions are used for optimal predictions. The addition of a
segmentation mask branch extends it to Cascade Mask R-CNN.

Figure 6. The detection pipeline for the Cascade Mask R-CNN detection head. Cascade Mask R-CNN
has multiple heads and utilizes cascading among these heads to refine the bounding box predictions.

3.2.4. Sparse R-CNN

The famous deep learning object detectors such as Fast R-CNN, Faster R-CNN, Mask
R-CNN, and Cascade Mask R-CNN all rely on dense object priors. These detectors have
many anchor points containing anchor boxes that densely cover different spatial positions,
aspect ratios, and scales. The dense coverage helps to predict the classes and bounding box
coordinates. In the case of single-shot detectors, let W be the width and H be the height of
a feature map. If each anchor point is responsible for predicting k bounding boxes, then we
have a large number W × H × k of bounding boxes for each feature map.

Further, in the case of two-stage detectors such as Faster R-CNN, Mask R-CNN, and
Cascade Mask R-CNN, dense object priors are generated first and then, using the region
proposal network (RPN), a sparse set of foreground proposal boxes are obtained from these
dense object priors. Finally, these are fed into the classification and regression branches to
produce bounding box and category predictions.

The authors of Sparse R-CNN [15] propose a different paradigm that moves towards
thoroughly sparse object priors. As seen in Figure 7, the authors avoid using an RPN. They
instead use a small set of proposal boxes, usually 100 or 300. These proposal boxes are
learnable. The authors introduce the dynamic head to obtain them.

First, the initial set of randomly initialized proposal boxes in the dynamic head is
used with the RoI align operation in extracting features from the network backbone. Next,
each extracted RoI feature is convolved with a learnable proposal feature. The result is
fed into its detection and classification head to predict the class and bounding box. Each
head is essentially conditioned on these learnable proposal features. The proposal features
essentially act as weights for the convolutions and give rise to the learnable proposal boxes.
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Figure 7. The detection pipeline for the Sparse R-CNN detection head. Sparse R-CNN proposes
a paradigm shift by utilizing sparse and learnable proposal boxes and features instead of region
proposal networks (RPNs).

4. Experimental Results
4.1. Datasets
4.1.1. IIIT-AR-13K

IIIT-AR-13K [9] is a new public and open source dataset for graphical page object
detection. The dataset has a total of 13k images with manually annotated bounding boxes
of graphical objects in five popular and different categories: table, figure, signature, natural
images, and logos [9]. The dataset consists of annual reports of 29 different corporations
and companies. These reports span a large time interval of over ten years. These reports
are also in many languages such as English, German, French, Russian, and Japanese.

The authors argue that such diversity in document images helps train highly effective
and practical object detectors in business documents and academic articles [9]. They
demonstrate that it is possible to achieve good performance by training on a smaller dataset
that is more diverse than one that has a large number of examples [9]. As seen in Table 3,
one key drawback of the dataset is that it is heavily skewed towards tables. The dataset
contains a few examples of the other classes, such as logos, signatures, and natural images.

Table 3. Statistics of training, validation, and testing sets in the IIIT-AR-13k [9] dataset.

Sets Table Figure Signature Natural Images Logo

Training 11,163 2004 420 1987 379
Validation 2596 463 92 455 135
Test 2222 481 108 438 67

4.1.2. PubLayNet

The PubLayNet [44] dataset is the largest public and open source dataset for document
layout analysis. The automatic matching of the XML representations of PDF articles with
their content helps create such a large dataset. These articles are from the medical domain.
The dataset has over 360,000 document scanned images [44]. The dataset annotates the
most popular and typical graphical objects, such as text, titles, lists, tables, and figures.
The dataset goes a long way in the training of real-world object detectors. The PubLayNet
dataset is frequently used as a corpus to train detectors to detect document layouts, espe-
cially in scientific articles. Table 4 shows the statistics of the dataset’s training, validation,
and test split.

Table 4. Statistics of training, validation, and testing sets in PubLayNet [44] dataset.

