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Abstract: Medical image captioning is a very challenging task that has been rarely addressed in the
literature on natural image captioning. Some existing image captioning techniques exploit objects
present in the image next to the visual features while generating descriptions. However, this is not
possible for medical image captioning when one requires following clinician-like explanations in
image content descriptions. Inspired by the preceding, this paper proposes using medical concepts
associated with images, in accordance with their visual features, to generate new captions. Our
end-to-end trainable network is composed of a semantic feature encoder based on a multi-label
classifier to identify medical concepts related to images, a visual feature encoder, and an LSTM model
for text generation. Beam search is employed to ensure the best selection of the next word for a given
sequence of words based on the merged features of the medical image. We evaluated our proposal
on the ImageCLEF medical captioning dataset, and the results demonstrate the effectiveness and
efficiency of the developed approach.

Keywords: image captioning; medical images; report generation; multi-label classification; LSTM;
VGG-16

1. Introduction

Since the early ages, images have been acknowledged as ideal media to convey ideas,
share opinions, and explain complex concepts through their visual representations and
illustrations. In this respect, images act as storytellers that promote and communicate
science. From a cognitive perspective, this is rooted back to the functioning of the human
brain, which processes visual content faster than textual content as images grab the user’s
attention much faster than words. With increasing progress being made in digital health
technologies, hospitals produce large amounts of medical images from different modalities.
Medical images can be used for fast diagnoses and screening of many diseases. Indeed,
they hold important data about different pathologies and could be employed to detect
abnormalities [1]. Manually extracting information from images or describing their content
can be tedious and time-consuming [1], and require the involvement of experts due to
possible complexities and multiple interpretations that can be assigned to a single medical
image. Therefore, dealing with all images produced by the hospital(s) in a timely manner
is challenging and costly. This impacts the ability to produce accurate reports within the
required deadline and substantially increases the workloads of the personnel [2]. One
solution is automatic captioning of images, which consists of describing, automatically,
and in natural language, the visual content of images [3]. Automatic image captioning
combines skills from two main fields: computer vision for image processing and natural
language processing for text generation. In general, image captioning is employed for
diverse applications whenever a textual description is required from visual content, such
as automatic image annotation and labeling, video transcription, security detection, and
medical image interpretation. The latter plays an important role in computer-aided diagno-
sis systems, decision-making, and disease treatments by releasing workflows and assisting
professionals in their daily routines.
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However, medical image captioning is not a trivial process. Automatically generated
reports are prone to errors and low-quality textual descriptions (among other issues) [4].
This is due to the nature of medical images, which are not as simple as natural images,
as illustrated in Figure 1. Moreover, there are high expectations from these reports to
accommodate clinical standards, which require extensive expertise [5]. In general, such
reports should follow specific templates, include medical terms, and highlight clinically
important information by giving visual evidence rather than describing objects in the im-
age [6]. Notably, classical captioning models struggle to generate accurate descriptions for
medical images and still need improvements to be clinically acceptable [3]. Therefore, the
implementation of new approaches tailored to medical image captioning is a field of great
interest in artificial intelligence. This may help in the fast exploitation of medical content,
delivering faster and more accurate interpretations of findings, and providing valuable
assistance to doctors by alleviating their workloads and expediting clinical workflows [3].

(a) (b)

Figure 1. Comparison between a medical image and a natural image. (a) Represents a medical image
captioned as ‘Heart size normal, Lungs are clear’ and its associated medical concepts are the PA
and lateral chest. (b) Represents a natural image, captioned as ‘man reading a magazine on a park
bench, with his dog’. Objects detected are: person, bench, dog, and book. Anyone can generate a
natural caption but only experts are able to comprehend the content of medical images and, therefore,
generate adequate captions. Moreover, concepts related to medical images are given by experts while
objects in the natural image are intuitive.

