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Abstract: This review identifies current machine-learning algorithms implemented in building struc-
tural health monitoring systems and their success in determining the level of damage in a hierarchical
classification. The integration of physical models, feature extraction techniques, uncertainty manage-
ment, parameter estimation, and finite element model analysis are used to implement data-driven
model detection systems for SHM system design. A total of 68 articles using ANN, CNN and SVM,
in combination with preprocessing techniques, were analyzed corresponding to the period 2011–2022.
The application of these techniques in structural condition monitoring improves the reliability and
performance of these systems.
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1. Introduction

Structural health monitoring (SHM) is a field of science that focuses its efforts on
evaluating and monitoring the integrity of a structure of interest [1]. Structural health
monitoring systems are based on the design of sensing systems and structural models to
evaluate machines and structures.

Although SHM systems are not a new field of research, computational advances in
sensing hardware and the computational power of embedded devices drive the genera-
tion of reliable data for developing models based on classification and prediction data,
including machine-learning algorithms in SHM systems. Moreover, sensors, such as ac-
celerometers, are inexpensive compared to other sensors and can be effectively deployed
in a sensing system to implement vibration-based SHM systems [2]. Accelerometers, or
when combining them with other sensors, are the dominant sensing approaches for these
SHM applications [3]. Because vibration-based systems date back to the late 1970s [4],
technological advances represent a field of opportunities to improve existing solutions in
the field of damage identification.

Previous studies have been conducted in the field of SHM using machine-learning (ML)
techniques. However, the importance of this study is to compare the application of artificial
neural networks (ANNs), convolutional neural networks (CNNs) and support vector
machine (SVM) techniques considering the input data, feature selection techniques, the
structure of interest, data size, the level of damage identification and the accuracy of the ML
model. In addition to the fact that each of the above ML techniques has been used for similar
tasks in structural damage and system identification, some of them perform better when the
data comes from data generated by multi-sensor data fusion or when the data are processed
with damage-sensitive feature extraction techniques, such as Hilbert–Huang transform
(HHT) or wavelet packet transform (WPT). In addition, this study could provide a starting
point for the selection of ML techniques and signal processing techniques for future SHM
ML-based solutions where structural configuration or data features have similarity with
previous studies that achieved good structural damag or system identification performance.
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This paper is structured as follows. First, a brief description of the concepts related to
SHM systems is presented in Section 2. In Section 3, the most common feature selection
algorithms are presented, and a review of related works is given. In Section 4, the two
main branches of SHM system models are presented, namely, the physics-related model
(Section 4.1) and the data-driven models (Section 4.2). In Section 4.2, three ML techniques
and their application in SHM systems are explored: ANN, CNN and SVM. At the end of
Section 4, a comparison between the two main model branches is established in Section 4.3.
Section 5 includes a brief review of the use of signal processing techniques to mitigate
uncertainties effects from the environment and noise. In Section 6, a summary of the most
important features of the application of damage identification techniques are presented in
a list. Finally, Section 7 contains conclusions and future work.

2. Damage Classification in SHM

SHM covers several application areas and the assets monitored range from small
components to huge civil structures and complex machines. Building SHM systems focus
on measuring changes in the physical parameters to assess the current state of the structure
and, in some cases, predict the building’s response to future seismic excitations. To make
these predictions, it is necessary to identify the natural frequencies of the buildings [5]. In
the case of buildings, the structure is subjected to the effects of static and dynamic loads,
so the complexity of the analysis presents a challenge in giving an accurate model that
includes all these known and unknown effects.

SHM systems are composed of several hardware and software elements. An overview
of the main components of SHM systems as defined by Farrar and Worden [6] are:

1. Operational assessment: The aspect related to damage conceptualization and opera-
tional conditions.

2. Data acquisition: The sensor system design and data preprocessing.
3. Feature extraction: The selection of sensitive damage features according to the damage

identification capabilities of the desired SHM system.
4. Statistical model development: The design and implementation of the physics-based

or data-based model.

Yuan et al. [1] explored the data acquisition aspect (1) of recent proposals for SHM
systems, showing several features of accelerometer sensing systems that are attractive for
the structural monitoring and evaluation of SHM systems. This study focuses on areas
three and four of SHM systems, analyzing proposals of the physics-based models and the
data-based models presented in the literature that belong to these areas. Figure 1 shows
these areas in SHM systems, and the methods, techniques and algorithms involved.
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The core of SHM systems is their ability to perform damage identification. Damage is
the change in the material’s physical properties due to progressive deterioration or as a
result of a single event on a structure. This change can detract from the behavior or integrity
of a structure. Damage characterization can be conceived in several ways depending on
the objectives of the SHM system, and damage states can be defined in terms of extent,
severity, remaining operational time, thresholds, and damage index standards. Rytter [7]
also presents a damage identification classification in SHM systems, as shown in Table 1.

Table 1. Damage characterization levels.

Damage Characterization Level Description

I: Detection The SHM system can decide if there is any damage
to the structure of interest.

II: Localization The SHM system can determine the existence and
location of damage in the structure of interest.

III: Assessment The SHM system can estimate the extent of damage
in the structure of interest.

IV: Prediction The SHM system can estimate the remaining lifetime
of the structure.

3. Feature Selection Algorithms

In the field of SHM, several signal processing techniques can be used to extract damage-
sensitive features and detect, locate and estimate structural damage in the machines and
structures of interest. Some of the techniques used in previous works in this field in-
clude ANFIS [8,9], wavelet-based techniques [10], frequency–response functions (FRF) [11],
Kalman filter-based techniques [12] and soft computing-based techniques [13].

The selection of damage-sensitive features by manual means represents a problem,
as it requires expertise to identify candidate damage-sensitive signals. Algorithms for
producing these features have been explored in the literature and two approaches to the
generation of these features are widely proposed. One common approach is to propose
novel features based on signal processing techniques. Another is to let a machine model the
task of automatically extracting some sensitive features from data hidden on the surface.
Composite damage indicators can also be constructed from the combination of damage-
sensitive features. For example, Lubrano Lobicanco et al. [14] used residual drift ratios and
lateral stiffness to define damage levels and quantify the amount of damage to structures
due to seismic events.

A comprehensive review of some damage-sensitive feature construction algorithms
can be found in the review of Civera and Surace [15]. Among the most recent techniques
applied to the problem of extracting useful information from data for structural dam-
age identification are principal component analysis (PCA), the wavelet transform (WT),
along with its variants, and the application of empirical modal decomposition (EMD) in
combination with the Hilbert–Huang transform (HHT).

3.1. Principal Component Analysis

Principal component analysis (PCA) is a statistical method mainly applied to reduce
data dimensionality, which keeps relevant information from the original data. PCA appli-
cation in ML models improve training time and model performance because redundant
information in training data is removed. Initial data are projected into new variables, named
principal components, with the most data variance. PCA use in SHM systems reduces
large sensor-gathered data processing times, thereby enhancing the system response for
structural changes or events resulting from structural damage.

Table 2 shows a compilation of recent works incorporating the PCA technique on the
data for subsequent use by a machine-learning model. As can be seen, PCA is a popular
technique in recent years due to the advantages that it offers. Although PCA is a powerful
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tool for ML applications, the PCA computation calculates the eigenvalues and eigenvectors
of the data covariance matrix, which is an expensive operation for large data dimensions.

3.2. Wavelet Transform

The wavelet transform (WT) decomposes a signal into a series expansion where
the number of wavelet functions is multiplied by a set of coefficients representing the
original signal. Similar to Fourier transform (FT), WT expresses a signal in more specific
located-in-time functions, but in the case of WT, the original signal can be non-periodic.
In particular, WT analysis of a signal can bring frequency information and its position in
time. Wavelet-based techniques include the discrete wavelet transform (DWT), the wavelet
packet transform (WPT), the continuous wavelet transform (CWT), and the stationary
wavelet transform (SWT). Table 3 shows the combination of WT-based techniques with ML
models for structural damage identification. In data-based models, WT techniques serve as
dimensionality reduction techniques, noise removal filters, and damage-sensitive feature
generators, thereby improving SHM systems’ accuracy and robustness.

3.3. Empirical Mode Decomposition

Empirical mode decomposition (EMD) is one of the most used signal decomposition
techniques in SHM. Several proposals exist in structural damage identification, modal
parameters identification and structural prognosis. The advantages of using EMD over
nonlinear and non-stationary signals, such as structural responses due to mechanical
excitation, are the time–frequency information of the analyzed signal in all the signal
lengths. Another advantage of the application of EMD in comparison to other signal
decomposition techniques is that EMD is signal-adaptative.

Over time, variations have been proposed to tackle the limitations and issues of EMD
applications, such as noise and the well-known mode-mixing problem. Ensemble EMD
(EEMD), multivariate EMD (MEMD) and time-varying filter-based EMD (TVF-EMD) are
used in combination with ML models to achieve better accuracy in structural damage and
system identification, as can be seen in Table 4.

A systematic comparative study between the above-mentioned EMD variants can be
found in [16], proving EMD to be a robust signal processing technique in structural damage
identification, system identification and anomaly detection. Regardless of the benefits of
using EMD variations, including mode-mixing minimization and noise removal, the com-
putation of these algorithms can be prohibitively expensive in SHM real-time applications.

Table 2. PCA review.

Publication Structure Excitation
Source

Signal
Processing

and/or Feature
Extraction
Technique

Dataset Size Purpose Year

[17] Instrumented bridge Operational
conditions FFT 43,200,000 data

points

Improve anomaly
detection accuracy and
reduce the size of SHM

transmitted data

2021

[18]
Steel-supported

experimental beam
model

Impact hammer FRF 16,384 data points

Study the relation
between PCA-generated
data to modal analysis

and frequencies to
establish a physical

interpretation of
PCA-compressed data

2020

[19]

The Phase II
IASC-ASCE SHM

benchmark structure
FE model

Simulation MSD 480,000 data
points

Propose a new method to
extract damage-sensitive
features that are invariant
to environmental effects.

2020
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Table 2. Cont.

Publication Structure Excitation
Source

Signal
Processing

and/or Feature
Extraction
Technique

Dataset Size Purpose Year

[20]
Simply supported
steel truss bridge

experimental model
Impact hammer FRF, PCA 1200 samples of

512 data points

Propose a combination of
PCA and FRF to obtain a

new damage index
for structural

damage classification

2020

[21]
Benchmark concrete

beam numerical
model

Simulation ARM, LDA, QDA,
NB, DT 8002 data points

Present a comparative
study between PCA and

AR models to extract
damage-sensitive features

and several
classification methods

2019

[22]
Truss bridge FE

model and two-story
frame FE models

Simulation FRF, LUT Not specified

Propose a combination of
PCA and LUT to train an
ML model for structural
damage detection and

localization

2017

[23]
Truss bridge and
two-story frame

FE models
Simulation FRF, 2D-PCA,

ICA

49 samples
(bridge) and
75 samples

(two-story frame)

Propose a structural
damage detection,

localization and severity
estimation using a

PCA-extracted damage
index and an ANN

2017

[24]
Twin-tower

steel structure
experimental model

Shaking table FRF Not specified

Propose a
scalogram-based damage
detection and localization

system using PCA
and FRF

2017

[25] Steel plate
experimental model PZT burst signal Golay filter

algorithm
8 samples of

10,000 data points

Study the noise filtering
capabilities of PCA and

Golay algorithms to train
an ML model for

structural damage
identification

2016

[26] Thin aluminum plate
experimental model PZT burst signal ARM 1000 samples

Propose methodology to
detect structural changes

based on statistical
inference

2016

[27]
Three-story frame

aluminum structure
experimental model

Bumper
AANN, FA, MSD,

SVD, SVDD,
KPCA

17 samples of
4096 data points

Propose a comparative
study between kernel

algorithms for structural
damage detection

purposes

2016

[28]
Three-story frame

aluminum structure
experimental model

Shaking table ARM 1700 samples

Compare the performance
of four PCA-based

algorithms for structural
damage detection under

environmental conditions

2015

[29]
Grid FE model and
steel grid structure

experimental model
Simulation PCA, WGN 4000 samples

Propose an ANN SHM
system for damage

detection due to
temperature changes and

noise perturbations

2015

[30] Small aluminum plate
experimental model PZT burst signal

Chi-square
goodness-of-fit

test
600 samples

Propose a statistical
analysis for structural

damage detection using
PCA-compressed data

2014
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Table 2. Cont.