Sets Text Title Lists Tables Figures

Training 2,376,702 633,359 81,850 103,057 116,692
Validation 93,528 19,908 4561 4905 4913
Test 95,780 20,340 5156 5166 5333
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4.1.3. DocBank

DocBank [45] is a unique dataset that utilizes weak supervision in its construction.
The dataset is large, public, and open source, consisting of 500,000 document pages and
having 13 classes. Table 5 shows the statistics of the most relevant classes to the graphical
page object detection task in the training, validation, and test splits of the DocBank dataset.
DocBank has both textual and layout information to facilitate document layout analysis and
textual analysis using natural language processing (NLP) [45]. Most other datasets contain
scanned images of documents and do not have fine-grained annotations. DocBank has
token-level annotations and ample semantic annotations for figures, tables, and equations
to facilitate common computer vision and natural language processing tasks (NLP).

Table 5. Statistics of the most relevant classes to the task of graphical page object detection in the
training, validation, and testing sets in DocBank [45] dataset.

Set Abstract Equation Figure List Paragraph Section Table

Training 25,387 161,140 90,429 44,927 398,086 180,774 19,638
Validation 3164 20,154 11,463 5609 49,759 22,666 2374
Test 3176 20,244 11,378 5553 49,762 22,384 2505

4.2. Evaluation Protocol

Analogous to standard work in the field of graphical page object detection, the perfor-
mance of the Sparse R-CNN model is assessed on the metrics of recall, precision, F1-score,
and mean average precision (mAP) [46]. The IoU thresholds of the achieved results are also
reported to facilitate comparison with other approaches.

4.2.1. Intersection over Union

Intersection over Union (IoU) [48] is a standard method for computing the intersecting
region between the predicted and ground truth regions. Equation (8) expresses Intersection
over Union (IoU) mathematically.

IoU(X, Y) =
X ∩Y
X ∪Y

(8)

4.2.2. Recall

Let TP represent the true positives, and FN represent the false negatives. Recall [48]
is defined as the ratio of true positives over the sum of true positives and false negatives.
Equation (9) represents Recall mathematically.

Recall =
TP

TP + FN
(9)

4.2.3. Precision

Let TP represent the true positives, and FP represent the false positives. Precision [48]
is defined as the ratio of true positives over the sum of true positives and false positives.
Equation (10) represents Precision mathematically.

Precision =
TP

TP + FP
(10)

4.2.4. F1 Score

The F1-Score [48] is essentially the harmonic mean of the Recall and Precision. Equa-
tion (11) represents F1-Score mathematically.

F1-Score =
2× Recall× Precision

Recall + Precision
(11)
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4.3. Implementation Details

The Sparse R-CNN, baseline, and CBNetv2 models are all implemented by utilizing
the MMDetection framework [49]. All the models utilize COCO pre-trained weights for the
different detector backbones. All the models follow the pre-training fine-tuning paradigm
with the first stage of the detector backbone being frozen. All input document images are
resized to a maximum size of 1200 × 800 while preserving the actual aspect ratio of these
images. The SR-CNN model utilizes multi-scaling to scale the width of images between 480
to 800 pixels. The baseline models are trained for 20 epochs, and the Sparse R-CNN-based
models are trained for 36 epochs. We employ early stopping based on the validation
accuracy for model selection for all models. We use the Adam optimizer for all Sparse
R-CNN models and SGD for all baseline and CBNetv2 based models with a linear learning
rate schedule with 500 warmup iterations, with a step weight decay of 0.0001 at 8 and
11 epochs, respectively.

4.4. Result and Discussion

This paper investigates the effectiveness of deep and robust backbone architectures
with different detection heads in the document image domain. Further, the idea of learnable
proposals, especially in the sparse paradigm, is also investigated. All this is set under the
pre-training fine-tuning paradigm. Towards this end, in Section 4.4 and its subsequent
sub-sections, we discuss the experimental results to support the validity of our hypothesis.
This validation is achieved by experiments on individual datasets as noted in Section 4.1
and cross-dataset evaluation on the same datasets. The subsections of Section 4.4 are
structured as follows: In Section 4.4.1, the IIIT-AR-13K dataset is utilized to investigate
the effectiveness of deep backbones and the idea of learnable proposals in the sparse
paradigm. In Section 4.4.2, the findings from the Section 4.4.1 are applied to the standard
PubLayNet dataset, and the results are discussed. Section 4.4.3 investigates the cross-dataset
generalizability of the models.

