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Abstract: This paper presents a novel method for generation of synthetic images of obstacles on and
near rail tracks over long-range distances. The main goal is to augment the dataset for autonomous
obstacle detection (OD) in railways, by inclusion of synthetic images that reflect the specific need for
long-range OD in rail transport. The presented method includes a novel deep learning (DL)-based
rail track detection that enables context- and scale-aware obstacle-level data augmentation. The
augmented dataset is used for retraining of a state-of-the-art CNN for object detection. The evaluation
results demonstrate significant improvement of detection of distant objects by augmentation of
training dataset with synthetic images.

Keywords: object detection; data augmentation; synthetic images; railway safety; long-range
obstacle detection

1. Introduction

It is generally acknowledged that among land transport methods railways are com-
paratively safe. There are, nonetheless, each year many recorded collisions between trains
and obstacles on or adjacent to the railway tracks, so rail operations could be made even
more safe if the number of collisions could be reduced. Autonomous obstacle detection
(OD) has gained significant interest in recent years as a recognized enabler of improved
railway safety [1,2]. As a result of developments in artificial intelligence (AI), there has
been a rapid expansion in research of deep learning (DL)-based methods and in particular
of convolutional neural network (CNN)-based methods, for autonomous railway OD [3].
However, further progress in development and implementation of DL-based OD meth-
ods has been constrained by a lack of appropriate datasets that contain images including
specific railway aspects, such as long-range obstacles on and near the rail track that are
potentially hazardous for safe train operation.

In contrast to the road transport field, where a number of datasets such as KITTI [4]
are available to support development and evaluation of DL-based methods for OD in road
scenes, the rail transport field has, to the best of the authors’ knowledge, only one relevant
dataset, RailSem19 [5]. It is the first publicly available dataset explicitly for semantic railway
scene understanding that contains both images acquired from the train’s and tram’s point
of view and specific annotations for different railway relevant tasks, such as classification
of trains, switches and buffer stops. However, RailSem19 does not include annotations
of obstacles on the rail tracks. In the absence of relevant public datasets, the majority
of AI-based methods for OD in railways are based on custom-made datasets, including
images found on the Internet or images recorded during dedicated recordings in the railway
environment. For example, the authors of [6] created the Railway Object Dataset that was
used for development and evaluation of a CNN-based method for detection of different
types of objects usually present in a railway shunting environment, such as: bullet train,
railway straight, railway left, railway right, pedestrian, helmet, and spanner. As the dataset
addressed the shunting environment, the assumed distances to obstacles were short-range.
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However, the created dataset did not have object distance annotations, and actually did not
consider object distances at all, which is also the case in the majority of published AI-based
OD methods in railways.

To the best of the authors’ knowledge, the only known published work that is based
on a custom railway dataset with annotation of railway obstacles and associated distances
is work included within the H2020 Shift2Rail projects SMART [7] and SMART2 [8]. The
SMART railway dataset was created using data recordings in several static and dynamic
field tests that were conducted on different railway sites in Serbia, according to permissions
issued by the Serbian Railway. As illustrated in Figure 1a,b, during the static field tests,
several cameras of different type, RGB, thermal, night vision and SWIR, were mounted
on a static test stand viewing the rail tracks, with different obstacles located at different
distances from the cameras, such as pedestrians that were imitated by the members of the
SMART/SMART2 consortiums. In dynamic field tests, the cameras were integrated into a
sensors’ housing mounted on the front profile of an operational locomotive (Figure 1c,d), as
described in [9] for the case of SMART obstacle detection system. Two different versions of
the integrated sensors’ housing were developed and tested during the successive projects,
SMART and SMART2. As illustrated in Figure 1c, the SMART sensors’ housing was
horizontal and placed under the headlights of the locomotive, while the SMART2 sensors’
housing was vertical and located in the middle of the locomotive frontal profile (Figure 1d).
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(c) and SMART2 (d) vision sensors for obstacle detection integrated into sensors’ housing mounted 
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The dynamic field tests were performed with an in-service train of the operator Ser-
bia Cargo. The test length was 120 km on the Serbian part of the pan-European corridor 
X. All the tests were performed in the period November 2017–June 2022, under different 
illumination and weather conditions. During the field tests, approximately 14 h of video 
were recorded by the SMART/SMART2 cameras. The majority of video images contain 
rail tracks without obstacles on them. In the images with obstacles, both static and moving 
obstacles are present, including humans, vehicles, and animals. Objects (obstacles) in the 
dataset were labeled with a number of parameters, including information about the class 
of the objects, the bounding box information of the object and the ground truth distance 

Figure 1. SMART and SMART2 field tests for dataset generation: Test-stand with the SMART (a) and
SMART2 (b) sensors viewing the rail tracks and an object (human) on the rail tracks; SMART (c) and
SMART2 (d) vision sensors for obstacle detection integrated into sensors’ housing mounted on the
frontal profile of a locomotive.