Publication Structure Excitation
Source

Signal
Processing

and/or Feature
Extraction
Technique

Dataset Size Purpose Year

[31]
12-DOF

mass–spring-damped
experimental model

Impact hammer PCP 20,000 samples
Propose a denoising

method using PCP for
SHM systems

2014

[32]

Building structure
experimental model

and Sydney Harbour-
instrumented

bridge

Electrodynamic
shaker and
operational
conditions

RP, FT, SVM, PAA

3240 samples of
8192 data points

(building),
6370 samples of

3600 data
points (bridge)

Propose a comparative
study between kernel

algorithms for structural
damage detection

purposes

2014

[33] Aluminum plate
experimental model

Piezoelectric
transducers
attached to

the plate

SOM 750 samples

Propose an SHM model
for structural damage

detection and
classification

2013

[34] Instrumented bridge Numerical
simulation HHT, EMD 500 samples

Propose an environmental
noise removal method to

improve ML model
damage detection

capabilities

2013

[35] 10-story low-rise
building FE model Simulation FRF, PCA 240 samples

Propose a structural
damage detection method

using PCA for data
dimensionality reduction

and noise removal

2013

[36] Aluminum plate
experimental model PZT burst signal CDLM 300 samples

Present a comparative
study between five

different methods for
structural damage

detection and localization

2011

[37] Aluminum plate
experimental model PZT burst signal Chi-square

distribution 100 samples

Propose a new structural
damage detection

methodology based on the
probability distribution of

PCA projections

2011

[38] Supported steel beam
experimental models Impact hammer FRF 8192 data points

Propose a structural
damage identification
method using residual

FRF data in combination
with ANN

2011

Table 3. WT review.

Publication Structure Machine-Learning
Algorithm Dataset Size Accuracy Purpose Year

[39]

Three-story
building structure

experimental model
and steel frame

experimental model

DCNN

2280 samples
(building) and
2000 samples
(steel frame)

ACC = 99%
(building),

ACC = 99.610%
(steel frame)

Generate 2D training
samples using CWT from
accelerations scalograms

2021

[40]

Aluminum plate FE
model and aluminum

plate experimental
model

CNN 300,000 data
points ACC = 99.9%

Wavelet transform was
applied to acceleration

signals to obtain wavelet
coefficient matrix (WCM)
in order to train a CNN

2019
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Table 3. Cont.

Publication Structure Machine-Learning
Algorithm Dataset Size Accuracy Purpose Year

[41]
Offshore platform FE

model and scaled
experimental model

TF, WPD, PCA

120 samples of
10,000 data points

(FE model),
48 samples of

17,500 data points
(scaled model)

ACC = 78.125%
(FE model),

ACC = 84.375%
(instrumented

model)

WPE and low-order
principal components

were applied to structural
response for SVM

model training

2018

[42]

IASC–ASCE SHM
benchmark four-story

steel structure
FE model

WPD 99 samples ACC = 91.75%

WPE was used to extract
damage-sensitive features
from accelerations signal

to train a damage
detection SVM model

2015

[43]

IASC–ASCE SHM
benchmark four-story

steel structure
FE model

LS-SVM, PSO, HSA,
SF, WPT

16 samples of
40,000 data points

ACC = 100%
(PSHS),

ACC = 98.2%
(Harmony),

ACC = 98.68%
(PSO)

Damage features were
extracted using WPE in
order to train an ANN
and an LS-SVM model

2014

[44]

IASC–ASCE SHM
benchmark four-story

steel structure FE
model

ANN 621 samples

ACC = 95.49%
(damage case 1),
ACC = 96.78%

(Damage case 2)

WPT was used to remove
noise and interferences

from structural responses
signal to build a training

dataset for an ANN
damage detection model

2012

[45] Four-story building
FE model

BP-NN, WPT,
Battle–Lemarie
decomposition,

WGN

183 samples

ACC = 90%
(single sensor),
ACC = 100%

(multiple sensor)

WPRE was used to extract
damage-sensitive features
from acceleration data in

order to train an ANN
damage detection model

2011

Table 4. EMD review.

Publication Structure Machine-Learning
Algorithm Accuracy Purpose Year

[46]
Mass–spring system
numerical model and
instrumented bridge

MSD, RARMX Error graph
EMD method and IMF were

used to build damage
feature vectors

2020

[47] Fourteen-bay steel truss
bridge experimental model

ANN, CEEMD,
HHT, GWN RMSE = 5.156 × 10−4

A combination of CEEMDAN
and HHT was proposed to

extract four key
damage-sensitive features to

train an ANN model for
damage detection, localization

and severity estimation

2020

[48]
Simply supported steel

Warren truss
instrumented bridge

Neuro-fuzzy ANN ACC = 80%

EMD method was used to
reduce data dimensionality of

SHM system for structural
damage assessment

2020

[48] Hanxi bridge FE model FastICA Correlation = 0.84

EEMD and PCA were used to
extract independent deflection

components from structural
responses and determine the

presence of damage

2018

[49] Manavgat cable-stayed
bridge FE model SVM, THT ACC = 95.43%

HHT and THT were used to
extract damage-sensitive
features to train an SVM
damage detection model

2018



Appl. Sci. 2022, 12, 10754 8 of 40

3.4. Hilbert–Huang Transform

Hilbert–Huang transform (HHT) was designed to represent a non-stationary signal
in time and frequency. Intrinsic mode function (IMF) is used in combination with the
Hilbert algorithm to locate signal frequency information over a specific time of a given
signal. Like EMD, HHT is adaptive for a given signal, and it does not require a prior
selection of a function or parameter to compute it. The amplitude and instantaneous phase
of a signal at a specific time can be obtained by applying HHT for system identification
(e.g., estimating natural frequencies and damping) and damage identification purposes by
detecting structural response changes.

Several applications of HHT in damage identification, anomaly detection and system
identification in different structures can be found in [50]. Despite the effectivity shown
in HHT-proposed SHM systems, better performance can be achieved when HHT is com-
bined with ML algorithms and data fusion techniques. Moreover, some drawbacks of
applying HHT in SHM systems can be mitigated by combining other signal decomposition
techniques and data-based models, such as ML models. Table 5 shows some proposals
found in the literature that combine HHT and ML algorithms in the damage identification
applications of structures.

Table 5. HHT review.

Publication Structure Machine-Learning
Algorithm Accuracy Purpose Year

[51]

IASC–ASCE SHM
benchmark four-story

steel structure
FE model

CNN ACC = 92.36% (25 db
SNR)

HHT was applied to structural
response data to obtain

time–frequency graphs and the
marginal spectrums for CNN

model training

2021

[52]
Five-story

offshore platform
experimental model

HHT, MEEMD, SVM ACC = 62.5%,
MSE = 0.90

HHT and EMD were applied to
obtain damage-sensitive features
from vibration signals and then
used to train an SVM damage

detection model

2021

[47]
Fourteen-bay steel

truss bridge
experimental model

CEEMD, HHT,
WGN, FFMLP MSE = 2.65 × 10−7

A combination of CEEMDAN and
HHT was proposed to extract four
key damage-sensitive features to
train an ANN model for damage

detection, localization and
severity estimation

2020

[53]
Three-story steel
moment-resisting
frame FE model

EMD, ANN ACC = 98.8%

A combination of CEEMDAN and
HHT was proposed to estimate first
mode shapes and structural natural

frequencies and compare them
against reference values to

determine the presence of damage

2019

[54]
12-story-reinforced

concrete frame
experimental model

RBFNN ACC = 100%
HHT was studied for structural

modal parameter identification and
damage diagnosis

2014

4. SHM System Models
4.1. Physics-Based SHM Systems

In the case of physical asset monitoring, there are two main branches of modeling:
physics-based modeling, also known as physical-law modeling, and data-driven modeling.
Physics-based modeling aims to describe phenomena by formulating mathematical models
that integrate interdisciplinary knowledge to generate models that replicate observed
behavior. Models are commonly presented in differential equations whose complexity
increases as more factors become involved. Several terms and parameters must be defined
to fully describe the system phenomena. Initial and boundary conditions must be identified
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to obtain physics equation solutions, and the computational cost associated with this
operation can be very time-consuming for complex phenomena.

In SHM systems, these models are implemented to assess the condition of an asset
under operating conditions to monitor changes that may indicate the presence of damage
and shorten the remaining useful life of the asset. Finite element modeling (FEM) software
implements well-known analyses, such as modal analysis, and allows the simulation of
different structures and initial and boundary conditions straightforwardly. FEM software
includes physical law models integrated into software libraries to perform damage analysis
on a virtualized model of structures efficiently.

The complexity of modeling building structures under seismic excitation is caused by
the intervening factors that can modify the behavior of these structures and by the difficulty
of correctly defining their physical properties. Several works focus on estimating model
parameters and uncertainties to improve the model of the structure. For example, Xu
et al. [55] estimated the parameters of the structures based on linear and nonlinear regres-
sion analyses. These structures’ linear and nonlinear parameters, such as elastic stiffness
and yield displacement, are obtained for a three-story structure. Gomes et al. [56] addressed
an inverse identification problem using numerical models and a genetic algorithm.

Model parameters obtained from experimental and recorded data can increase the
model’s accuracy compared to the actual measured results. However, environmental
and operating conditions do not remain constant throughout the life of the structure. In
addition, physical law models have drawbacks that limit their applications in some SHM
systems. The time to solve the equations in a real-time SHM system impacts the response
time to ensure safety and the reduction of economic losses in response systems for seismic
protocols and evacuation procedures. In order to reduce the time costs of performing
calculations, optimization algorithms applied to the problem of SHM are encouraged and
proposed in the literature [57].

Table 6 lists physics-based proposals for SHM systems in buildings under vibration
excitation for multi-story structures. In this table, two types of proposal contributions
are shown: the identification of system parameters and damage. According to Farrar’s
classification, the level of damage identification for the practical proposals is also presented.

Table 6. N-story building structure health monitoring systems based on physical model techniques.

Publication Structure Damage Indicator Algorithm or
Analysis Method Damage Identification and Level Year

[58]
An eight-story physical

building model in
FEM software

Stiffness
reduction

Vibration-based
damage methods

Damage detection
and localization II 2018

[59]
A 14-story physical building

prototype under
vibration table

Modal
frequencies

Operational modal
analysis Modal identification N/A 2017

[60]
A five-story physical

building prototype under
vibration table

Stiffness
reduction

Novel damage
localization algorithm based

on wave
propagation

Damage detection and
localization II 2020

[61]
A 51-story building with

accelerometers and
tilt sensors

Modal
frequencies

Modal parameters
estimation through Bayesian

algorithm combined
with FFT

Modal identification N/A 2019

[62] A 12-story frame
structure

Stiffness
reduction

Hysteresis loop
analysis method Damage detection I 2017

[63] An 86-story physical building
in FEM software

Modal
frequencies

Wave-based damage
detection based on

propagation analysis
Modal identification N/A 2018

[64] A three-story frame structure Inter-story displacement
Two novel damage indices

based on the
displacement of the structure

Damage detection
and localization II 2015

4.2. Data-Based SHM Systems

Machine-learning techniques are a subset of the field of artificial intelligence. Due to
their statistical nature, their vision is to address problems of interest in pattern recognition
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identification and classification tasks. SHM from the ML point of view is a classifica-
tion problem in which at least two states are compared in SHM systems employing ML
techniques: damaged and undamaged states.