4.4.1. IIIT-AR-13K

Section 3.1 discussed the compositing architecture for deep learning backbones, and
Section 3.2 discussed the different types of detection heads this study aims to investigate.
This section discusses the experimental results of the IIIT-AR-13K dataset.

Establishing Baselines

The first thing needed for any comparison is the establishment of strong baselines.
To this end, under the pre-training fine-tuning paradigm baseline, Faster R-CNN, Mask
R-CNN, and Cascade Mask R-CNN models are trained on the IIT-AR-13K dataset. The
training is per the implementation details noted in Section 4.3.

Table 6 shows the mean average precision (mAP) at the Intersection over Union (IoU)
threshold from 0.5 to 0.95 in accordance with the COCO evaluation protocol [46]. The table
also shows the average precision (AP) at Intersection over Union (IoU) thresholds of 0.75
and 0.5. It is evident that Cascade Mask R-CNN establishes the strongest baseline for the
IIIT-AR-13K dataset, reaching an mAP of 0.76.

This strong performance is due to the cascading nature of the detection head. Cascade
Mask R-CNN allows each subsequent head to be enhanced by the localizing distribution of
the previous head, hence giving better performance on the higher IoU threshold values.
Mask R-CNN and Faster R-CNN perform equivalently. The reasoning is that in document
images, the masks for graphical objects are rectangular and hence do not add much addi-
tional information compared to bounding boxes. Figure 8 shows the detection results as
true-positives and false-positives for the baseline models in Table 6.
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Table 6. The established baseline results on the IIIT-AR-13k [9] dataset.

Method bbox mAP
(IoU = 0.50:0.95)

bbox AP
(IoU = 0.75)

bbox AP
(IoU = 0.50)

FLOPS
(GFLOPs)

Baseline Faster R-CNN 0.747 0.864 0.930 206.68
Baseline Mask R-CNN 0.745 0.845 0.929 258.23
Baseline Cascade Mask R-CNN 0.769 0.879 0.928 389.16

Figure 8. Visualizing some detection results for the models in Table 6. First row: The first and
second images show true positive and false positive detection results for the baseline Faster R-CNN,
respectively. Second row: The top and bottom images show the true positive and false positive
detection results for the baseline Cascade Mask R-CNN [36].
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Analyzing Effects of Strong Backbones

Using strong backbones for object detection in natural images generally increases
detection accuracy. Deep backbones can extract fine features and patterns. These fine
features and patterns then help construct a high-level semantic representation of the data
by the network. These semantic representations play a crucial role in object detection in
natural images.

Nevertheless, the extraction of high-level semantic features is highly dependent on
the depth of the network. Increasing the depth of the network and tackling the accuracy
degradation problem is not as straightforward. To achieve this, many novel general-
purpose deep backbones such as ResNet [47] and even backbones from natural language
processing (NLP) such as Swin-Transformers have been proposed. More recently, ensemble
methods that combine two or more general-purpose backbones such as CBNet [38] and
CBNetv2 [14] have been proposed.

The effects of strong backbones in the document image domain are investigated by
applying Dual-backbone Swin-Transformer, and Dual-backbone ResNet50 backbones with
different detection heads such as Faster R-CNN, Mask R-CNN, and Cascade Mask R-CNN.
Table 7 shows the different combinations of backbones and detection heads explored. The
core idea behind CBNetv2 was that using two identical backbones could lead to improved
performance, as the two backbones will learn different features and aid in the detection of
objects. Tables 6 and 7 show that the Dual-backbone version of Faster R-CNN performs
marginally better than the baseline version. This can be caused by document images being
simpler in context than natural images, and the two parallel and identical backbones do
not learn different features, hence do not aid each other significantly in detection.