The dynamic field tests were performed with an in-service train of the operator Serbia
Cargo. The test length was 120 km on the Serbian part of the pan-European corridor X.
All the tests were performed in the period November 2017–June 2022, under different
illumination and weather conditions. During the field tests, approximately 14 h of video
were recorded by the SMART/SMART2 cameras. The majority of video images contain
rail tracks without obstacles on them. In the images with obstacles, both static and moving
obstacles are present, including humans, vehicles, and animals. Objects (obstacles) in the
dataset were labeled with a number of parameters, including information about the class
of the objects, the bounding box information of the object and the ground truth distance
of the object to the cameras. In addition, objects in the dataset have associated instance
segmentation masks, created manually by the online Hasty annotation tool [10]. These
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instance segmentation masks were used by the authors in related works for annotating
the images for training instance segmentation AI models [11]. For the data augmentation
method presented in this paper, these objects’ instance segmentation masks were used as
described in Section 3.

The SMART dataset has supported development of the SMART/SMART2 on-board
OD system, which is based on using state-of-the art bounding box DL-based models
for object detection, that are originally trained with a public dataset such as COCO [12].
In the course of development of the SMART on-board OD system, different DL-based
methods were used [13] as object detectors. In the recent advanced developments of the
SMART2 on-board system, CenterNet [14], as one of the fastest and most reliable real-time
networks for the object detection task, has been used. Although achieved results with the
SMART vision-based OD system are satisfactory and they outperform other vision-based
OD systems, particularly with respect to the distance detection range [15], there is still a
need for further improvement. The reason for this is the insufficient amount of relevant
training data. Namely, as said above, the number of images with “empty” rail tracks in
the SMART dataset is much larger than the number of images with obstacles, which is
understandable, bearing in mind that in the real-world operational environment during the
data recording field tests, obstacles mainly appeared on level crossings and did not appear
on large, secured areas. Furthermore, the viewed distances during the data recording
field tests were limited by the topology of railway terrain. Because of this, there was a
need to augment the SMART dataset, in particular to expand it with images of long-range
distant obstacles. In order to overcome the problem of not having a sufficient amount
of real-world data, in this paper, a novel method is proposed for generation of synthetic
images to augment the SMART dataset and so enable re-training of the CenterNet object
detector with the augmented dataset to improve its object detection performances.

The proposed novel augmentation scheme is a simple and efficient object-level data
augmentation (ODA) method that improves the CNN model generalization for the railway
obstacle detection domain. In order to achieve a context- and scale-aware data augmenta-
tion, the proposed data augmentation scheme includes a DL-based rail track detection as an
essential step. The presented rail track detection method is a novel method based on using a
state-of-the-art bounding box DL-based object detection, that detects parts of the rail tracks.
For this purpose, the rail tracks in training images were annotated with multiple bounding
boxes specifying rail tracks as objects consisting of multiple parts. Dealing with bounding
box-based annotations and detection, the proposed rail track detection method is more
efficient and faster than recent instance segmentation-based methods [16]. Additionally,
as a DL-based method, it overcomes the shortcomings of established methods for rail
track detection that are based on extraction of “hand-crafted” features, using traditional
computer vision techniques [17]. Although focused on object-level data augmentation in
the railway context, the proposed method can be used in any application where estimation
of the object’s distance is crucial for safety, such as autonomous driving [18].

The rest of the paper is organized as follows. In Section 2, an overview of related work
focusing on generation of synthetic images and their use in the field of autonomous obstacle
detection in railways is given. In Section 3, the proposed system for creation of synthetic images
for training of a CNN model for obstacle detection in railways is presented. The experimental
results are given in Section 4. The concluding remarks are given in the last section.