A machine-learning model extracts information in the form of features from a given
data set and classifies those data features. These data-driven models require large amounts
of information to train the model and avoid the overfitting problem. The generalization
problem depends on the amount of available data and significant diversity of this training
data to avoid overfitting and ensure a reasonable level of generalization. In an idealized
situation, the data set should include the samples of the possible range of excitation that can
be applied to the structure. In addition, data quality improvement using signal processing
techniques, such as normalization and noise filtering, is desirable for the generation of the
data set. ML algorithms are applied in the damage identification process and in analyzing
the anomalous data obtained from the sensors [8,65], thereby improving data quality. In
addition, signal processing techniques, such as WT and HHT also improve data quality
and are applied in SHM systems [9,66].

ML techniques can be divided into supervised learning (for regression and classi-
fication tasks), unsupervised learning (anomaly detection and clustering) and reinforce-
ment learning. The most popular ML techniques implemented in the construction of
SHM solutions are support vector machines (SVMs) and convolutional neural networks
(CNNs) [10,67]. In the case of neural network techniques, damage-sensitive feature selec-
tion plays a crucial role in the performance of the SHM system. SVM optimally classifies
features in linear and nonlinear problems. CNN, a subset of neural network (NN) methods,
include convolution operations in the hidden layer of neural networks to classify data,
usually in image format. Other techniques, such as PCA, improve the features of the
training data set by making them uncorrelated.

The selection of a ML technique is guided by the limitations of each technique and
the requirements of SHM in terms of damage identification level and operating conditions.
Identifying the modal systems of building structures can also be performed using deep
neuronal networks (DNNs) [11,68]. Table 7 summarizes the ML-based proposals for SHM
systems in buildings under vibration excitation for multi-story structures.

Table 7. N-story building structure health monitoring systems based on machine-learning techniques.

Publication Structure Data
Type Used for Training

Machine-Learning
Technique Damage Identification and Level Year

[69] A four-story physical building
prototype under vibration table

Acceleration response data from a
physical prototype ANN Damage existence

and localization II 2016

[70] An eight-story physical building
mathematical model

Artificially generated dataset from
an algorithm FCN Damage existence

and localization II 2020

[71] A three-story physical building
simulated model

Simulation-generated dataset from
OpenSeesMD software ANN Damage detection

and localization II 2017

[72]
30 buildings including 3, 5 and

7 stories with different
structural parameters

Simulation-generated dataset from
Raumoko3D software ANN Damage detection

and localization II 2017

[73] An instrumented main steel frame
Experimental simulation from a
physical prototype with modal

shaker excitation
CNN Damage detection

and localization II 2016

[74] A three-story physical
building-simulated model

Simulation-generated dataset from
OpenSeesMD software SVM Damage existence,

localization and severity III 2019

[75] A three-story steel frame structure Intensity-based features SVM Damage detection I 2019

[76] A seven-story steel structure Simulation-generated dataset ANN Damage existence,
localization and severity III 2018

[77] A five-story steel structure Simulation-generated dataset ANN Damage detection
and localization II 2008

4.2.1. Artificial Neural Networks (ANNs)

Inspired by the working of brain neurons, artificial neural networks are the most well-
known ML algorithm applied for classification and regression problems. ANN architectures
consist of an input layer, several hidden layers and an output layer. Several hidden layers
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can be stacked between the input and output layer according to the complexity of the
ANN. Figure 2 shows a typical architecture of a forward neural network, showing input
neurons, successive hidden layers and output neurons. In general, ANN power resides in
the interconnection of its neurons and a set of weights associated with each interconnection.
ANN learning algorithms update network weights to minimize an error function. BP-
ANN is a widely used ANN where the backpropagation algorithm (BP) performs the
network’s training.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 45 
 

4.2.1. Artificial Neural Networks (ANNs) 
Inspired by the working of brain neurons, artificial neural networks are the most 

well-known ML algorithm applied for classification and regression problems. ANN ar-
chitectures consist of an input layer, several hidden layers and an output layer. Several 
hidden layers can be stacked between the input and output layer according to the com-
plexity of the ANN. Figure 2 shows a typical architecture of a forward neural network, 
showing input neurons, successive hidden layers and output neurons. In general, ANN 
power resides in the interconnection of its neurons and a set of weights associated with 
each interconnection. ANN learning algorithms update network weights to minimize an 
error function. BP-ANN is a widely used ANN where the backpropagation algorithm (BP) 
performs the network's training. 

In many SHM systems, FE structural models generate training datasets for ANN 
weight calculation. In these datasets, damaged and undamaged training examples are 
provided. Natural frequencies and changes in the structural properties are associated with 
structural damage. Table 8 groups several SHM proposed systems using ANN and signal 
processing techniques and modal analysis for damage detection, localization and severity 
estimation. 

 
Figure 2. Multi-layer hidden layer feedforward ANN [78]. 

Tan et al. [79] proposed a method in which the modal strain energy was used as a 
damage-sensitive feature and an ANN to locate and quantify structural damage in a series 
of damaged scenarios. A structural damage identification method using RFR functions in 
combination with PCA was described by Padil et al. [20] to reduce the input data size and 
minimize the effects of measurement uncertainties and interferences to reduce the model 
error. Mousavi et al. [47] proposed a damage identification methodology using the 
CEEDAM technique to extract damage-sensitive features from the measured data and em-
ploying an ANN to perform the classification task in various damage scenarios. The 
bridge damage presence, severity and location were obtained using the methodology 
mentioned above. 

In [80], Finotti et al. presented a comparison between ANN and SVM techniques in 
damage identification capability using data from ten statistical indicators from accelera-
tion measurements. These indicators were proposed to avoid manual selection and calcu-
lation of modal structural parameters that may introduce undesirable inaccuracies or er-
rors in damage identification performance. Chang et al. [76] proposed a post-seismic eval-
uation method based on an ANN. This ANN was trained with simulation-generated data 
from a previously constructed FE model with structural parameters identified by the sto-
chastic identification of the system subspace. Although the accuracy of damage identifi-
cation was based on the identification of system parameters, it was possible to efficiently 
locate damage scenarios in one or several elements of the structure. 

Figure 2. Multi-layer hidden layer feedforward ANN [78].

In many SHM systems, FE structural models generate training datasets for ANN
weight calculation. In these datasets, damaged and undamaged training examples are
provided. Natural frequencies and changes in the structural properties are associated
with structural damage. Table 8 groups several SHM proposed systems using ANN and
signal processing techniques and modal analysis for damage detection, localization and
severity estimation.

Tan et al. [79] proposed a method in which the modal strain energy was used as a
damage-sensitive feature and an ANN to locate and quantify structural damage in a series
of damaged scenarios. A structural damage identification method using RFR functions
in combination with PCA was described by Padil et al. [20] to reduce the input data size
and minimize the effects of measurement uncertainties and interferences to reduce the
model error. Mousavi et al. [47] proposed a damage identification methodology using
the CEEDAM technique to extract damage-sensitive features from the measured data
and employing an ANN to perform the classification task in various damage scenarios.
The bridge damage presence, severity and location were obtained using the methodology
mentioned above.

In [80], Finotti et al. presented a comparison between ANN and SVM techniques in
damage identification capability using data from ten statistical indicators from acceleration
measurements. These indicators were proposed to avoid manual selection and calculation
of modal structural parameters that may introduce undesirable inaccuracies or errors in
damage identification performance. Chang et al. [76] proposed a post-seismic evaluation
method based on an ANN. This ANN was trained with simulation-generated data from a
previously constructed FE model with structural parameters identified by the stochastic
identification of the system subspace. Although the accuracy of damage identification
was based on the identification of system parameters, it was possible to efficiently locate
damage scenarios in one or several elements of the structure.

In the study conducted by Morfidis and Kostinakis [72], combinations of 14 seismic
parameters together with an MLP were explored for structural damage prediction. Their
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analysis observed that with at least five seismic parameters combined with an MLP network,
the seismic damage state for an R/C building can be accurately predicted. Correlations
between seismic parameters and MLP network training algorithms were also observed
and analyzed. Using natural frequencies and modal shapes as input to the network,
Padil et al. [81] defined a damage identification system using an ANN. A relationship
between input and output parameters was established by defining a probability of damage
existence to classify damage states. Numerical and experimental samples were used to
validate the proposed method regarding modeling errors and noise interference.

Jin et al. [82] proposed an artificial neural network with an extended Kalman filter to
remove temperature effects in SHM systems. This EKF was also used to establish confidence
variation intervals and thresholds for structural changes that were suggestive of damage.
It was shown that temperature changes induced changes in natural frequencies that can
lead to incorrect damage identification if these temperature effects are not considered in
the training samples. Smarsly et al. [69] provided a decentralized sensor fault detection
system consisting of a set of ANNs that perform anomaly detection in an SHM wireless
sensor network. An anomaly detection ANN was incorporated at each sensor node to
perform local anomaly detection. Each ANN utilized sensor data redundancy throughout
the sensor network using the correlation of sensor measurements in structural response.

Kourehli [83] designed an ANN-based SHM system using incomplete FEM modal
data and natural frequencies for damage location and damage severity estimation using
only the first two natural frequencies. Using stiffness reduction as a damage indicator,
damage identification was successfully achieved in an 8-DOF spring–mass system, a
supported beam, and a three-story flat frame. Natural frequencies are commonly used as
damage-sensitive features in SHM systems, and the importance of eliminating or reducing
interference from temperature changes was noted by Gu et al. [29]. Using a multilayer
ANN, they discriminated between changes in natural frequencies due to structural damage
and changes in these natural frequencies due to temperature effects. A damage index based
on Euclidean distance was employed to quantify the difference between an undamaged
structural state under temperature variations and a possible structurally damaged state.

Ng [78] proposed an ANN for structural damage localization and severity estima-
tion using a Bayesian class selection method, improving the selection of optimal ANN
hyperparameters (optimal transfer function and the number of neurons). Validation tests
were performed using the Phase II IASC-ASCE SHM reference structure data, where ANN
estimates stiffness reduction values as an indicator of damage location and severity for
six damage cases. Xie et al. [84] presented a bridge damage management system using
a BP-ANN algorithm that utilizes four hundred sensors randomly distributed over the
bridge. A comparative study was performed employing the proposed BP-ANN algorithm,
an SVM, a decision tree (DT) and a logistic regression model, showing that ANN achieves
the highest accuracy in damage identification for the proposed SHM system, even under
noisy operating conditions. Goh et al. [85] designed a two-step damage identification
method. In the first step, a prediction of the modal shape of the unmeasured structure
was performed using an ANN. The predicted modal shape was compared with a cubic
spline interpolation prediction method to verify the prediction accuracy. Next, a second
ANN trained with limited structural response measurement points was used to perform
structural damage localization and damage severity. Shu et al. [86] proposed another
ANN-BP for bridge damage identification using the statistical parameters of displacement
and acceleration measurements as training input for ANN. This proposal showed that
measurement noise negatively impacts damage identification performance and should be
eliminated or minimized. For this approach, single and multiple damage cases were used
for validation testing.
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Table 8. ANN review.