Although major efforts have been made to enhance the quality of natural image
captioning (boosted by commercial and security-related applications), few advances have
been made in the medical image captioning field, where accuracy has barely exceeded
40% in several benchmarking competitions [1]. In this regard, in the current paper, we
suggest extracting medical concepts from the image content and employing them with the
visual features to generate a new caption. The motivation behind this work comes from
the use of object detection algorithms in image captioning systems, such as in [7,8]. First, a
convolutional neural network (CNN), acting as a multi-label classifier (MLC), was trained
on image samples to detect medical concepts. Then, visual features were extracted from
images using a pre-trained neural network. Moreover, semantic features were constructed
from the MLC outputs, which were then pre-processed and tokenized, and then their
embeddings were calculated. Next, the same pre-processing type was applied to the image
captions where the vocabulary was constructed from all words of the identified medical
concepts and captions. Finally, the visual features and semantic features were merged and
fed to a long short-term memory network (LSTM) to generate new caption(s) by relying on
the original caption of the image. Moreover, beam search was employed with the LSTM to
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select the best outputs while predicting the next word from the previous sequence and
visual information. The proposed technique was evaluated on a publicly available medical
dataset. The results demonstrate the feasibility and the technical soundness of our method.
Overall, our key contributions are summarized as follows:

• A new approach to generate vocabulary for text generation and encoding was con-
structed from medical concepts and image captions.

• A multi-label classification MLC model based on VGG-16 is proposed to detect medical
concepts from images.

• A pre-trained VGG-16 network was employed to extract visual features from medical
images.

• An end-to-end deep learning-based network was employed for text generation, fusing
visual and semantic features extracted from images as well as their associated medical
concepts. The model merges different networks: MLC for semantic feature encoding,
VGG-16 for visual feature extraction, caption embedding, and an LSTM network for
caption generation.

• A beam search was employed alongside LSTM to accurately select the best words
among the list of predicted words for caption construction.

• An ablation study was conducted to investigate the impacts of each component of the
proposed model in the overall performance.

The rest of this paper is organized as follows. First, we introduce the context of
our work and briefly summarize state-of-the-art models on medical image captioning in
Section 2. Section 3 outlines our approach, which used datasets and evaluation metrics.
Then, we discuss the experimental results of our approach in Section 4. Finally, we discuss
the outcomes of our approach, conclude the paper, and provide future directions for
medical image captioning in Section 5.

2. Background

Image captioning is of great interest in many application domains, such as automated
vehicles, image retrieval, and healthcare. Indeed, mapping the visual content of an image
into text, automatically, without the need for human involvement, frees up the workloads
on many annotation systems [9]. In the literature, many research studies have focused
on natural image captioning and have not considered medical images since describing
the content of a natural image is much easier and less demanding. Indeed, actors, objects,
and their relationships can be described using simple statements, which form the captions.
However, interpreting the findings in a medical image is a challenging task and requires
specific expertise [3] because images are obscure and illustrate organs or tissues that only
professional practitioners could identify. In addition, relationships between objects in
the image are not really what we look for, but clinical findings or abnormalities are more
relevant. To date, only a few works have focused on medical image captioning by adapting
existing natural image captioning to deal with medical images. In Ayesha et al. [10], the
authors categorized image captioning models into three main categories, which can further
be applied to medical image captioning approaches. We compare state-of-the-art techniques
on image captioning in Table 1 and summarize them as follows:

• Template-based techniques: Exploit objects or attributes detected from images and use
grammar rules and constraints to generate captions [10]. Templates are filled out with
specific text that better enhance the distinction between normal and abnormal find-
ings. The generated captions are often small, grammatically correct, and hard-coded,
constraining the variety and flexibility of the outputs [3]. For instance, Onita et al. [11]
used kernel ridge regression combined with classification to map a given image to
words, describing the content from a dictionary; the authors investigated how text and
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the feature extraction model could influence the captioning performance. They evalu-
ated their proposal on the PadChest dataset (https://bimcv.cipf.es/bimcv-projects/
padchest/, accessed on 2 October 2022).

• Retrieval-based techniques: Are based on the retrieval of images visually similar to the
input image from a large dataset, and use their captions to construct a new caption for
the input image [10]. Retrieved captions are either combined to create a completely
new caption or the most similar caption is employed as a substitute for the new caption.
For instance, Xuwen Wang [12] proposed using the Lucene Image Retrieval (LIRE)
system to extract similar images of given medical images based on their underlying
concepts, which were detected using a multi-label classifier and a topic modeling
method. Then, semantic annotated concepts were combined with the body parts
of images to cluster them into different groups. The proposed technique could be
extended to retrieve the most relevant captions of the inputted image from captions of
images of its class.