2. Related Work

DL-based methods, in particular CNN methods, are a very powerful AI tool that out-
performed other techniques in object recognition tasks. However, the biggest shortcoming
of this method is the immense amount of training data required, since the generation of a
high-quality annotated dataset is an arduous and expensive process. Moreover, it is not
always possible to obtain the needed data, because in many applications specific objects are
to be considered and access to these objects is limited [19]. To tackle this problem, different
techniques have been proposed for generation of synthetic data for object recognition tasks.
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So-called cut–paste methods have been proven as simple methods that led to great results
in many applications [20]. In principle, cut–paste techniques generate synthetic images
by cutting the object from one image and pasting it on another image. In recent years,
generative adversarial networks (GANs) have been introduced as a promising tool for
synthetic image generation. A GAN is a model consisting of two networks: a generative
network, which is trained to generate synthetic images, and a discriminative network,
which is trained with images generated from the generative network and real images to
classify images as real or synthetic [21].

So far, in the applications of OD in railways, cut–paste methods were not used for
the generation of dataset images for training of an AI model for OD; rather, they were
used to artificially inlay objects as possible obstacles on the images of rail tracks, for the
purpose of generating test images for proposed OD methods. For example, due to the
limited availability of real-world videos in which obstacles appear in front of trains, the
methods presented in [22,23] were evaluated using modification of the videos, that were
freely available on the Internet. The original high-resolution videos, recorded from the
train driver’s perspective, were modified by digitally adding stationary objects in the rail
track regions in the video frames using appropriate software. Although the digitally added
obstacles looked quite unrealistic, the synthetic images were satisfactory for evaluation of
the proposed obstacle detection methods, representing a Windows-based systematic search
for objects along the detected rail tracks.

Synthetic images were also used for evaluation of the proposed method in [24]. The
proposed method was an unsupervised DL method for anomaly detection on the rail tracks.
Due to the lack of a railway-driven dataset describing real-world obstacles over rails, the
custom test dataset was generated using Gaussian–Poisson GAN (GP-GAN) [25], which
is a generative model capable of blending images with high resolution, and generating
realistic blends to inlay obstacles synthetically on images of rail tracks from the RailSem19
dataset. A total of 19 background images with rail tracks free of obstacles were modified by
inlying obstacles using the GP-GAN. Each empty background image had an average of 10
inlaid counterparts. The obstacles were of typical classes such as “humans” and “animals”.
However, no details were given on the obstacles’ inlying positions on the background
images and, consequently, no references to the obstacles’ distances were given.

Synthetic images for possible use as test images, as well as training images, for object
detection models were created using the method presented in [26]. This method included
the generation of synthetic images of a railway intruding object (potential obstacles) based
on an improved conditional deep convolutional GAN (C-DCGAN), in order to overcome the
absence of potential obstacles in the image datasets gathered from real railway operations.
To investigate the authenticity and quality of the generated intruding objects, the generator,
multi-scale discriminators, and a novel loss function of the improved C-DCGAN model
were constructed. An intruding-object scale estimation algorithm based on a rail track
gauge constant was used to generate and add synthetic intruding objects with accurate
scaling into railway scene images taken from surveillance videos along high-speed rail lines.
The object samples (classes: human, horse, cow and sheep), which were used for generating
these synthetic objects, were extracted from semantic object labels of publicly available
datasets. The experimental results on the created dataset demonstrated that the synthetic
object images were of a high quality, diversity, and scale accuracy. However, the presented
method augments the dataset with modified background images from static surveillance
cameras, which limits its application for long-range on-board obstacle detection.

In general, published GAN-based methods to-date demonstrated GANs as good
at generating natural images from a particular distribution, but weak in capturing the
high-frequency image details such as edges [25]. In addition, DL-based methods are
computationally expensive. Because of these reasons, although promising, GANs were not
used for synthetic image creation in the work presented in this paper. Rather, a simple and
efficient cut–paste-like method that includes novel DL-based rail track detection, which
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supports scale-based data augmentation, was used to create the images for retraining of the
CenterNet model for obstacle detection in railways, as explained in the following sections.

3. Proposed Method

The illustration of the pipeline to create synthetic images is shown in Figure 2, and a
short explanation of individual processing steps is given in the following.
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Figure 2. Block-diagram of proposed system for generation of synthetic image for obstacle detection
in railways.