Publication Structure Excitation
Source

Used Techniques
and/or Algorithms

Number of
Neurons

Number of
Hidden Layers

Training
Algorithm

Activation
Function Error Dataset Size Purpose Year

[79]

A multiple steel
girder composite

bridge
experimental model

Electrodynamic
shaker FFT, FRF

4 ANN
architectures: 10,
15, 20, 25 and 30

1 LMBP Sigmoid MSE = 0.000029
(30 neurons) 114 samples

Propose ANN
architectures for damage
detection and localization

in structures

2020

[20]
A simply supported
steel truss bridge FE

model
Simulation FRF, PCA 20 1 LMBP Tangent-sigmoid MSE = 0.015213 1200 random

damage cases

Identify presence of
damage considering
several uncertainties

2020

[47]
A fourteen-bay steel

truss bridge
experimental model

Electrodynamic
shaker

CEEMD, HHT,
GWN 34 1 BP Log-sigmoid MSE = 2.65 × 10−7

A time series of
14,000 data

points

Identify presence,
location and severity of

bridge damage
2020

[80]

Simply supported
beam FE model and

railway bridge
experimental models

Simulation
(beam) and
operational
conditions

(bridge)

SSaI, ARN 10 1 LMBP Sigmoid

DCR = 93.54%
(beam),

DCR = 87.09%
(bridge)

5400 samples
(beam),

4500 samples
(bridge)

Detect structural changes
based on

statistical indicators
2019

[76]
A twin-tower

building
experimental model

Shaking table SSI 140 2 BP Log-sigmoid Error graph 279,936 data
points

Identify presence,
location and severity of

building damage
2018

[87]
A carbon

fiber-reinforced
plastic plate

Simulation FT 627 1 BP Sigmoid ACC = 100% 40 samples with
150 data points

Identify presence and
type of plate damage 2018

[72]
A set of 30 reinforced

concrete buildings
numerical models

Simulation 14 ground motion
parameters, NTHA 30 1 LMBP, SCG Tangent-sigmoid MSE = 0.045 3900 vectors of

size 18 × 1

Propose damage-sensitive
features for improving

ANN structural damage
prediction

2017

[81]
A single-span steel

frame numerical
model

Impact hammer SRF 20 1 LMBP Tangent-sigmoid MSE = 0.0026 2400 samples
Identify presence of

structural damage using
noisy ANN training data

2017

[82] A Meriden bridge
FE model Simulation EKF 6 1 BP Tangent MAE = 0.0572 6480 samples

Propose a damage
detection method using

ANN and EKF in
structures under

temperature changes

2016

[88]

An instrumented
aircraft panel and an
instrumented wind

turbine

PZT burst signal
and operational

conditions
Ensemble classifier

1 (panel ANN)
and 27

(turbine ANN)

1 (panel),
2 (turbine) Not specified Not specified

MSE = 0.0098
(panel),

MSE = 0.000194
(turbine)

110 data
samples

(aircraft) and
3450 data
samples
(turbine)

Propose an ensemble
design method for ANN
hyperparameter selection

2016
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Table 8. Cont.

Publication Structure Excitation
Source

Used Techniques
and/or Algorithms

Number of
Neurons

Number of
Hidden Layers

Training
Algorithm

Activation
Function Error Dataset Size Purpose Year

[69]
A four-story

frame structure
experimental model

Not specified Cooley–Tukey FFT
algorithm 24 1 BP Not specified RMS = 0.807 100 samples

Propose a detection
method for sensor faults

in response data of
SHM systems

2016

[83]

3 numerical models:
a simply supported
beam, three-story

plane frame and an
8-DOF

spring–mass system

Simulation ARN

6 ANN
architectures: 30,

40, 46, 53, 44
and 51

1 LMBP, GDM Tangent

MSE = 3.44 × 10−3

(beam),
MSE = 4.77 × 10−3

(plane frame),
MSE = 9.12 × 10−4

(spring–mass
system)

2304 samples
(beam),

2592 samples
(three-story
frame) and

2187 samples
(DOF spring

system)

Propose a structural
damage detection ANN

using natural frequencies
and incomplete structure

mode shapes

2015

[29]
A simply supported
steel beam girder FE

model

Simulation and
a piston PCA, GWN

2 ANN
architectures: 35

and 17
1 LMBP Tangent-sigmoid MSE = 0.1137 4000 samples

Use of an ANN to
associate changes in
modal frequencies to

structural damage due
temperature changes

2015

[78]

The Phase II
IASC-ASCE SHM

benchmark structure
FE model

Simulation Bayesian ANN
design algorithm 17 1 Not specified Tangent-sigmoid ACC = 97% 226 samples

A Bayesian model class
selection method was

proposed to select optimal
ANN hyperparameters

2014

[84] An instrumented
bridge

Operational
conditions N/A 674 1 BP Sigmoid ACC = 98% 8000 samples

Propose a damage
detection method that
achieves high accuracy

and more robust
performance in the
presence of noise

2013

[85]

A
two-span-reinforced

concrete slab
FE model

Simulation SRF Not specified 1 SCG Tangent-sigmoid MSE = 0.00342 3000 samples

Propose an ANN to
predict unmeasured

mode shape values for
damage detection

2013

[86] A Banafjäl Bridge
FE model Simulation GWN

4 ANN
architectures: 19

and 23 (single
damage case); 19
and 25 (multiple

damage case)

2 BP Not specified ACC = 79%

416 samples
(single damage

case) and
900 samples

(multiple
damage case)

Propose a BP-ANN for
detection, localization

and extent of structural
damage using statistical

indicators

2013

[35] A 10-story low-rise
building FE model Simulation FRF, PCA

2 ANN
architectures:

25 and 37
2 BP Log-sigmoid ACC = 98.77% 240 samples

Propose an ANN for
detection, localization

and extent of structural
damage using RF as

damage index and PCA

2013
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Table 8. Cont.

Publication Structure Excitation
Source

Used Techniques
and/or Algorithms

Number of
Neurons

Number of
Hidden Layers

Training
Algorithm

Activation
Function Error Dataset Size Purpose Year

[89] An aluminum beam
experimental model

Mechanical
roller CC 36 2 BP Sigmoid ACC = 87.7% 250 samples

This paper reported a NN
technique to select
damage-sensitive
frequency ranges

and diagnose
structural damage

2012

[90] A building FE model Simulation FEMA damage
index 49 1 BP Sigmoid MSE = 1.6 × 10−10 835 samples

Propose an SHM system
based on ANN to predict

the building
damage index

2012

[91] A four-story building
FE model Simulation FRF, PNN 16 1 BP Not specified ACC = 100% 30 samples+J24

Propose a PNN and a
BP-NN for detection,

localization and extent of
structural damage

using RF

2011

[45] A four-story building
FE model Simulation

WPT, GWN,
Battle–Lemarie
decomposition

2 ANN
architectures: 39

(single sensor,
damage extend)

and 90 (multi
sensor fusion,

damage extend)

1 BP Not specified

ACC = 90%
(single sensor),
ACC = 100%

(multiple sensor)

183 samples

Propose a feature fusion
and a neural network

model for
structural damage

2011
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Using a combination of PCA and FRF frequency–response functions, Bandara et al. [35]
extracted damage-sensitive features from the structural response data to train an ANN-
based damage identification system. The damage location and severity of the structure were
represented by damage index classes in the output of the proposed ANN. Several noise levels
were added to the acceleration measurements to show the denoising capabilities of PCA on the
ANN training data and the reduction of data size to improve training time and computational
cost. Mardiyono et al. [90] presented a BP-ANN architecture as part of a post-earthquake
SHM response system using the FEMA damage index framework to classify the structural
condition of buildings. A complete building SHM framework was developed, including a
warning system module, an intelligent module, a monitoring module, and a data acquisition
module. The complete function of the framework included accelerometer data collection, data
processing and feeding to ANN, damage index prediction and alert notification in case of
structural compromise. Wang et al. [91] presented a building damage identification method
using a BP-ANN and a probabilistic neural network (PNN). In this method, the damage
location process consists of three stages in which the damage location is refined at each stage.
In the three stages, the damage was detected in each history, the extent of damage in the
history was predicted and the compromised structural members were identified, respectively.
Accuracy results indicated that the BP-ANN performed better in estimating the severity of
structural damage, and the PNN suggested the damage location more accurately. Liu et al. [45]
proposed structural damage identification where energy components were extracted from
acceleration measurements and fused with data fusion techniques. An ANN classifier was
used to identify, locate and estimate structural damage. The combination of WTERP and data
fusion techniques improved the accuracy of ANN damage identification, and WPT-based
component energies were shown to be an effective damage-sensitive feature.

4.2.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are maybe the most representative deep algo-
rithm and have been adopted in several application fields of data-based classification and
regression problems. A CNN is composed, essentially, of three types of layers according to
its function: convolutional layers, pooling layers and fully connected layers. Convolutional
layers automatically extract features from the input data through a convolution between
input data and a user-defined matrix named filter. Pooling layers reduce the data size,
and fully connected layers perform data classification tasks. Several layers can be stacked
in the network design architecture, thereby increasing network complexity at the cost of
incrementing computation training time and the amount of resources used.

CNN networks’ inputs consist of n-dimensional training samples, where n can be
from 1 to N. Figure 3 shows a convolutional network with an input vector of dimension
1D (128 × 1) for a multiclass classification task. These inputs are, in most cases, images
according to the classification or regression problem. In structural damage identification,
proposals using CNN architectures use 1D acceleration records or 2D data that consist of
images or matrices using reshaping methods, signal processing techniques or feature extrac-
tion methods. One advantage of using CNN models in SHM systems is that convolutional
layers perform the selection of damage-sensitive features automatically.
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Table 9 lists several proposals for SHM applications that employ CNNs. In these
proposals, structural responses are captured as acceleration measurements are used. A
complete and exhaustive review of SHM systems using CNN and mainly image data can
be consulted in [93].

Some relevant limitations of the applications of CNN arise in SHM systems for struc-
tural assessment. A large amount of training data are usually required in CNN training
to achieve the generalization property of the model, and the structural data of damage
states are unavailable in most cases. Moreover, the structural data of damage states in large
civil structures are uncommon. A possible solution is to generate damage structural state
data from FE models, which is the usual approach in several SHM proposals, as shown in
Table 6 However, FE-generated data rely on the accuracy of the FE models, and this also
depends on the correct value of the structural parameters that are used for the model. Some
of these parameter values are unknown or change over time, so they should be estimated
or calculated from experimental data.

Wang et al. [51] proposed a structural damage identification method using a
time–frequency plot of the acceleration signal. The marginal spectrum was used as the
input to a CNN, and the hyperparameters of this network were optimized using PSO,
thereby achieving 10% better accuracy than a CNN without PSO. Oh and Kim [94] ex-
plored the application of two objective function techniques for the optimal hyperparameter
selection of a structural damage identification system using CNN. Their results showed
a computational cost reduction of 40%. Sony et al. [95] designed a 1D-CNN to perform
multiclass damage identification using bridge vibration data. The random search technique
performed hyperparameter tuning to obtain the optimal network architecture. Oh and
Kim [96] also proposed a hyperparameter search technique in CNN. These hyperparam-
eters included the subsampling size and the number and size of kernels using a genetic
algorithm and a multi-objective optimization technique.

Damage-sensitive features were extracted from the automatic signal using a CNN
architecture in the damage identification strategy presented by Rosafalco et al. [70], which
obtained good performance in damage identification and localization. In [97] Zhang et al.
proposed a physics-guided CNN architecture for structural response modeling. Structural
physics provide a set of constraints for CNN training, which avoid overfitting problems
and reduce the size of the training dataset. de Rezende et al. [98] presented a 1D-CNN
network with an electromechanical impedance-based methodology to achieve damage
identification under various environmental temperature conditions, proposing a robust
structural damage identification scheme against temperature effects. Sarawgi et al. [99]
designed a distributed SHM damage identification system using 1D-CNN and a four-step
methodology. In the first step, a multiclass classification of the vibration data is performed,
and the second step consists of training the CNN with patterns of damaged and undamaged
data. The damage location is identified in the third step. The first three steps are performed
on each node, and in the final step, a combined data set from all nodes are used to train a
global damage identification model.