• Deep learning-based techniques: Rely on the end-to-end trainable networks to extract
automatic features from images and map them into meaningful text [3]. Since deep
learning-based models performed very well for many other domains, this category is
the most investigated in image captioning as well. These techniques include encoder–
decoder architectures, fully connected networks, and CNNs [10]. The existing methods
in the literature are basically inspired by the show-and-tell model [13], an encoder–
decoder model for image captioning. The proposed technique is based on a visual
feature extractor (the encoder), which is usually a CNN network, and a text generator,
which is an RNN network (the decoder). This model is further improved to deal
with medical images and to focus on important parts of the image (parts where the
most significant features are obtained) using attention mechanisms. For instance, the
authors of Zeng et al. [1] proposed detecting lesion areas, extracting automatic visual
features from them, diagnosing pathological information, and reporting the findings
from medical images using an encoder–decoder architecture. Similarly, Yin et al. [14]
employed a deep CNN-based multi-label classifier as the encoder and a hierarchical
RNN as the decoder. First, the model detects abnormalities in medical images, which
are then used to generate long medical annotations based on an attention mechanism.
Likewise, Beddiar et al. [15] exploited the show–attend–tell model [16] (extension
of the show-and-tell model, using attention mechanisms) and changed the decoder
with a GRU network for medical image captioning. In contrast to encoder–decoder
architectures, visual and semantic features were fused and exploited to generate
captions in merged models. In general, merged models employ CNN for visual feature
extraction and an RNN for textual features. Then, textual and visual features are
merged to assign a new caption to a given medical image. Obviously, they constitute
a variant of encoder–decoder architecture with the fusion of textual information.
For instance, Wang et al. [17] employed a joint representation of image–text pairs
calculated using a variational autoencoder model for medical report generation. They
used a topic model theory to model semantic topics of images that were exploited, in
addition to deep fuzzy logic rules designed based on diagnosis logic, to summarize
and interpret abnormalities in medical images. Likewise, Al Duhayyim et al. [18]
proposed using encoding and decoding architectures for the generation of effective
captions where SSA-based hyperparameter optimizers in both parts were used to
attain effective results.

Some works combined techniques of the previously enumerated categories to ac-
curately generate descriptions, which were more relevant and focused on. For instance,
Xie et al. [19] proposed a topic-guided attention mechanism to generate descriptions for ab-
normal visual observations by giving evidence on locations of the abnormalities. Moreover,

https://bimcv.cipf.es/bimcv-projects/padchest/
https://bimcv.cipf.es/bimcv-projects/padchest/


Appl. Sci. 2022, 12, 11092 5 of 24

Li et al. [20] proposed abnormality graph learning, allowing them to detect abnormali-
ties and use them to retrieve text templates, which were further adapted, enriched, and
corrected using a paraphraser. In Li et al. [6], the authors proposed a hybrid retrieval-
generation reinforced agent that decided whether to retrieve a template sentence or generate
a new one for each constructed topic related to medical images. Similarly, in Zhao et al. [21],
the authors proposed a model that incorporated a generation-based approach and a
retrieval-based method. It employed visual features and retrieved similar textual fea-
tures to generate the final captions.

Table 1. Comparison of some state-of-the-art methods on image captioning.

Method Input Output Dataset

Template-based method: kernel ridge regres-
sion and classification [11] chest X-ray images description PADChest dataset

Retrieval-based method: Lucene Image Re-
trieval (LIRE) + multi-label classification and
topic modeling [12]

medical images description ImageCLEF + ROCO
datasets

Deep-learning-based method: show and tell
encoder–decoder model [13] natural images captions

Pascal VOC 2008,
Flickr8k, Flickr30k,
MSCOCO

Deep-learning-based method: encoder–
decoder model [1] medical images diagnosis report IU X-ray + own cre-

ated dataset

Deep-learning-based method: encoder–
decoder model with CNN-based multi-label
classifier and RNN as decoder [14]

chest X-ray images medical report IU X-ray dataset

Deep-learning-based method: encoder–
decoder with attention, show, attend and tell
model [16]

natural images captions Flickr8k, Flickr30k
and MS COCO

Deep-learning-based method: encoder–
decoder with attention, decoder with
GRU [15]

medical images descriptions ImageCLEF 2021

Deep-learning-based method: merge model
with a variational auto-encoder [17] chest X-ray images medical report IU X-ray dataset