As illustrated in Figure 2, the presented ODA method takes three inputs from the
SMART railway dataset explained in Section 1: a target image of the rail tracks without
obstacles, a source image with an obstacle on the rail tracks and an offline-created instance
segmentation mask of the obstacle from the source image. As described in Section 1, the
used instance segmentation masks were part of the dataset and they were created manually.
In principle, the method of creating instance segmentation masks could be automatized
by integration of AI-based instance segmentation of source images. For the novel data
augmentation method presented in this paper, it was sufficient to use offline-created objects’
instance segmentation masks, as the associated objects were manually randomly selected.
The main selection criteria were properties of the objects (such as size, class, and the location
in the scene) that were illustrative for the presented data augmentation method. Figure 2
illustrates an example of source image, with a horse passing over the level crossing while
a train is approaching it. The image was recorded in a SMART field test, with SMART
cameras mounted on the train running on a test route approved by Serbian Railway. The
crossing of the horse was a part of the field test scenario, and it was conducted in controlled
conditions with the support of the local equestrian club near the town Niš, in Serbia.

The proposed method follows the idea of cut–paste techniques, and it creates a syn-
thetic image by cutting the obstacle from the source image and inserting it into the target
image using the segmentation mask. In order to achieve a realistic look in the generated
synthetic image, the inserted obstacle should match with the background of the target im-
age. For this purpose, at first, a color and contrast transformation operation is applied to the
source image, considering the target image as a reference to reduce the color/illumination
differences between foreground and background in the final synthetic image. In the pre-
sented system, a combination of two methods is proposed, histogram matching [27] and
LAB color space-based blending [28]. Histogram matching modifies the contrast level of
the source image according to the contrast level of the target image. Histogram matching
is achieved by equalizing the histograms of the source and the target images and then by
mapping the equalized pixel intensities of target to source image. LAB color space-based
blending is a fast color transfer algorithm between two images represented in the LAB color
space, where the L channel stands for luminosity/illumination/intensity, and the A and B
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channels represent the green–red and blue–yellow color components, respectively. After
transformation of both images, target and source image, from RGB to LAB color space,
the three channels are split and the means and standard deviations of the three channels
are calculated for both images. The objective of transferring the colors of the target image
to the source image is achieved by an appropriate combination of means and standard
deviations of three channels of both images. For the final transformation of the color and
contrast of the source image, the outcomes from the above mentioned two methods are
combined in so-called Alpha blending [29], based on the following Formula:

Pα = Plab(1− α) + Phist(α) (1)

where Phist is the pixel intensity of the source image after histogram matching, Plab is the
pixel intensity of the source image after LAB color-matching method, and α is a parameter
0 ≤ α ≤ 1, that is in the presented system considered to be equal to 0.3, based on
heuristic evaluation of results. Pα is the pixel intensity of the pre-processed source image
with the color/contrast transformed according to the color/contrast of the target image.
The pre-processed source image is the input to the processing steps of the presented ODA,
as illustrated in Figure 2.

3.1. Object-Level Data Augmentation

Firstly, the pre-processed source image containing the source obstacle and the image
with obstacle instance segmentation mask are cropped to the size of the obstacle’s bounding
box. The cropped source obstacle is then sharpened by applying a sharpening filter if the
obstacle scaling factor (OSF) is larger than 1, to retain the sharp object edges, even in the
case that the obstacle shall be upscaled for the purpose of so-called true-to-scale insertion
into the target image. In parallel, the cropped obstacle segmentation mask is processed
by applying appropriate morphological operations with the goal to smoothen the edges
of the binary segmentation mask. The processed, cropped source image and cropped
segmentation masks are placed, respectively, into two images of the sizes of the target
image, whose pixels all have zero values. These two images are denoted as Iobst and Imask.
The points of insertion of the cropped images into the images Iobst and Imask are referred
to as points of intrusion (PoI). The PoI is defined as the image coordinates of the point
in the target image where the bottom right corner of the source obstacle will be upon
its insertion into the target image. The PoI and the OSF are calculated in the processing
pipeline, named context- and scale aware augmentation, that consists of several processing
steps as explained in the following.