Focusing on joint damage identification, Sharma and Sen [100] proposed a joint
damage identification method based on using a 1D-CNN with robustness to signal noise.
Single and multiple damage cases were successfully classified. Using the modal shapes
and curvature differences as input to the CNN, Zhong et al. [101] proposed a damage
identification system based on CNN, detecting that the modal shapes contain damage-
sensitive features, which are sensitive to all degrees of damage, thereby allowing high
detection accuracy. Additionally, it was shown that the parameters of the first-order modal
signal have helpful information for the localization of structural damage. Seventekidis
et al. [102] presented the idea of building an optimal FE model to generate training data
for a CNN. A comparative case was analyzed comparing this generated optimal data set
against a FE data set, showing that the latter is unreliable for CNN training given model
uncertainties. This optimal FE model was obtained by initial structure measurements and,
subsequently, the use of the covariance matrix adaptation evolution strategy.
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Ibrahim et al. [2] evaluated several machine-learning approaches using low-cost
accelerometers and noise filtering techniques for structural evaluation after excitation
events, including SVM, k-nearest neighbors and CNN. This work demonstrated that the
CNN-based detection method in this structure outperformed both SVM and the k-nearest
neighbors’ method using noise-contaminated raw measurements.

In a study by Duan and Zhu [103], the Fourier amplitude spectrum was used with
a CNN to perform damage state structure identification. This work showed that the
use of FAS outperforms traditional CNN proposals using time–history acceleration re-
sponses and that the proposed FAS-CNN SHM system was robust against noise effects.
Gulgec et al. [104] proposed a damage identification and location method that used a CNN
architecture and was trained by analytical simulations. The presented method consisted of
two steps for damage identification: the first to detect the presence of damage as a binary
classification problem and the second as a regression problem to estimate the damage loca-
tion by predicting the damage boundaries in the structure. Using the stiffness histogram
of the measured structural response and stiffness degradation as an indicator of damage,
Zhou et al. [105] proposed a deep learning network to provide a real-time alarm in case
of structure compromise. Zhang and Wang [106] proposed a 1D-CNN for structural state
identification using raw time-domain data. GANs were used to generate training data and
improve the robustness and effectiveness of structural damage identification.

To avoid the manual selection and elaboration of damage-sensitive features from the
raw measurements, Yu et al. [107] proposed a CNN architecture to identify and localize
structural damage. The input to the proposed network consisted of frequency-domain
features obtained by FFT on the raw measurement signals. Compared with other ML
techniques, including general regression neural network (GRNN) and ANFIS, the proposed
network outperformed these in error classification. Tang et al. [108] proposed a structural
damage identification system where real-world anomaly detection acceleration data are
transformed into dual-channel time–frequency images. The anomaly detection patterns
were correctly identified with an overall average accuracy of 93.5%. They highlight the im-
portance and effect of balancing on the training dataset. Wu and Jahanshahi [109] presented
a structural response prediction method using a DCNN in three structures: a linear SDOF,
a nonlinear SDOF, and a three-story MDOF steel frame. This approach was compared with
an MLP network regarding noise signal robustness, and the convolutional kernel analysis
showed a frequency signature feature extraction conducted by the convolutional layers.

Khodabandehlou et al. [110] presented a novel approach using 2D convolutional
networks from the raw measurements of a scaled bridge model. This network was able
to classify the bridge’s structural condition into four severe damage states, achieving
100% accuracy for the validation test. Avci et al. [111] presented a decentralized 1D-
CNN architecture for structural damage identification. In this SHM system, each sensor
performs damage identification locally using a 1D-CNN per sensor. Damage identification
and localization were achieved through the classification network of each sensor, and
the need for data transmission and aggregation is reduced because each sensor analyzes
its local measurement data. Azimi and Pekcan [112] designed a CNN SHM system for
damage identification and localization using compressed acceleration response histograms
as network input. Deep transfer learning techniques were applied to this structural damage
classification problem and proved feasible for damage identification in similar structures
using discrete acceleration histograms.
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Table 9. CNN review.

Publication Structure Excitation Source
Signal

Preprocessing
Techniques

Dataset Size Convolution Layers
Size Pooling Layers Size Activation

Function Accuracy Purpose Year

[51]

The Phase II
IASC-ASCE SHM

benchmark structure
FE model

Simulation HHT 1000 samples of
size 16 × 4000

CNN 1D: 10 × 1,
10 × 1, 6 × 1

(3 layers), CNN 2D:
14 × 14, 5 × 5

(2 layers)

CNN 1D: 3 × 1,
6 × 1

(2 layers), CNN 2D:
2 × 2, 3 × 3

(2 layers)

Softmax ACC = 100%

Propose a novel damage
identification method using

HHT and CNN with
improved accuracy in

comparison with CNN and
SVM methods

2021

[94] A steel beam
numerical model

Numerical model
forces GWN 2000 samples of

size 10 × 10

CNN 1: 5 × 1, 3 × 1
(2 layers), CNN 2:

4 × 4, 2 ×2
(2 layers)

CNN 1: 4 × 1, 2 × 1
(2 layers), CNN 2:

2 × 2, 1 × 1
(2 layers)

Sigmoid RMS = 2.5
Propose a method for CNN
hyperparameters selection

in SHM systems
2021

[95] Z24 bridge
experimental model

Electrodynamic
shaker Statistical scaling

1,231 time series
with 65,530 data

points
16 × 16 (1 layer) N/A Softmax

ACC = 0.85 (pier
settlement),
ACC = 0.66

(tendon rupture)

Propose a 1D-CNN for
multiclass structural

damage detection using
limited datasets

2021

[96]
A three-story

building frame
experimental model

Shaking table N/A 2000 samples of
size 10 × 10

8 × 8, 8 × 8, 7 × 7
(3 layers) 8, 8, 7 (3 layers) Sigmoid RMS ≈ 5.6

Propose a method for CNN
hyperparameters selection

in SHM systems
2021

[70]
An eight-story

building numerical
model

Lateral and
vertical loads

applied at each
story

GWN 9216 samples 8 × 1, 5 × 1, 3 × 1
(3 layers) N/A ReLU and Softmax ACC = 99.3%

Propose an FCN
architecture for damage

detection and localization
in structures

2020

[97]
A six-story hotel

instrumented
building

Historically
recorded response Butterworth HPF 11 samples with

7200 data points
4 × 1, 4 × 1

(2 layers) N/A ReLU Confidence = 93%
(worst case)

Propose a CNN architecture
to develop a surrogate

model for modeling the
seismic response of
building structures

2020

[98]
A three-aluminum-
beam experimental

model

Mass structure
addition and
temperature

changes

N/A 900 samples with
888 data points 237 × 1 (1 layer) 2 × 1 (1 layer) ReLU and Softmax ACC = 97%

Propose a combination of
CNN and EMI methods for

structural damage
prediction

2020

[99]

The Phase I
IASC-ASCE SHM

benchmark structure
FE model

Simulation N/A 6 samples of size
1000 × 400

41 × 1, 41 × 1
(2 layers)

41 × 1, 41 × 1
(2 layers) tanH ACC = 96.11%

Propose a 1D-CNN for
predicting damage from

vibration data of structures
2020

[100] A three-story shear
frame FE model Simulation GWN 19,800 samples

128 × 1, 64 × 1,
32 × 1, and 16 × 1

(4 layers)

2 × 1, 2 × 1, 2 × 1
and 2 × 1 (4 layers) Softmax ACC > 81.8%

Propose CNN-based
approach to identify and

locate damage in
structural joints

2020
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Table 9. Cont.

Publication Structure Excitation Source
Signal

Preprocessing
Techniques

Dataset Size Convolution Layers
Size Pooling Layers Size Activation

Function Accuracy Purpose Year

[101] A steel truss
FE model Simulation N/A 5326 samples of

size 15 × 3
3 × 3, 2 × 2, 1 × 1,

1 × 1 (4 layers) N/A ReLU and Softmax ACC > 90% (50%
damage degree)

Propose a CNN method to
locate damaged rods using

first-order mode shapes and
mode curvature differences

2020

[102] A linear steel beam
FE model

Electrodynamical
shaker N/A 7500 samples 12 × 12, 10 × 10,

8 × 8 (3 layers)
4 × 4, 5 × 5, 6 × 6

(layers) ReLU 91.75% and
92.18%

Present a novel SHM
damage detection method
based on a CNN trained

with FE and
experimental data

2020

[2] Four- and eight-story
building FE models Simulation HPF 5000 samples 50 × 50, 10 × 10

(2 layers)
20 × 20, 2 × 2

(2 layers) ReLU and Softmax
ACC > 90%

(several noise
levels)

Propose a CNN method
using raw data for

structural damage detection
2019

[103] A tied-arch bridge
FE model Simulation FDD, FFT 10,000 samples 3 × 7 (2 layers) 4 × 1

(1 layer)
ReLU and
Sigmoid

ACC = 99.92
(worst case)

Propose a method for
structural damage

identification using Fourier
amplitude spectra of

bridge data

2019

[104] A structural
connection FE model Simulation GWN 60,000 samples 3 × 3 (3 layers) 2 × 2

(2 layers) tanH

ACC = 92.5%
(6 cm crack),
ACC = 95%
(8 cm crack)

Propose a CNN for damage
detection and localization

in structures
2019

[105]
A three-story

full-scale building
experimental model

Shaking table
Bouc–Wen model,

Baber–Noori
hysteretic model

35,400 samples 10 × 1 (1 layer) N/A Sigmoid ACC = 97.2%

Propose a DLN to predict
the damage index (DI) of
stiffness degradation for

structures during
earthquakes

2019

[106]
A steel Warren truss

bridge scale
experimental model

Impact hammer N/A Not specified 7 × 1, 5 × 1, 3 × 1
(3 layers)

3 × 1, 3 × 1, 3 × 1
(3 layers) ReLU ACC = 100%

Propose a new CNN
framework to detect and

locate damage in different
structural crack scenarios

2019

[107]
A five-level

benchmark building
experimental model

Simulation GWN, FFT, PSD 2832 samples of
length 5

1000 × 1, 30 × 3, 10
× 3 (3 layers)

3 × 1, 3 × 1, 3 × 1
(3 layers) ReLU and Softmax RMSE = 0.0163

Propose a novel method
based on DCNN for

damage identification and
location in

building structures

2018

[108]
A long-span
cable-stayed

instrumented bridge

Operational
conditions FFT 333,792 samples of

size 100 × 100 × 2 41 × 41 × 2 (1 layer) 2 × 2 (1 layer) ReLU and Softmax ACC = 93.5%

Propose a novel method
based on CNN using time

series that are visualized in
the time domain and

frequency domain

2018
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Table 9. Cont.