As seen in Table 7, the Dual-backbone architecture of CBNetv2 with different Swin-
Transformers as backbones is explored. Apparently, with both Mask R-CNN and Cascade
Mask R-CNN as detection heads, the results are considerably worse than the baselines.
This can be caused by the fact that the extraction of fine features and patterns by the strong
backbones ends up confusing the detection heads of the network. This means that, in the
document domain, where the images are much less contextually rich than natural images,
the naive use of deep and strong backbones degrades performance. Figure 9 shows the
detection results for the models in Table 7.

Learnable Proposals (Sparse R-CNN)

The subsection Analyzing Effects of Strong Backbones in Section 4.4.1 empirically
establishes that the naive use of deep and strong backbones in the document image domain
does not lead to better detection results. Compared to natural images, document images are
essentially sparse in contextual information. Most detection heads, such as Faster R-CNN,
Mask R-CNN and Cascade Mask R-CNN, were designed for natural images.

These detection heads’ region proposal network (RPN) depends heavily on texture,
color, and contrast information to predict the Region of interest (RoIs). Features such as
texture, contrast, and color are abundant in natural images. However, document images
lack these features; hence, these RPN can struggle when applied to document images.

Table 7. The table shows the results for different detection heads on the Dual-backbone architecture
with backbones of different depths on the IIIT-AR-13k [9] dataset.

Method bbox mAP
(IoU = 0.50:0.95)

bbox AP
(IoU = 0.75)

bbox AP
(IoU = 0.50) GFLOPs

DB-Faster R-CNN 0.757 0.863 0.924 283.33
DB-Swin-T Mask R-CNN 0.704 0.805 0.909 355.47
DB-Swin-S Cascade Mask R-CNN 0.720 0.805 0.896 1010.54
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Figure 9. Visualizing some detection results for the models in Table 7. First row: The two images
show the detection results for Dual-Backbone Swin Transformer Tiny Mask R-CNN. Second row: The
first image shows the detection results for Dual-Backbone Faster R-CNN, and the second shows the
detection results for Dual-Backbone Swin-Transformer Small Cascade Mask R-CNN.

Further, due to the sparse nature of the document images, the application of detection
heads that rely on dense object priors can lead to degraded performance. A better approach
would be if the object priors were sparse and learnable. Sparse R-CNN achieves this. Table 8
shows the different ResNet backbones used along with the Sparse R-CNN detection head.
The table also shows the Sparse R-CNN (SR-CNN) model. Even with a relatively shallower
backbone of ResNet50, the Sparse R-CNN model outperforms the strongest baseline in
Table 6.

With a deeper backbone such as ResNet101, the best results on the IIIT-AR-13K dataset
are achieved. This may be because Sparse R-CNN employs learnable proposal boxes using
the learnable proposal features in the dynamic head of the Sparse R-CNN detection head.
At the same time, the deep backbone extracts high-level features relevant for detection.
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As seen in Table 8, the authors in [39] evaluate the new one-stage YOLOF method
on the IIIT-AR-13K. Their experimental YOLOF model achieves 0.588 mAP on the IIIT-
AR-13K dataset. In comparison, the SR-CNN model achieves 35% higher raw mAP and
considerably outperforms the model in the pre-training and fine-tuning paradigm.

Further, Table 9 shows the effects of deep and robust backbones on the SR-CNN
model. To this end, the Sparse R-CNN head is paired with the Swin-Transformer general-
purpose backbone. The results saturate with the Swin-Transformer Base backbone, which
is pre-trained on the ImageNet-1k dataset. Using more robust backbones trained on the
ImageNet-22k dataset, such as Swin-Transformer Base and Swin-Transformer Large, results
in degradation of the mean average precision (mAP).

Figure 10 shows the graph of the F1 score vs. IoU thresholds for the SR-CNN model
on the validation and test set split of the IIIT-AR-13K dataset. From the figure, it is evident
that the the SR-CNN model performs well even on higher IoU thresholds for both the
validation and test split of the dataset.