3.2. Rail Track Detection

As said in Section 1, the presented ODA integrates autonomous rail track detection
using DL-based object detection. More precisely, CenterNet that is used for OD in the
SMART/SMART2 system is also used for the detection of rail tracks. For the purpose of
training CenterNet to detect rail track parts, 234 images with rail tracks in the SMART
dataset were annotated so that the visible rail tracks were annotated with multiple bounding
boxes. The number of bounding boxes used for annotation depended on the length of the
rail tracks in the image. An example of annotation of straight rail tracks with six bounding
boxes is given in Figure 3a.
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During the annotation process, when selecting the parameters of the annotation
bounding boxes, the following criteria were applied:

• The bottom left and the bottom right corners of each bounding box have to lie exactly
on the outer edge of the left and right rail track, respectively;

• The ratios of height and width of the individual bounding boxes are approximately
constant.

The 234 original images were selected so that the annotated dataset contained diverse
data: images with different backgrounds as captured in different weather and illumination
conditions, and images with different structure of the rail tracks terrain. The CenterNet
model, originally trained on the COCO dataset, was retrained with annotated rail track
images using the following hyperparameters: learning rate: 2.5 × 10−4, number of epochs:
230, batch size: 4, learning rate drop at epoch 180 and epoch 210, input resolution: 1024.

An example of the CenterNet model detection is given in Figure 3b. As can be seen, the
corner points of the bottom sides of all bounding boxes lie very precisely on the rail tracks,
so that linear regression lines obtained by curve-fitting through these points represent the
rail tracks reliably.

The left/right regression line is formed starting from the left/right bottom corner of
the lowest bounding box in the image (ymax coordinate) to the left/right upper corner of
the uppermost bounding box (ymin coordinate). Firstly, the average x- and y-coordinates of
bottom corners of all bounding boxes, x and y, and the standard deviations, σx and σy, are
determined. The correlation factor r is assumed to be 1 for the sake of simplicity. The slope
of the regression line m can be determined using the equation:

m = r · σx

σy
(2)

While the coordinates ymax and ymin for both regression lines are known through the
coordinates of the bounding boxes obtained as the outcome of the CenterNet-based rail
track detection, corresponding x-coordinates have to be calculated from the Equations (3)
and (4) for the left regression line as well as (5) and (6) for the right regression line:

xL,max = x +
y− ymin

m
(3)

xL,min = x− ymax − y
m

(4)

xR,max = x +
ymax − y

m
(5)
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xR,min = x +
y− ymax

m
(6)

An example of calculated regression lines drawn onto the original image of rail tracks
is given in Figure 4a. As can be seen, the calculated regression lines map the courses of the
left and right rail track accurately so that they can be used for the definition of a region of
intrusion (RoI) and the obstacle scaling factor (OSF), as explained in the following.
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3.3. Definition of Region of Intrusion (RoI)

The goal of the presented ODA method is to create synthetic images to augment the
existing SMART dataset with images of long-distance obstacles that are hazardous for safe
rail transport. To cover the long-distance range, the length of the RoI in the target image
is calculated as the farthest 25% of the total length of detected rail tracks. As illustrated
in Figure 4b, once the regression lines are calculated to represent left/right rail tracks, the
start and the end points of both lines are detected (points 1 and 2 for the left rail track, i.e.,
points 3 and 4 for the right track). If the length between the start and end points of the
detected rail tracks is denoted as l, the length of RoI is calculated as 0.25l. For all rail track
images in the SMART dataset, this definition of the RoI length corresponded to real-world
distances beyond 200 m.

In order to cover the so-called clearance region, the width of the RoI is calculated
based on the standard real-world size of the rolling stock and its width outside the rail
tracks. According to [30], the standard width of the rolling stock’s protrusion outside the
rail tracks is Rs = 0.895 m. Considering the standard-gauge railway with a track gauge of
Sg = 1.435 m, and considering the projective transformation by camera imaging:

rs = sg ·
Rs

Sg
(7)

where sg is the distance between the corresponding points on the detected left and the right
track (track gauge) in pixels, the pixel width rs of the RoI outside the rail tracks on both the
sides of the rail track can be calculated. In this way, the RoI trapezoid A-B-C-D, is defined
as illustrated in Figure 4b.

3.4. Calculation of Obstacle Scaling Factor (OSF)

In order to define a so-called point of intrusion (PoI) within the RoI, that will define
the point in the target image to be aligned with the bottom right corner of the source
obstacle bounding box upon its inserting into the target image, a random point generator
was applied which was able to generate a random PoI with image coordinates

(
xp, yp

)
.