Publication Structure Excitation Source
Signal

Preprocessing
Techniques

Dataset Size Convolution Layers
Size Pooling Layers Size Activation

Function Accuracy Purpose Year

[109]
A three-story steel

frame experimental
model

Shaking table N/A 600 samples 5 × 8 (7 layers) N/A ReLU and tanH RMS = 0.41 (worst
noise case)

This study presents a
DCNN approach to

estimate the dynamic
response of structures

2018

[110] A highway bridge
experimental model Shaking table N/A 48 samples of size

122 × 70

4 × 4, 8 × 8, 16 × 16,
32 × 32, 32 × 32

(5 layers)
2 × 2 (5 layers) ReLU and tanH ACC = 98.437%

Propose a two-dimensional
CNN-based SHM system to

identify structural
damage states

2018

[111] A steel structure
experimental model

Electrodynamic
shaker

Signal
normalization 245,760 samples 80 × 1 (2 layers) N/A Not specified Error graph

Propose a CNN SHM-based
approach using raw signal
without preprocessing or

signal extraction techniques
to detect structural damage

2018

[113] An instrumented
main steel frame

Electrodynamic
shaker N/A 6 samples of size 42 × 1 (1 layer) 2 × 1

(1 layer) Not specified Average error =
0.54%.

Propose a damage detection
and localization method

using an adaptive 1D-CNN
2017

[112]

The Phase II
IASC-ASCE SHM

benchmark structure
FE model

Simulation GWN 262,144 samples 3 × 1 (9 layers) 2 × 1
(3 layers) ReLU and Softmax

ACC = 90–100%
(several damage

cases)

Present a novel CNN-based
approach that uses
acceleration data to
estimate structural

responses through transfer
learning (TL)-based

techniques

2016
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4.2.3. Support Vector Machines (SVMs)

A support vector machine (SVM) is a popular machine-learning algorithm used for
classification and regression problems. Its working principle is essential to maximize the
distance value between a set of vectors, named support vectors, and a defined hyper-
plane. The maximizing goal in SVM can be seen as an optimization problem, and several
approaches can be used to solve this problem. An exciting feature of the SVM decision
boundary is that this boundary is the best possible boundary between a set of data classes
for a given set of data and an SVM formulation. Table 10 shows that several SVM structural
approaches for damage identification have high accuracy. However, SVM models’ training
stage is usually computationally expensive and unsuitable for real-time SHM systems that
rely on post-training updates and ML model improvement. A common practice to reduce
this computational cost is to combine SVM models with signal processing techniques
such as PCA, WT and HHT, or damage-sensitive feature extraction methods such as RFR.
Figure 4 shows an example of an SVM-based structural damage identification system.
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Cuong-Le et al. [115] proposed a combination of PSO and SVM for structural damage
identification, location and severity. Four ML algorithms, including ANN, DNN, ANFIS
and SVM, were trained and compared to predict damaged elements and damage severity.
The proposed PSO-SVM combination achieved the highest accuracy among the compared
techniques and correctly predicted all damage locations in the validation test. In a proposal
by Agrawal and Chakraborty [116], Bayesian optimization (BO) was used in the hyperpa-
rameter search of an SVM, in which the SVM was used to perform damage identification.
A comparison between BO and PSO in hyperparameter optimization search showed that
BO was an efficient method that accelerated the optimization problem. Diao et al. [52]
designed an SHM damage identification system, in which MEEMD and HHT were applied
to acceleration measurements to extract damage characteristics through Hilbert spectrum
energy. The SVM trained with Hilbert energy identified, located and estimated the severity
of the damage in the structure, and the theoretical and experimental validation of the
proposed method was provided.
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Table 10. SVM review.

Publication Structure Excitation Source Signal Processing
Technique Type of Kernel Classification Error Dataset Size Purpose Year

[115]
Truss bridge structure FE

model and two- story
frame structure FE model

Simulation PSO GRBF

RMSE = 0.0461
(truss structure),
RMSE= 0.0621

(frame structure)

1000 samples

Propose an ML-based method
to detect and locate structural

damage using
noisy measurements

2021

[116]
The Phase II IASC-ASCE

SHM benchmark
structure FE model

Simulation PSO GRBF ACC = 100% 1768 samples
Propose a method to train an
SVM classifier to optimally
detect structural damage

2021

[52]
A five-story offshore

platform experimental
model

Shaking table HHT, MEEMD GRBF ACC = 62.5%,
MSE = 0.90 50,000 data points

HHT was used to extract
damage-sensitive features from
raw signals in order to detect,

locate and estimate the severity
of structural damage

2021

[51]

12-story building
numerical model and
laboratory-scaled steel
bridge experimental

model

Simulation and a
rubber hammer

Deep autoencoder,
GWN GRBF

ACC = 97.4%
(building),

ACC = 91.0%
(steel bridge)

15,600 samples
(building model).

5810 samples
(steel bridge)

Propose an SHM system for
structural damage detection

using an autoencoder to
achieve high accuracy in

several damage cases

2021

[117]

Two planar steel frame
structure numerical

models of 18 elements
and 49 elements

Simulation DEA Newly proposed
kernel function

ACC = 90.05% (double
damage case
49 elements)

2500 samples

Propose a two-step method for
structural damage location and

extend it through the
combination of SVM (a first

step) and DEA (a second step)

2020

[118]
Steel frame structure

experimental model and
wooden house FE model

Shaking table and
simulation DNN GRBF

ACC = 94.7% (steel
frame), ACC = 90%
(wooden structure)

6600 samples (steel
frame structure), 100

samples (wooden
house)

An SVM-based SHM was
proposed to automatically

detect several damage patterns
from training data to improve

the damage detection
generalization capabilities of an

SHM system

2020

[80]
Simply supported steel

beam FE model and
instrumented bridge

Electrodynamic
shaker SF GRBF ACC = 85.87%

19 samples of
2,400,000 data points
(beam), 504 samples

(bridge)

Ten statistical parameters of
acceleration signals are used as

damage-sensitive features to
train an SHM system

2019
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Table 10. Cont.

Publication Structure Excitation Source Signal Processing
Technique Type of Kernel Classification Error Dataset Size Purpose Year

[75] 3D-reinforced concrete
moment frame FE model Simulation Cumulative intensity

measures GRBF ACC = 83.1% 6240 samples
Propose a structural damage

detection and localization SHM
system using an SVM model

2019

[74] 3D-reinforced concrete
moment frame FE model Simulation GWN GRBF ACC = 92.48% 5400 samples

A framework was presented
for near real-time prediction of
damage existence, location and

severity of building damage

2018

[119]
31-bar planar truss FE

model and double-layer
grid FE model

Simulation LS-SVM Not specified
MSE = 0.00051 (planar
truss), RMSE = 0.0129

(double layer grid)
11,625 data points

Present a comparative study of
the application of several ML

techniques for damage
detection of structures

2018

[120]

Three-story plane steel
frame FE model and
8-DOF spring–mass
system experimental

model

Simulation and
electrodynamic

shaker
LS-SVM GRBF

MSE = 3.243 × 10−7

(building), MSE = 7.303
× 10−9 (plate)

1944 samples
(building), 2333

samples (plate), 2187
samples (8-DOF

system)

Propose structural damage
detection, localization and
severity using an LS-SVM

approach

2018

[41]

Offshore platform FE
model and an

instrumented scaled
model

Simulation and
shaking table TFA, WPD, PCA GRBF

ACC = 78.125%
(FE model),

ACC = 84.375%
(instrumented model)

120 samples of
10,000 data points

(FE model),
48 samples of

17,500 data points
(instrumented

model)

WPD and PCA were used as
damage-sensitive feature

extractors to train an SVM
model for robust structural
damage detection against

measurement noise

2018

[121]
Three-story frame

structure experimental
model

Electrodynamic
shaker

GA, PSO, grid search
techniques, RE GRBF ACC = 100% 510 samples

Three optimization techniques
were used to optimally select
SVM hyperparameters using

acceleration signals to perform
structural damage

detection tasks

2017

[122]
IASC-ASCE SHM

benchmark dome truss
FE model

Simulation WPRE, HM Newly proposed
kernel function

MAE = 1.02 × 10−2

(benchmark),
MAE = 1.02 × 10−2

(dome truss)

162 samples of
54,000 data points

Propose a new SVM kernel in
order to increase the speed and

the accuracy of LS-SVM for
structural damage detection

2016
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Table 10. Cont.

Publication Structure Excitation Source Signal Processing
Technique Type of Kernel Classification Error Dataset Size Purpose Year

[123]

Three numerical models:
simply supported beam,
two-story plane frame,

8-DOF
spring–mass system

Simulation IRS, CSA, LS-SVM GRBF

MSE = 3.0204 × 10−10

(beam),
MSE = 7.2822 × 10−4

(plane frame),
MSE = 4.2270 × 10−10

(8-DOF
spring–mass system)

2187 samples (beam),
1944 samples

two-story plane
frame), 2315 samples

(8-DOF
spring–mass system)

Propose a new SHM damage
detection system using

incomplete mode shapes and
structural natural frequencies

2016

[27]
Three-story frame

aluminum structure
experimental model

Bumper AANN, FA, MSD,
SVD, SVDD, KPCA GRBF ACC = 96.64% (one

class SVM)
17 samples of

4096 data points

Four kernel SVM algorithms
are tested to predict and detect

structural damage in a
building structure

2016

[42]
The Phase II IASC-ASCE

SHM benchmark
structure FE model

Simulation WPD GRBF ACC = 91.75% 99 samples

Propose a structural building
damage detection system based
on an SVM using data fusion

techniques

2015

[124] A supported beam
FE model Simulation BP-NN Not specified

ACC = 100% (single
crack), ACC = 99.9%

(double crack)
Not specified

Propose a structural damage
detection and localization

method combining an SVM
and BP-NN in beam structures

2014

[32]

Building structure
experimental model

and Sydney Harbour-
instrumented bridge

Electrodynamic
shaker and
operational
conditions

PCA, RP, PAA GRBF

ACC = 97%
(supervised SVM),

ACC = 71%
(unsupervised SVM)

3240 samples of
8192 data points

(building),
6370 samples of

3600 data
points (bridge)

Data dimensionality reduction
techniques were used to

generate training datasets for
an SVM model for structural

damage detection in buildings
and bridge structures

2014

[43]
The Phase II IASC-ASCE

SHM benchmark
structure FE model

Simulation LS-SVM, PSO, HSA,
SF, WPT GRBF

ACC = 100% (PSHS),
ACC = 98.2%
(Harmony),

ACC = 98.68% (PSO)

16 samples of
40,000 data points

Present a comparative study
between an ANN model and

LS-SVM model using
hyperparameter optimization
techniques to achieve optimal
structural damage detection

2014

[125]

Five-story, nine-story
and twenty-one-story

shear structures FE
models and five-story

steel experimental model

Simulation and
electrodynamic

shaker

Damage location
indicators Not specified ACC = 100% Not specified

Propose a structural damage
detection and localization SHM

system using an SVM model
2013



Appl. Sci. 2022, 12, 10754 26 of 40

Table 10. Cont.

Publication Structure Excitation Source Signal Processing
Technique Type of Kernel Classification Error Dataset Size Purpose Year

[126]
Three-story building

structure experimental
model

Magnetorheological
dampers ARM, WARM, DEF Linear kernel and

GRBF

RMSE = 0.0380 (AR,
damaged system),

RMSE = 0.0549 (WAR,
damaged system)

100 samples

Propose SHM system using a
combination of ARM and
WARM to extract damage

features from acceleration data
and an SVM for damage

detection purposes

2013

[114] Simply supported bridge
numerical model Simulation GA GRBF

ACC= 100% (damage
localization),

ACC= 98.16% (triple
damaged extend)

Not specified

A GA algorithm was used to
select the optimal

hyperparameters for an SVM
structural damage

classification model

2011
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Seyedpoor and Nopour [117] proposed a two-step method using a differential evolu-
tion algorithm (DEA) and an SVM for damage identification in a steel structure. In the first
step, the location of the potential damage is determined using an SVM, and in the second
step, the severity of the damage and a more accurate location is obtained using the DEA.
The results obtained showed high accuracy in the capabilities of the damage identification
system. Kohiyama et al. [118] proposed the integration of a DNN and SVMs for the SHM
damage identification framework. SVMs were used in the output layer of the DNN to
detect data associated with an unlearned structural damage pattern. The added value of
the proposed framework is the correct classification of unlearned damage patterns that may
lead to misclassification, thereby improving the generalization feature of the classification
model for damage identification.