Deep-learning-based method: encoder–
decoder with SSA-based hyperparameter
optimizer [18]

natural images captions MSCOCO and
Flick8K

Hybrid method: topic-guided attention mech-
anism [19]

lateral and frontal
chest X-ray images description IU X-ray dataset

Hybrid method: abnormality graph learning
with retrieval technique [20]

lateral and frontal
chest X-ray images medical report IU X-ray dataset

Hybrid method: method based on a Retrieval-
Generation Reinforced Agent [6]

lateral and frontal
chest X-ray images medical report IU X-ray + ChexPert

dataset

Hybrid method: retrieval-based method com-
bined with generation-based method [21] natural images captions MSCOCO
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3. Materials and Methods

In this paper, we present a captioning technique that combines visual features extracted
from images and their associated medical concepts for medical image captioning (we were
motivated by the existing object detection-based methods for natural image captioning).
Indeed, applying object detection methods on medical images does not provide satisfactory
results and, therefore, could not be exploited for automatic captioning. However, an
alternative to that is extracting medical concepts associated with medical images using
some pre-trained models. Outputs of such systems could help to improve the reliability of
existing medical image captioning systems. For this reason, we propose merging visual
features and semantic features in order to generate new captions. Visual features are
computed from images using some pre-trained networks. Semantic features are computed
from medical concepts detected for medical images. CNN networks are used for feature
extraction for both visual and semantic cases whereas a multi-label classifier is implemented
to detect the concepts. Finally, an LSTM network is implemented for language generation
where beam search is also employed for a better selection of words predicted to construct
the caption. In the following subsections, we present the different steps of our proposal,
which are illustrated in Figure 2.

Figure 2. Overall scheme of our proposal. Visual features were extracted from medical images to
construct the visual feature vector and train the multi-label classifier (MLC). The semantic features
were computed from encoding the outputs of the MLC, combined with visual features and caption
vector, and input to the LSTM for text generation. The diagram without the red box shows the
training process; it shows the testing process when the red box is included. The medical concepts
were not inputted directly for pre-processing but were passed through the MLC.

3.1. Visual Feature Encoding

The first step of our proposal is visual feature extraction; we employed a pre-trained
CNN model. We used the VGG-16 model since it is small, has been trained on the large
ImageNet dataset, and performs very well on several other classification tasks. The model
is composed of 16 layers, to which we input the medical images and generated a feature
vector of size 4096 after removing the last classification layer, as illustrated in Figure 3. The
features extracted from this layer were learned by the model while trying to predict the
image class and distinguish the visual content of images. Images were pre-processed before
fitting them to the VGG-16 model. They were normalized and resized to fit in the encoder
and augmented with some traditional image augmentation techniques.
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Figure 3. The model for visual feature extraction. The model inputs were medical images and the
outputs were the visual feature vectors (size: 4096).

3.2. Semantic Feature Encoding
3.2.1. Text Pre-Processing

We pre-processed the captions to clean the text and keep only significant words.
Specifically, we tokenized each caption, converted all characters to lowercase, removed
stop-words, filtered out the punctuation, and calculated the stems of the identified words.
Two other words were added to each caption to identify the beginning (<start>) and the
end (<end>) of the sentence. This pre-processing process was performed using the NLTK
package (https://www.nltk.org, accessed on 2 October 2022). The maximum length of one
caption for the whole training set was 50 words, which was used to pad the remaining
captions at the end. Further, embeddings were calculated from these captions to capture
the semantic meaning of each sentence. Finally, each image was represented with a vector
of size 50, encoding the corresponding caption.

As previously noted, we used both visual features and semantic features as joint
features for the process of caption generation. So, semantic features were obtained from the
processing of the medical concepts associated with the images. We processed them in the
same manner as we did for the captions. Medical concepts are provided as concepts unique
identifiers (CUIs), e.g., C1306645 refers to ‘Plain X-ray’. The first step was to substitute
each CUI with its corresponding text (UMLS—unified medical language system), which is
possible through the National Library of Medicine (https://www.nlm.nih.gov/research/
umls/index.html, accessed on 2 October 2022). In general, the UMLS constitutes different
words; we tokenized, converted to lowercase, stemmed, and removed the stop words
among them. Consequently, each image is represented with a vector (of a shape of 10x9),
where ten concepts were considered and each concept was encoded with a vector of size 9
(composed of 9 words). The maximum number of CUIs per image was found to be 10; after
tokenization, the maximum length of one CUI was 9 words for each concept of the training
set. If the concept had fewer words, we padded the sequences at the end. Similarly, if the
image had fewer associated CUIs, we repeated the vector of the last CUI for the remaining
positions (to reach 10 CUIs, i.e., 10 vectors). Embeddings were calculated as well from
medical concepts and constituted the semantic features.

https://www.nltk.org
https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
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3.2.2. Vocabulary Construction

Now that tokens were generated from captions and concepts, we constructed the
vocabulary. A dictionary of sorted unique words was constructed so that a numerical value
was assigned to each word based on its order in the set.