Table 8. The table shows experimentation of Sparse R-CNN detection head with different backbones.
We also compare the SR-CNN model with other models on the IIIT-AR-13k dataset.

Method bbox mAP
(IoU = 0.50:0.95)

bbox AP
(IoU = 0.75)

bbox AP
(IoU = 0.50) GFLOPs

Nguyen et. al YOLOF [39] 0.588 0.649 0.812 99.98
Sparse R-CNN r50 0.771 0.888 0.944 146.01
SR-CNN r50 0.771 0.868 0.932 149.90
SR-CNN r101 0.795 0.893 0.954 225.97

Table 9. These experiments show that even with deep and strong backbones such as the Swin-
Transformer, the performance of the SR-CNN model does not improve.

Method bbox mAP
(IoU = 0.50:0.95)

bbox AP
(IoU = 0.75)

bbox AP
(IoU = 0.50) GFLOPs

SR-CNN Swin Tiny 0.713 0.797 0.796 153.55
SR-CNN Swin Small 0.716 0.804 0.890 243.54
SR-CNN Swin Base (1k) 0.741 0.835 0.909 386.32
SR-CNN Swin Base (22k) 0.726 0.819 0.895 386.32
SR-CNN Swin Large 0.731 0.831 0.896 793.28

Figure 10. The F1-Score vs. IoU thresholds for the SR-CNN model. The first image shows results for
the validation set and the second image for the test set of the IIIT-AR-13K [9] dataset.

4.4.2. PubLayNet

Motivated by the results on the IIT-AR-13K dataset, the SR-CNN model is applied
to the PubLayNet [44] dataset. Table 10 shows the results for the same. To the best of
our knowledge, the state-of-the-art results on the PubLayNet dataset are achieved by
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CDeC-Net [37]. The CDeC-Net model has a Dual-ResNeXt101 backbone with deformable
convolutions. The detection head is a Cascade Mask R-CNN. The model achieves a mean
average precision (mAP) of 0.96 [37]. The SR-CNN model achieves an mAP of 0.93. The
model can achieve these results without using memory-intensive deformable convolutions
and a strong high-resolution backbone such as ResNeXt101. The results are close to the
current state-of-the-art as achieved by the CDeC-Net model. At the same time, the SR-CNN
model is simpler than CDeC-Net and utilizes readily available COCO weights. Figure 11
shows the detection results for the SR-CNN model on the PubLayNet dataset. Figure 12
shows the F1-score vs. IoU thresholds for the SR-CNN model.

Figure 11. The detection results for the SR-CNN model on the PubLayNet [44] dataset. The first
image highlights a true positive example, and the second image highlights a false positive example.

Figure 12. The image shows the F1-Score vs. IoU thresholds for the SR-CNN model on the test set for
the PubLayNet [44] dataset.
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Table 10. The results of the SR-CNN model on the PubLayNet [44] dataset, along with the comparison
with other state-of-the-art methods.

Method bbox mAP
(IoU = 0.50:0.95)

bbox AP
(IoU = 0.75)

bbox AP
(IoU = 0.50) GFLOPs

F-RCNN [44] 0.900 - - 206.68
M-RCNN [44] 0.907 - - 258.23
SR-CNN r101 0.937 0.962 0.981 225.97
CDeC-Net [37] 0.967 - - 1375.32

4.4.3. Cross-Dataset Evaluation

Deep learning methods for object detection in document images are preferred over
rule-based methods due to the fact that these methods generalize better over different
and distinct datasets. To investigate its generalization capabilities, the SR-CNN model is
evaluated over three datasets: IIIT-AR-13k, PubLayNet, and DocBank. Only the common
classes among the datasets were utilized for the cross-dataset evaluation. Baseline Faster
R-CNN is also evaluated for comparison. The results are presented in Table 11.