Sajedi and Liang [75] proposed a damage identification SVM system to determine
the presence and location of damage using intensity-based features as damage-sensitive
features. This SHM system achieved over 83% accuracy in damage classification.

Intensity-based damage features were also used in a system proposed by Sajedi and
Liang [74], in which an SVM classifier performed the classification task. The optimal
damage-sensitive features and hyperparameters of the SVM were obtained using Bayesian
optimization techniques. The proposed system showed robustness against signal distortion
and reliability in detecting damage to building structures.

Ghiasi et al. [119] presented a comprehensive comparative study among several ML
algorithms, including BP-NN, LS-SVMs, ANFIS, RBFN, LMNN, ELM, GP, multivariate
adaptive regression spline (MARS), random forests and Kriging, for damage identification
classification, location and severity estimation tasks. The results obtained indicate that the
Kriging and LS-SVM models better predict damage location and severity than the other
ML models.

Kourehli [120] presented a two-step unmeasured mode prediction method using two
LS-SVMs and limited sensor measurements. The first step estimates missing modal shapes
through an LS-SVM. In the second step, when complete modal system information is
available, a second LS-SVM performs structural damage identification. The effects of noise
and modeling error interference were analyzed, showing that the proposed system is robust
against these effects. In the damage identification proposal presented by Diao et al. [41],
transmissibility functions, WPEV and PCA were calculated on the acceleration response
data and fed into an SVM damage classification model. WPEV and PCA were used as
damage-sensitive feature extractors to construct the training samples of the ML model.
As an improvement of the proposed damage identification scheme, the training data size
was greatly reduced with the proposed strategy. The SVM classifier performed damage
localization, and damage severity was obtained from the SVM regression result.

Gui et al. [121] presented a comparative study of optimization techniques combined
with SVM models. Grid-search, PSO, and GA were used to optimize the SVM hyperpa-
rameters in structural damage identification, and the selected damage features included
selected autoregressive and residual error features. The application of the above techniques
showed improved SVM prediction performance, and the GA with AR features shows the
best classification results. Ghiasi and Noori [122] proposed a new method for structural
damage identification using an SVM with a newly proposed kernel. A Littlewood–Paley
wavelet kernel was presented to improve the accuracy of the SVM for the SHM damage
classification task, and the social harmony search algorithm was used to optimize the
hyperparameters of the SVM. The results improved damage identification accuracy with
the proposed kernel compared to other kernels combined.

An LS-SVM-based damage identification method was proposed by Kourehli [123]
using incomplete modal data and natural frequencies as training samples and an iterated
improved reduction system method. Coupled simulated annealing (CSA) was used to
determine the optimal LS-SVM fitting parameters combined with a 10-fold cross-validation
method. The experimental validation of the method was performed by applying it to three
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different structures, and the results showed an acceptable performance of the LS-SVM in
damage identification.

Santos et al. [27] conducted a study in which four kernel-based ML models for damage
identification tasks under various noise conditions were compared to analyze their perfor-
mance. Among the kernel-based ML models, one-class support vector machine, support
vector data description, kernel principal component analysis and greedy kernel principal
component analysis were selected and used for damage identification. Compared with
the previous studies performed by other ML models, kernel-based damage identification
showed better accuracy results and better generalization ability.

Zhou et al. [42] presented an a posteriori probability support vector machine based
on Dempster–Shafer evidence theory combined with a multi-sensor data fusion strategy.
Signal energy features were extracted from vibration data using WPT and then processed
by a posteriori probability support vector machine (PPSVM). The experimental results
demonstrated that the proposed method was a robust structural damage identification
method due to the fusion of information sensors and the application of the Dempster–
Shafer evidence theory. Yan et al. [124] proposed a beam structural damage identification
method for crack detection using a BP-ANN model and an SVM. The training data were
generated through a FE beam model, and the strain differences between the models were
considered damage indicators. The two ML models were used and compared, and the
results indicated that both ML models performed well in crack identification for single and
two-crack damage cases.

In the SHM damage identification approach presented by Khoa et al. [32], random
projection (RP) was used to reduce the size of the vibration data, thereby reducing the
computational processing time in structural monitoring. Data anomalies or structural
damage were detected through one-class SVM and SVM models using the reduced bridge
data. The results showed that the combination of SVM and RP improves the computational
speed without affecting the detection accuracy.

Ghiasi et al. [43] presented a comparative study between ANN and LS-SVM for struc-
tural damage identification. The wavelet power spectrum was used for feature extraction,
and the particle swarm harmony search (PSHS) algorithm was used for the hyperparameter
selection of LS-SVM and ANN. The increased model performance of both ML techniques
was achieved with the PSHS optimization method in terms of accuracy, and the combination
of PSHS and LS-SVM was better than ANN with PSHS.

HoThu and Mita [125] designed an SVM-based method using only the first natural
frequencies for damage identification and localization in shear structures as input data.
The experimental results showed that the proposed system performed damage localization
in a five-story laboratory model with response data from two accelerometers: one for the
basement and the other from the roof of the structure. Kim et al. [126] presented a novel
SHM framework for damage identification in smart structures. DWT, autoregressive mod-
els, and SVM were combined in this proposal, in which damage-sensitive feature extraction
is performed from wavelet-based AR time series models. The detection results showed
that the proposed system effectively detected structural damage in a three-story structure.
Liu and Jiao [114] proposed a genetic algorithm to select the optimal hyperparameters
of the SVM. Figure 4 shows the diagram with the proposed structural damage detection
methodology based on the combination of a SVM and a GA.Mode shape and frequency
ratios were used as input data for the SVM model. In the results, the combination of the
GA-SVM damage identification method showed an accuracy of 98.16% for the case of
single, double and triple damage elements, outperforming other methods, such as RBF
networks and GA-BP networks.
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4.2.4. Unsupervised Learning Algorithms

Unlike the supervised machine-learning methods discussed in the previous sections,
unsupervised learning-based methods use training data samples without the need for
class labels. Intuitively, these types of methods avoid the problem of defining possible
multiple structural damage cases, including multiple structural damage scenarios. By
applying unsupervised methods, two types of detections can be performed from the data
obtained by the sensor network measurements of SHM systems: novelty detection and
anomaly detection.

To address the drawbacks of supervised machine-learning approaches applied to
structural damage identification, including sample labeling and the need for data from
multiple damage scenarios, Wang and Cha [51] presented an unsupervised ML approach
that uses an autoencoder to extract features from the raw measurement data. An SVM
was trained with the extracted features, allowing it to detect even small damages (<10%
stiffness reduction) in a structural member of a steel bridge.

Entezami and Shariatmadar [127] proposed two new damage indices for damage
localization and quantification from time series modeling using an AR model. In this
approach, thresholds are defined to detect possible structural damage without establishing
damage patterns. Daneshvar and Sarmadi [128] explored an unsupervised anomaly-based
method for short- and long-term SHM using an anomaly score and also setting an alarm
threshold to establish damage. The core of the method implemented unsupervised feature
selection through a one-class nearest neighbor rule.

de Almeida Cardoso et al. [129] proposed a damage detection framework based on
outlier detection in the acquired data. The data descriptors used in this proposal included
expected data value, data variability, data symmetry, and data flatness. In this proposal, a
k-medoid clustering technique was used to detect outlier data using a proposed symbolic
distance-voting scheme. Eltouny and Liang [130] developed a post-earthquake damage
detection and localization approach that combines intensive cumulative measurements
with an unsupervised learning algorithm. This approach consists of two stages: in the first
stage, a feature extraction process is performed to extract the cumulative measures and in
the second stage, joint probabilities are used as damage indicators obtained through the
kernel multivariate maximum entropy method.

This review will emphasize supervised learning methods such as ANN, CNN and
SVM in combination with preprocessing techniques such as WT, EMD, HHT and PCA.
Despite the advantages of using unsupervised techniques in the problem of structural
damage identification, the use of supervised techniques is the most adopted branch in
the literature.

4.3. Model Type Comparative in Building SHM Systems

Table 11 analyzes the advantages and disadvantages of applying the physics-based
model and the data-based model based on reviewing the proposals mentioned above.

Recent proposals implement hybrid approaches that improve SHM damage identifi-
cation models and integrate physics-based and data-driven modeling solutions. One of
the most common strategies is to build artificial datasets used to train ML models from
FEM-generated data. Conversely, FEM parameters can be estimated from the output of an
ML regression model and improve a structural virtual model.
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Table 11. Advantages and disadvantages of a physics-based model and data-based models in SHM
building applications.

Model Approach Advantages Disadvantages

Physics-based SHM

• The model parameters have a
straightforward physical interpretation.
Stiffness changes and displacements are
consistent as damage-sensitive features.

• It can reach all the levels of damage
identification if the parameters are defined
or estimated in the building structure.

• The effect of the variation of the parameters
can be estimated in the final result of the
model. Parameter variation allows the
simulation of different scenarios, and the
structural safety thresholds can
be established.

• The calculations of the solution of the
model equations may not be feasible for
real-time SHM applications, where the
complexity of the structure requires long
processing times.

• The uncertainties and changing parameters
may reduce the accuracy of the output
model. Therefore, an estimation using other
methods, such as model-based techniques,
is encouraged.

Data-based SHM

• Noise and environmental effects on the
data collected by the sensors can be
minimized for the classification performed
by the ML model.

• Damage identification can be performed
even if the parameters of the structure are
unknown or cannot be estimated.

• The solution process is hidden from the
user, so the rationale for successful damage
classification is not explicit.

• The training data set must be large enough
to avoid overfitting, especially in
algorithms such as CNN. In addition,
obtaining the training samples of damage
states is in most cases limited to an
artificially generated dataset
from simulations.

• Computational training times can be costly
for some ML algorithms (SVM, for
example). Real-time SHM monitoring
systems require faster methods such as
NN solutions.

5. Uncertainties Effect Minimization in SHM Systems

Within the training and operation process of SHM systems, model uncertainties and
monitoring system anomalies adversely affect the performance and the damage detection
system capability. These uncertainties can be found in the data that are used for training
and in the data that are processed during system operation.

In the training phase of the machine-learning model, it is common to use synthetic
training data generated from FEM models of the structure of interest. The simulation of
the structural response facilitates the task of generating data under different operating and
structural damage conditions. The initial model of the structure of interest must accurately
reflect the structural behavior and response, as it is the starting point for comparison with
future states to determine the presence of structural damage. To minimize the uncertainties
of the structural FEM model, several solutions have been proposed in recent years to obtain
a model with reliable parameters and several solutions have been proposed for the optimal
way to update FEM models in the SHM area.

Lee and Cho [131] proposed a direct FEM update strategy based on the identification
of modal parameters and their comparison with the predicted structural response from
measurements on a bridge structure. Jafarkhani [132] presented an evolutionary strategy in
combination with a preliminary damage detection update triggering process and an ARMA
model. An iterative FEM model updating process is used in Pachon’s approach [133],
where a sensitivity analysis determines the most significant structural parameters that
have influence on the overall behavior of the structure. A survey of different FEM model
updating methods in the area of SHM can be found in [134]. In the case of bridge-type
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structures, an analysis of the different model updating techniques can be found in Sharry’s
work in [135].

On the other hand, during SHM systems operation it is necessary to identify the
impact of environmental and operational effects on structural parameters to minimize their
effects on damage-sensitive features, especially in these structures under harsh or extreme
conditions. For example, high sensor sensitivity measurements without noise removal
techniques may only be permissible when environmental and operational conditions remain
unchanged and this scenario is very uncommon in the implementations of SHM systems.