3.2.3. Multi-Label Classification for Medical Concept Detection

We propose using a multi-label classifier to detect and recognize concepts from medical
images. For that, we trained a CNN network that was inspired by the VGG-16 network but
on a smaller scale. Inputs of the model were the medical images and outputs were multiple
classes, which linked to the identified concepts from visual features. We picked the top
ten recognized concepts to represent each image. The predicted concepts were further
pre-processed and constituted the basic units of our semantic feature encoding process.
Figure 4 represents the architecture of our multi-label classifier.

Figure 4. Architecture of our proposed multi-label classifier. Image was inputted to a smaller VGG-16
network and multiple medical concepts were outputted.

3.3. Captioning Model

The ultimate goal of our model was to generate descriptions from the given medical
images and their associated concepts. Our captioning model was composed of a visual
feature encoder, a semantic feature encoder, a multi-label classifier acting as a semantic
feature encoder, as well as an LSTM for caption generation. Outputs of the encoders were
converted to the same size (128), merged, and inputted into the generation model. In other
words, the input to our model was [x1,x2,x3] where x1 is the 4096 feature vector of the
image, x2 is the (10x9) semantic vector encoding the concepts, and x3 is the semantic vector
encoding the caption sequence. The output of the model was y, which is the next word
that the model should predict using the three inputs as illustrated by Table 2. An example
of the generation of the caption ’macroscopic fat containing nodule in the right adrenal
gland’ is shown, where the sequence was predicted word-by-word using both visual and
semantic feature vectors.
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Table 2. Example of how our model generates the training sequences.

x1 (Visual Vector) x2 (Semantic Vector) x3 (Text Sequence) y (Word to Predict)

visual feature semantic feature start, macroscopic

visual feature semantic feature start, macroscopic, fat

visual feature semantic feature start, macroscopic,
fat, containing

visual feature semantic feature start, macroscopic,
fat, containing, nodule

visual feature semantic feature
start, macroscopic,
fat, containing, nod-
ule,

in

visual feature semantic feature
start, macroscopic,
fat, containing, nod-
ule, in,

the

visual feature semantic feature
start, macroscopic,
fat, containing, nod-
ule, in, the,

right

visual feature semantic feature
start, macroscopic,
fat, containing, nod-
ule, in, the, right,

adrenal

visual feature semantic feature

start, macroscopic,
fat, containing, nod-
ule, in, the, right,
adrenal,

gland

visual feature semantic feature

start, macroscopic,
fat, containing, nod-
ule, in, the, right,
adrenal, gland,

end

Our model predicts (at each time step) a word from the vocabulary to be next in the
sequence. In general, the word with the highest probability is considered even though it
may lead to a caption that is not really suitable for the image since it only looks one step
back. Therefore, we investigated the beam search algorithm, which allowed us to consider
all possibilities for a generated sequence and progressively choose the best ones by looking
at different steps of sequence generation. We explored three different values of the beam
width k, which specified the number of best possibilities to be sent to the next step. So,
k = 3, k = 5, and k = 7 were employed and the process was repeated for each word until
the max length of the caption or the ‘<end>’ token was reached.

During the training, we input the medical images, their pre-processed concepts, and
their corresponding pre-processed captions. An LSTM network was then used as the
language generation model since it performs well for sequence prediction problems. LSTM
predicts the next word in a sequence based on the previous word, the semantic, and the
visual features of each image until it reaches the end of the sequence given by the token
<end>. Figure 2 illustrates the training process (by removing the red box, because ground
truth concepts are used directly from the training set).