Table 11 shows that the SR-CNN model gives a mean average precision of 0.56 and
0.45 on the PubLayNet and DocBank, respectively, when trained on the IIIT-AR-13K dataset.
This may be because IIIT-AR-13K has a diverse collection of real-world images of company
reports, which allows the model to learn a more general representation of document images
and performs reasonably well on the much simpler dataset with document images of
academic articles.

When the SR-CNN model is trained on the PubLayNet, it gives 0.510 and 0.323 mean
average precision on the DocBank and IIIT-AR-13K datasets. The model’s performance
suffers on the IIIT-AR-13K dataset as the model is trained on a dataset that contains
primarily academic and research articles. The IIIT-AR-13K offers an entirely different
distribution of document images. However, when tested on the DocBank dataset, which
consists mainly of document images from the academic domain, better performance is
observed than for IIIT-AR-13k.

Finally, when the model is trained on DocBank and tested on IIIT-AR-13K and Pub-
LayNet, it gives a mean average precision of 0.184 and 0.735 on the IIIT-AR-13k and
PubLayNet, respectively. Hence, it can be inferred that the distribution of document images
in the DocBank and PubLayNet datasets is similar. Therefore, the model achieves relatively
good results when trained on one dataset and tested on the other.

Table 11. The cross-dataset evaluation results for the SR-CNN and baseline Faster R-CNN models.
We evaluate the models on the common classes of IIIT-AR-13k, PubLayNet, and DocBank.

Model SR-CNN Faster R-CNN

Train Dataset Test Dataset
IoU [0.50:0.95]

Table
(AP)

Figure
(AP) mAP Table (AP) Figure

(AP) mAP

IIIT-AR-13K PublayNet 0.770 0.351 0.562 0.704 0.258 0.481
DocBank 0.560 0.353 0.456 0.557 0.316 0.436

PublayNet DocBank 0.545 0.476 0.510 0.547 0.500 0.522
IIIT-AR-13K 0.538 0.109 0.323 0.497 0.103 0.299

DocBank IIIT-AR-13K 0.293 0.075 0.184 0.399 0.083 0.241
PublayNet 0.790 0.681 0.735 0.780 0.717 0.748

5. Conclusions and Future Work

This paper investigates the effectiveness of deep and robust backbones in the document
image domain. Further, it also explores the idea of learnable object proposals through
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Sparse R-CNN. To this end, the Analyzing Effects of Strong Backbones subsection in
Section 4.4.1 shows that naively throwing the best and strongest deep learning backbones at
the object detection problem in documents will not improve results. The same is shown by
experimenting with strong backbones such as Swin-Transformers and an ensemble method
of combining two or more strong backbones via the CBNetV2 framework. These backbones
are paired with various detection heads, such as Faster R-CNN [13], Mask R-CNN [30],
and Cascade Mask R-CNN, and the degradation in results is evident in Table 7.

Turning our attention to the detection head, where the argument is that it would be
better if the object priors in the detection head were sparse and learnable. The Sparse
R-CNN [15] detection head achieves this, formulating the SR-CNN model. The Learnable
Proposals (Sparse R-CNN) subsection substantiates the above argument through experi-
ments on the IIIT-AR-13k dataset and demonstrates that sparse and learnable proposals
in the document image domain can lead to better performance. Table 9 also shows that
the performance of Sparse R-CNN suffers when paired with a more robust and deeper
backbone. This supports our claim that the naive use of strong backbones is not a great
idea in document images.

Inspired by this insight in Section 4.4.2, the SR-CNN model is trained on the Pub-
LayNet dataset and achieves a mean average precision of 0.936. To the best of our knowl-
edge, this is close to the current state-of-the-art of 0.96 (mAP) achieved by CDeC-Net [37].
The SR-CNN model is more computationally efficient (six times less GFLOPs as compared
to CDeCNet) and uses the readily available COCO pre-trained weights. Table 1 shows
the comparison of the key characteristics of the explored approaches along with their
advantages and limitations to facilitate understanding. In future work, we plan to extend
this idea to the more challenging domain of document structure recognition in document
images. There is also a possibility of exploring the role of different attention mechanisms in
the sparse and learnable proposal paradigm.
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