Yuen and Kuok [136] conducted a study to analyze the environmental effects (tem-
perature and humidity) on the modal frequencies of the structure. Through one year of
measurements in a 22-story building, Yuen identifies a correlation between the mentioned
environmental conditions and the modal frequencies of the structure. The normalization of
the sensing system data can reduce the effects of environmental noise and sensor failures.
Some of these effects may be correlated with damage and should be eliminated to avoid a
false-positive error in damage identification.

Cross et al. [137] employed cointegration and (PCA) techniques to remove operational
and environmental effects and extract damage-sensitive features. Damikoukas et al. [138]
proposed an identification method based on sensor measurements with noise to obtain the
stiffness and damping matrices of a structure model. A final model including these parameters
obtained from the noise measurements predicts building response to seismic excitation. Using
SVM, relevant vector machines (RVM) and cointegration techniques, Coletta [139] imple-
mented an SHM to monitor the structural condition of a historic building. This SHM system
only considers the identified frequencies of the given structure and not the environmental
effects of performing structural monitoring. Temperature variation is another environmental
factor that can impact the performance of an SHM system and its ability to accurately detect
damage, as the sensors can be affected by these variations. Huang et al. [140] proposed a
new damage identification system that employs a new algorithm, which includes the effect of
temperature variations and their correlation with structural properties. A genetic algorithm
(GA) is also used to solve the optimization of the process.

Other approaches in the area of unsupervised learning that consider the effect of
uncertainties in measured data have been proposed for anomaly detection systems that
are resistant to uncertainty in sensor data. Yan et al. [141] studied the use of symmet-
ric Kullback–Leibler (SKL) distance and transmissibility function to perform structural
anomaly detection by comparing a baseline state and potential damage scenarios. Bayesian
inference and a Monte Carlo discordance test are used as a statistical screening scheme to
deal with measurement uncertainties. To improve the probabilistic function of the anomaly
detection model, Mei et al. [142]. used the Bhattacharyya distance of TF. The performance of
this proposal outperforms other proposals using Mahalanobis distance-based methods and
have better resistance against the effects of uncertainties. Sarmadi and Karamodin [143]
presented a Mahalanobis-squared distance-based method that combines the one-class kNN
rule and an adaptive distance measure. In this study, the clustering process eliminates the
effects of varying environmental conditions on the anomaly detection process.

6. Discussion and Summary

Within the advantages and limitations of physics-based SHM systems, we summarize
the following highlights when choosing this approach in the design of a structural damage
identification or anomaly detection system.

6.1. Physics-Based SHM Highlights

• Physics-based SHM systems produce a high level of accuracy of structural response
prediction; however, they require domain expertise to define an FEM model with
correct boundary conditions, constraints and structural properties.

• For long-term monitoring systems and in operation, a strategy for updating the FEM
model should be defined in order to have a model that reflects and simulates the
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current state of the structure. This strategy should define the update method, which
parameters to update and when to update the structural parameters.

• To define the initial FEM model of the structure of interest, a stage of identification of the
structural parameters must be considered, using estimation algorithms that include wear
effects, operating conditions, the uncertainty of material properties, as well as the possibility
of underlying structural damage. Using a data-driven method for the identification of these
parameters, through a regression task by a machine-learning algorithm is recommended.

• For real-time SHM applications based on physical models, optimization algorithms
in the solution of the numerical computation problem of an FEM model must be
implemented to guarantee the responsiveness and availability of the SHM system to
an event or in the continuous monitoring task.

Derived from the analysis of the works shown above in Tables 8–10, the most relevant
observations of the application of ML techniques are presented below.

6.2. ANN SHM Highlights

• The ANN-based SHM systems showed good damage identification results using the
modal information extracted from the structural acceleration responses with less train-
ing time compared to the proposed CNN and SVM, and simplicity in implementation.

• The selection of damage-sensitive features include the use of natural frequencies,
modal shapes, damage index based on modal strain energy, FRF estimation, IMF or a
combination of them.

• The removal of environmental effects and noise is also encouraged by signal processing
techniques, such as filters (Kalman filter), and transforms, such as WT, EMD and HHT.
Indeed, natural frequencies are susceptible to effects by temperature changes [23].

• The need for a large number of sensors is a drawback for ANN-based SHM system
implementations. Analytical or data-driven estimation of unmeasured locations in
the structure can enrich the input data to improve structural damage identification,
as shown in [76]. The use of a sensor network allows the application of data fusion
techniques that mitigate redundant signal information and anomalous sensor data.

6.3. CNN SHM Highlights

• The optimization techniques for the design of CNN architectures for SHM systems should
be considered. Some popular proposals include optimization algorithms such as PSO and
HSA. The design of the CNN architecture in SHM applications is the focus of attention
since there is no method to select the hyperparameters of the CNN architecture.

• Two main dimension variants are used in the proposed CNN-based SHM systems:
1D-CNN and 2D-CNN. In the proposals with 1D input in SHM CNN, marginal HHT
spectra, raw response time series windows, mode curvature differences, first-order
mode shapes and Fourier amplitude spectra (FAS) have been used as input vectors.
For 2D input matrices in SHM CNN, time–frequency plots, time series data rearranged
into square matrices, multi-sensor matrix series data, heat map matrices and discrete
response histograms have been used.

• A large amount of training data are needed to train CNN architectures. FE-generated
data can be used, but this generated data can be unreliable if the FE model has
uncertainties. Data enrichment can be performed to make the data reliable for training
purposes, as shown in [92]. Data augmentation techniques and GAN-generated data
can also be used and it is also necessary to balance the training datasets.

• CNN shows reliable performance, especially on noisy datasets [94] using raw measure-
ments, compared to SVM [2] and MLP models [99]. In addition, CNN pre-preserves
dominant frequency signal features, eliminating high-frequency noise components [99].

6.4. SVM SHM Highlights

• To ensure a good level of generality in structural damage identification capabilities,
sufficient examples of damage scenarios should be provided in the model training
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step. The data generated by the FEM could be useful in scenarios where the damage
state of the building is not available. Classification errors may occur when unlearned
pattern scenarios are fed to the SVM model.

• It is essential to keep the number of SVM features to a computationally feasible number
due to the computational processing cost. To reduce this cost, dimensionality reduction
techniques such as PCA, random projection and boosting techniques are encouraged.

• The performance of the final SVM depends critically on the damage-sensitive features
selected in the model input. Popular selected damage features include ARM features,
wavelet-based energy features, and statistical features. If denoising techniques are not
applied, the final performance may also be affected [45].

• There is a high dependence between the selected hyperparameters of the SVM and its
performance, so the use of optimization techniques for hyperparameter tuning, such
as PSO, PSH, CSA and GA, is recommended. More recent optimization techniques
include sunflower optimization [144].

• The model training time using SVM approaches might be inadequate for model update
stages in dynamic SHM building models and real-time building monitoring systems.

• SVM approaches show high capability for small structural damage identification [104]
in combination with feature selection techniques.

7. Conclusions

This study presented a review of recent solutions in the field of SHM systems for
multi-story buildings and bridges, addressing areas of improvement, limitations and op-
portunities. The limitations of physics-based and data-driven models in SHM in buildings
and bridges were also discussed. This review showed the popularity of SHM systems
based on the ML techniques of SVM, NN, and CNN due to the benefits of these algorithms
in classification capabilities. The advantages and disadvantages of applying these ML
techniques were also discussed in order to provide valuable insight for researchers.

In general, a fair comparison between ML models and feature extraction techniques
implies a similar definition of damage scenarios (i.e., loss of stiffness, bolt loosening or
mass addition) to provide a reasonable comparison. The occurrence of multiple damage
locations within the structure is also an underexplored area in damage scenarios.

Real-time monitoring with in-service structure systems also needs to be developed.
In addition, anomalous sensor data must be taken into account in real-time applications.
Real-world structures are more complex than some idealized FE models and must involve a
higher degree of uncertainty than those idealized models, so more damage scenarios must
be studied to verify damage identification. FE model updating techniques and ML model
retraining techniques should be explored for long-term SHM systems in the construction
stages of the operational phase. Sensor placement plays a crucial role in the performance of
ML-based SHM systems, so more studies should be conducted analyzing this fact.

The implications due to constraints imposed by the operational and environmental
effects on the model need to be explored in implementation scenarios. For example, the
periodicity, in which data should be collected from the monitored system to adjust or update
the model due to the degradation of physical properties or operational conditions. Signal
processing techniques, such as data fusion, normalization and compression, could improve
data quality. In addition, with the development of increasingly powerful devices with higher
computing power, signal processing can be performed in the fog computing paradigm. Fog
devices can speed up the process of noise filtering, data compression and data fusion in
SHM systems to assess the state of the structure after a seismic event. Hybrid approaches
that integrate physics-based and data-based models are encouraged to address some of the
drawbacks of stand-alone modeling, and this is the approach taken by some of the most
recent developments in the SHM field. The need for an SHM system that synergistically
integrates the advances reported in the literature in data generation, sensing, processing,
model parameter updating and real-time monitoring, including the rapid assessment of
post-seismic event response, is envisioned.
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Abbreviations

Definition Abbreviation Definition Abbreviation
Added random noise ARN Linear discriminant analysis LDA
Auto-associative neural network AANN Mahalanobis-squared distance MSD
Autoregressive model ARM Mean absolute error MAE
Back-propagation BP Mean-squared error MSE
Back-propagation neural network BP-NN Modal assurance criterion MAC
Camage classification rates DCR Modified ensemble empirical mode MEEMD

decomposition
Complete ensemble empirical mode CEEMD Naïve bayes NB
decomposition
Contribution damage localization methods CDLM Nonlinear time–history analysis NTHA
Convolutional neural network CNN Particle swarm optimization PSO
Coupled simulated annealing CSA Piecewise aggregate approximation PAA
Cross-correlation coefficient CC Poly-reference least-square complex p-LSCF

frequency domain
Damage-sensitive energy feature DEF Power spectral densities PSD
Decision tree DT Principal component analysis PCA
Deep convolutional neural network DCNN Principal component pursuit PCP
Deep neural network DNN Probabilistic neural network PNN
Differential evolution algorithm DEA Quadratic discriminant analysis QDA
Electromechanical impedance EMI Radial basis function neural network RBFNN
Extended Kalman filter EKF Random projection RP
Factor analysis FA Recursive algorithm autoregressive-moving RARMX

average with the exogenous inputs
Fast Fourier transform FFT Residual error RE
Feed-forward multilayered perceptron FFMLP Scaled conjugate gradient algorithm SCG
Fourier transform FT Self-organizing maps SOM
Frequency-domain decomposition FDD Signal statistical indicators SSaI
Frequency response functions FRF Singular value decomposition SVD
Gaussian radial basis function GRBF Statistical features SF
Gaussian white noise GWN Stiffness reduction factor SRF
Generative adversarial network GAN Stochastic subspace identification SSI
Gradient descent momentum GDM Support vector data description SVDD
Harmony memory HM Support vector machine SVM
Harmony search algorithm HSA Teager–Huang transform THT
High-pass filter HPF Trainable look-up tables LUT
Hilbert–Huang transform HHT Transmissibility function analysis TFA
Imperial competitive algorithm ICA Unsupervised image transformation model UITM
Improved reduction system IRS Wavelet package relative energy WPRE
Kernel principal component analysis KPCA Wavelet packet decomposition WPD
Least-square support vector machine LS-SVM Wavelet packet transform WPT
Levenberg–Marquardt back-propagation LMBP Wavelet-based autoregressive model WARM
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