During the test phase, the model first predicted the concepts associated with the
medical image (using the multi-label classifier), and then carried on with the encoding of
visual and semantic features as shown in Figure 2. Finally, it output the predicted captions,
word by word. Beam search was used at each step to select better-predicted words for the
sequence previously constructed.
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3.4. Dataset

To evaluate our proposed method, we employed the ImageCLEFmed 2021 dataset [22,23],
composed of three subsets for training, validation, and testing. It is composed of 2756 medical
images where each image is associated with a set of medical concept unique identifiers (CUIs)
and a caption consisting of one or several sentences. CSV Files (mapping images to their
corresponding CUIs and captions) are provided with the raw images. Multiple image modalities
and body parts are considered in this dataset, making it very challenging and more general.
Figure 5 shows two samples of image–text pairs from the ImageCLEFmed 2021 dataset. The
UMLs are retrieved to identify each CUI of the image. They are related to the content of
the image and could give more insight into its content. For example, in the left sub-figure,
CUI ‘C0003842’ is substituted by ‘Arteries’ and the CUI ‘C0040398’ by ‘Tomography, Emission-
Computed’. Both concepts give more information on the content of the image and could be
used to boost the understanding of the image.

Figure 5. Radiology image samples from the ImageCLEF dataset; captions describe the images, and
their associated CUIs are presented.

3.5. Evaluation Metrics

Our model is composed of different models that can be evaluated to investigate the
performance of each component. First, we evaluated the accuracies of the MLC, LSTM, and
the quality of the generated captions using the bilingual evaluation understudy (BLEU)
metric. It allowed us to compute the similarity between the reference caption and the
hypothesis proposed by the system. It varied between 0 and 1; 0 referred to no overlap
between translation and reference (low quality), and 1 referred to the perfect overlap
between them (high quality).

For the MLC model, we calculated the F_measure as follows:

F_measure = 2 · Precision · Recall
Precision + Recall

(1)

where the recall and the precision are calculated as follows:

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)
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In general, TP, FN, TN, and FP refer to true positive, false negative, true negative, and
false positive, respectively.

The accuracy, which provides insight into the ability of the model to correctly predict
the associated concept, is given by:

Accuracy =
Correct Predictions

Total Predictions
=

TP + TN
TP + FN + TN + FP

(4)

Finally, the BLEU metric is calculated as follows:

BLEU = BP · exp(
N

∑
n=1

wn · log pn) (5)

where N refers to the number of n_grams, and by default, it is 4, Wn indicates the weight
of each modified precision and it is set by default to 1/4, while Pn refers to the modified
precision, which is calculated as follows:

pn =

∑
H∈{hypotheses}

∑
n_gram∈H

Countclip(n_gram)

∑
C′∈{hypotheses}

∑
n_gram′∈C′

Count(n_gram′)
(6)

where Countclip calculates the count of clipped n_gram of the hypotheses and Count gives
the number of hypothesis n_grams.

Moreover, BP or the brevity penalty is used to select the caption, which is more similar
to the reference caption, in length, word choice, and order. It is given by:

BP =

{
1 h > r
exp(1−r/h) h 6 r

(7)

where r and h refer to the number of words in the reference caption and the hypothesis caption.

4. Results

We investigated the accuracy of the LSTM model for generating captions. The model
was trained for 100 epochs; the accuracy is reported on the test set. Figure 6 illustrates
the training accuracy and loss where we can see that the model learned to generate the
next words for each caption sequence over time. Indeed, the accuracy was improved over
epochs and the loss decreased.

Figure 6. Performance of the LSTM language generation model. Left side: training accuracy; right
side: training loss. Epoch # refers to the number of epochs.

Moreover, the BLEU score was calculated for the set of generated captions as demon-
strated in Section 3.5. We reached a BLEU score of 42.28% for the captioning using beam
search with index = 5. We illustrate the results of different experiments (regarding how each
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word in the caption is generated) using argmax and beam search with index = 3, 5, and 7.
Better results were obtained with beam search and beam index = 5 while other indices gave
similar values. Results are shown in Table 3, and are also compared to other state-of-the-art
techniques on the same dataset. We can see that the model proposed by [24], a winner of
the ImageCLEF challenge in 2021, gave the best BLEU result with a value of 51.00%. In
Castro et al. [24], the authors introduced a multi-label classification-based method, where
each word in the caption was considered to be a class of the image. The authors then trained
their model to predict high-ranking words (i.e., classes of the image) based on a statistical
method and then used them to construct the caption. Our results outperformed those
of [25], which employed a pattern-based captioning method by combining the medical
concepts identified for the image and achieved a BLEU score of 25.70%. Captions were
then created based on the characteristics of captions in the training and validation sets and
depended marginally on the outcomes of the model, which used concept identification.
Similarly, we outperformed the results of [26], where an encoder–decoder model was
presented with images as input and an attention mechanism between the encoder and the
decoder. The model was inspired by the famous ’Show, Attend, and Tell’ [16] model, where
the image encoder was changed into a ResNet-101 network. However, this model does not
employ medical concepts for the captioning process.