Multiple PoIs are generated for every source obstacle and for every target image for the
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purpose of synthetic obstacle intrusion. These PoIs are uniformly distributed across the
entire RoI of the target image.

In order to ensure true-to-scale insertion of the source obstacle into the target image, an
OSF has to be calculated considering the pixel width of the rail tracks at the yp-coordinate
of PoI as follows:

OSF =
hp

hsource
(8)

where hsource is the obstacle height in source image (pixels) and hp is the obstacle height
in pixels in the final synthetic target image Isyn. hp is calculated based on the width of the
detected rail tracks in the target image at the y-coordinate of the PoI as:

hp = sgp ·
Sg

H
(9)

where sgp is the distance between the corresponding points on the detected left and the
right track (track gauge) in pixels at yp-coordinate, and H is the averaged real-world height
of the objects from a particular class.

3.5. Insertion of Source Obstacle into the Target Image

Once the images Iobst and Imask are created, as explained in Section 3.1, by inclusion
of, respectively, the scaled pre-processed source obstacle and scaled obstacle segmentation
mask at PoI, while all other pixels are of 0 values, the masking operation is performed to
insert the scaled obstacle into target image Itarget as follows:

Isyn(x, y) =
{

Iobst(x, y) if Imask(x, y) 6= 0
Itarget(x, y) otherwise

(10)

4. Evaluation

Using the presented ODA method, a significant number of synthetic images were
generated. For every obstacle from selected source images, a set of ten unique target images
from SMART dataset was used. In each target image, the same object was inserted at five
different positions upon appropriate scaling so that five synthetic images were created per
pair “source object/target image”. This procedure led to 50 different synthetic images per
one source obstacle. All created images were finally filtered by subjective visual inspection
so that all synthetic images of poor quality with a non-realistic appearance were discarded.
Finally, 2026 synthetic images were used for re-training of the CenterNet object detection
model.

In order to demonstrate the impact of augmentation of the current SMART dataset
with the generated synthetic images on the performance of DL-based object detection, two
different CenterNet models were trained:

• Model 1—the object detection model trained exclusively with the annotated real-world
images of the original training dataset;

• Model 2—the object detection model trained with the augmented training dataset
which was a mixture of real-world and synthetic images.

When creating the original real-world dataset of 1005 images in total, 80% were
assigned to the original training dataset, and 10% of the images were used for each of
validation dataset and test dataset. The assignment of the individual real-world images to
the training, validation or test dataset was done randomly. The same validation and test
datasets were used for Model 1 and Model 2, because the evaluation of the training results
should be based on the same real-world images. The training dataset for Model 2 was
augmented with respect to training dataset of Model 1 with synthetic images. The sizes of
training, validation and test datasets for Model 1 and Model 2 are given in Table 1 below:
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Table 1. Number of images for training, validation and test datasets.

Training
Dataset

Validation
Dataset

Test
Dataset Total

Model 1 804 100 101 1005
Model 2 2830 100 101 3031

Although the number of synthetic images significantly exceeded the number of real-
world images, the total number of objects in real-world images, 4088, was much larger
than the total number of objects in synthetic images, 2026. This is because there was only
one synthetically inserted object per synthetic image while most of the original real-world
images contained multiple objects.

To ensure comparability of the two models, both models were trained with the same
hyperparameters: learning rate: 1.5 × 10−4, number of epochs: 140, batch size: 4, learning
rate drop at epoch 90 and epoch 120, input resolution: 1024.

The average precision (AP) is used as the decisive metric for the evaluation of the
models. As shown in Table 2, the mean average precision (mAP) across all intersection
over union (IoU) values increased absolutely by 3.8% and thus experienced a significant
improvement due to the augmentation of the original training dataset with synthetic images.

Table 2. Evaluation results.