Table 3. Comparison of our results to some state-of-the-art results.

Method BLEU

ImageSem [25] 25.70%
IALab_PUC [24] 51.00%

Kdelab [26] 36.20%
ours: MLC + LSTM + Argmax 41.09%

ours: MLC + LSTM + Beam Search 3 42.15%
ours: MLC + LSTM + Beam Search 5 42.28%
ours: MLC + LSTM + Beam Search 7 41.16%

In order to further evaluate the performance of our model, we show some examples
of images from the validation set and both their ground-truth and generated captions
in Figures 7–9. We can see that our model was able to accurately generate captions in
both upper sub-figures and the lower left sub-figure of Figure 7, where all words were
correctly predicted (i.e., the caption ‘left upper lobe mass’ for the example was correctly
generated by our model). Even the order of the words in the caption was correct. However,
in the lower right sub-figure of Figure 7, although the wording appears to be relevant and
correctly generated, their ordering was wrong and, hence, the caption was incorrect as well.
Moreover, the model generated some wrong words (in red) as in Figure 8 (i.e., words such
as ‘heterogeneous’ and ‘crossing the’ in the lower left sub-figure were wrongly inserted
in the caption, affecting the quality and the correctness of the interpretation). The model
missed some words (in red), such as in the upper right sub-figure (i.e., ‘material’ and ‘Note
the large amount of subcutaneous fat circumferentially compatible’ were missing). The
model was trained to generate one sentence for each image and that is why it was not
able to generate a caption composed of more than one sentence, which could be the case
for many long medical reports. Moreover, in some cases, the model generated completely
wrong captions as in Figure 9. Likewise, it appears that some reports used sentences that
were too long, which lowered the quality of the embedding generated by the used encoders,
and thereby, led to wrong captions.
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Figure 7. Some samples of captions generated by our model. Upper sub-figures and the lower left
illustrate correctly generated captions while the lower right sub-figure illustrates a partially correct
caption (but the order of the words is mixed). We illustrate in red words that were wrongly inserted
or missed by the model.

Ablation Study

To evaluate the whole performance of our proposed model, it is worth investigating
each component separately. This could tell if the combination positively or negatively
influences the performance of the overall model.

We first investigated the performance of the proposed multi-label classifier. In other
words, we evaluated the performance of the proposed CNN in predicting accurate medical
concepts from medical image inputs. The model was trained for 100 epochs and the
accuracy was reported on the test set. Figure 10 illustrates the training and validation
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loss as well as the accuracy of the proposed model. Accuracy increases over time while
loss decreases, which means that our model is able to learn to assign multiple labels to
the input images. We obtained an F_measure value of 41.80%, which was not the best one
compared to some state-of-the-art methods. However, this value was obtained because
we considered 10 medical concepts for each image, which was the maximum number
of concepts for images of the used dataset. As can be seen in Figure 11, regarding the
distribution of CUIs per image, most of the medical images only had two CUIs. In contrast,
very few images had either one or more than five CUIs. The results, in terms of F_measure,
are compared in Table 4. Our results are comparable to the state-of-the-art results on the
ImageCLEF 2021 dataset. Again, the best results (50.50%) were obtained by the same
team Schuit et al. [27] for caption prediction, where a VGG network was used to encode
medical concepts. A K_nearest neighbor algorithm was used with perceptual similarity
to select concepts that are most likely closest to the given image. In Wang et al. [25], the
authors used a pre-trained network for encoding the medical concepts within a multi-label
classification task. The medical concepts were divided into four semantic categories, namely
imaging type (IT), anatomic structure (AS), findings (FDs), and others; therefore, images
were annotated accordingly. Similarly, Jacutprakart et al. [28] achieved an F_measure of
41.20% by using a pre-trained DenseNet-121 model for the multi-label classification process
after categorizing the medical concepts into different semantic types. Next, two types of
training were performed to classify the semantic type and predict the appropriate concept.
In Beddiar et al. [15], the authors employed a multi-label classifier, where features were
extracted using MobileNet-V2 and then a GRU network was used for the classification.