Model 1
(Original Dataset)

Model 2
(Augmented Dataset)

mAP @ IoU = [0.5:0.05:0.95] 0.486 0.524
AP @ IoU = 0.5 0.691 0.776
AP @ IoU = 0.75 0.527 0.562
AP @ distant 0.305 0.402
AP @ medium 0.473 0.509
AP @ near 0.645 0.633

A qualitative analysis of the predictions on the test dataset showed that Model 2 often
produced better predictions. Object detection using Model 1 resulted in more false positives
(FP), and also false negatives (FN) occurred more frequently. Thus, both sensitivity and
specificity were increased for Model 2. In Figure 5, an example of this improvement of
sensitivity and specificity is shown.
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Figure 5. Example of improved sensitivity and specificity. (a) Original image with marked region
containing the considered objects (red rectangular). (b) Magnified predictions of Model 1 including
one FP and two FN predictions. (c) Magnified predictions of Model 2 with perfect predictions.

Furthermore, a more detailed evaluation of the predictions led to the result that the
bounding boxes of the recognized objects of Model 2 are repeatedly more accurate than
those of Model 1 (Figure 6). This led to increased IoU values, which can have a considerable
influence on the mAP, and is therefore another reason for the improvement of the mAP
presented in Table 2.
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Even though the more precise detection of bounding boxes may not seem particularly
relevant at first, it is of great importance for the distance estimation based on the bounding
box sizes, as it is carried out in the SMART/SMART2 system using the artificial neural
network DisNet [13]. Accordingly, more precise bounding boxes have a direct influence
on the accuracy of distance estimation of objects. For example, the ground truth distance
between the camera mounted on the train and detected object (car) in Figure 6 was 93 m.
The estimated distance based on the imprecise car bounding box resulting from Model 1
was 125 m, while the estimated distance based on the precise bounding box resulting from
Model 2 was 104 m.

Overall, the newly trained Model 2 was able to correctly detect 221 of the 252 objects
present in the test dataset. In all these cases, the IoU was above 0.5 and the object was
classified as true positive (TP). Accordingly, 31 FN occurred in the test dataset. Furthermore,
35 FP occurred, resulting in a improved precision of 0.863 and a recall of 0.877. Thus, the
harmonic mean (F1 score) for this model is 0.870, as can be seen in the following Table 3.

Table 3. Precision, recall and F1 score.

Metric Model 1 Model 2

Precision 0.824 0.863
Recall 0.857 0.877

F1 score 0.840 0.870

In the railway application, bearing in mind the long braking distances of a train,
early obstacle detection in long-range distances is of great importance. Based on the
assumption that small objects in SMART test dataset images correspond to distant objects
(small with respect to the number of pixels they are covering in the image), the evaluation
was performed on how the object detection model re-trained on the augmented dataset,
with respect to the ability to detect distant objects. First, all objects were assigned to one
of the three categories, “near”, “medium” and “distant”, so that three equally distributed
classes were created. The threshold between “near” and “medium” category was 1352

pixels per object, which corresponds to a distance of approximately 100 m. The second
threshold between “medium” and “distant” categories was 462 pixels per object, which
corresponds to a distance of approximately 250 m. As Table 2 shows, training with the
augmented dataset resulted in an improved AP for the “distant” and the “medium” objects.
While in the categories “medium” and “near”, only a minimal improvement or worsening
of the AP value emerges, in the category “distant” a significant increase of the AP by
9.7% has been achieved. Due to its high importance for obstacle detection in railways,
this improvement of detection of distant objects by augmentation of training dataset with
synthetic images was one of the primary goals of the presented work. The decrease of 0.012
in the AP value for near objects is probably due to the fact that most of the objects in the
synthetic images were inserted in the medium or distant distance range. This resulted in
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less focus on the near objects during the training of Model 2 than during the training of
Model 1, and thus a lower AP value was obtained in this distance range.

5. Conclusions

In this paper, a novel, effective and fast method for creation of synthetic images
for DL-based obstacle detection in railways is presented. The method is an end-to-end
technique that selects an input source image containing an obstacle from the railway
dataset and detects the rail tracks in selected target background image, based on which
the long-distance region of obstacle intrusion in the target image is calculated. Detected
rail tracks are also used to calculate the obstacle scaling factor, which enables scale-aware
insertion of the source obstacle into the target image. The presented rail track detection
method proves a novel use of the CenterNet object detector for detecting of objects that
are annotated with multiple bounding boxes in training images. Experimental results
demonstrate improvement in DL-based obstacle detection over long-range distances on the
straight rail tracks due to augmentation of the training dataset. A limitation of the presented
method is that it functions well only for the straight rail tracks. Hence, in the authors’ future
work the method will be modified to include curves on the rail tracks as well.
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