Table 4. Comparison of our results to some state-of-the-art results.

Method F_measure

IALab_PUC [24] 50.50%
ImageSem [25] 41.90%

NLIP-Essex-ITESM [28] 41.20%
Attention-based encoder–decoder [15] 28.70%

Our proposal 41.80%

Next, we investigated the performances of the medical concepts features rather than
only using visual features. So, we investigated the LSTM accuracy and computed the
BLEU score of the generated captions without using medical concepts and compared the
results to those of using them. The model illustrated by Figure 12 was used for this study.
Table 5 shows that when the model used only visual features, the obtained BLEU score
was lower than in the case of incorporating medical concept features. The BLEU score was
improved because the medical concepts boosted the semantic representation of the images
and, hence, increased the ability of the model to generate new captions. We calculated
the BLEU score using the argmax and the beam search with indexes 3, 5, and 7, as we did
previously. We can see that the best value was obtained for our model using beam search
with index = 3 for the best selection of the predicted word. With index = 5, we were able to
obtain a very close BLUE score of 36.23% even though the results of the four methods were
relatively close, ranging from 33.63% to 36.28%. However, incorporating medical concepts
as complementary data to the images increased the BLEU score from 36.28% to 42.28%.
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Figure 8. Some samples of captions partially generated by our model. We illustrate in red some
words that were wrongly inserted or missed by the model.
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Figure 9. Some samples of wrong captions generated by our model. We illustrate in red some words
that were wrongly inserted or missed by the model.

Figure 10. Performance of the MLC model. Left side: training loss and accuracy; right side: validation
loss and accuracy. Epoch # refers to the number of epochs.
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Figure 11. Distribution of CUIs per images.

Figure 12. Model used for ablation study to investigate the impact of incorporating medical concepts
for caption generation.

Table 5. Comparison of our results to some state-of-the-art results

Method BLEU

ours: LSTM + Argmax 33.69%
ours: LSTM + Beam Search 3 36.28%
ours: LSTM + Beam Search 5 36.23%
ours: LSTM + Beam Search 7 33.63%

5. Discussion

We proposed an end-to-end model for medical image captioning where medical images
and their associated medical concepts were concatenated and fitted to the LSTM model
to generate more accurate captions. A visual encoder based on a pre-trained model was
used for visual feature extraction and a multi-label classifier was trained to detect medical
concepts based on the visual features. Semantic features obtained from medical concepts
and image captions were merged with visual features to predict consecutive words of the
captions. The main objective of the study was to investigate the impact of incorporating
medical concepts related to images to provide more information on the content of the image
and, hence, boost the captioning process performance. It was observed that, as expected,
the medical concepts offered more information on the image and the captioning accuracy
was improved. To achieve this, the medical concepts were pre-processed, encoded, and
fitted to the language generator in accordance with the visual features, and the prediction
took into account both aspects. However, the model performance was still relatively low
and the captioning still needed to be enhanced. Indeed, the model was able to accurately
generate short captions but failed in constructing long captions or captions with more than
one sentence. Moreover, multi-label classifier performances have a large impact on the
performance of the model. In other words, the number of concepts to be predicted or the
fixed probability for selecting concepts per image influenced the outcome of the captioning.
So, it was essential to find optimized values for how many concepts were predicted for each
image. The method used for the selection of the predicted word by observing the next steps
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could also influence the captioning accuracy by predicting the best caption rather than
only the word with the highest prediction probability. We reviewed in the following some
partially or wrongly generated captions and categorized them according to the possible
reasons of misinterpretation.

Error Analysis

Automatically generating captions from the input image is highly biased by the quality
of this image. Indeed, if the visual content of the image is not clear enough, the system
will fail in understanding and describing it. We show in Figure 13 some samples of wrong
captions where our model either fully or partially failed to generate accurate captions from
bad quality image(s). From the left-upper sub-figure, we can see that the image has four
sub-images, which would mislead the model while extracting the visual features. From
the right-upper sub-figure, we can see that the image has a white background on the right
side and the bottom, which would ultimately yield different kinds of features if the same
organ is present in another image that is center-cropped, for example. From the left-lower
sub-figure, we can see that the image has some writing on the right and some other type of
data on the bottom, which influence the feature extraction process. Finally, the right-lower
sub-figure shows a foggy image and the features extracted would obviously depend on the
visibility of the object in the image that we cannot distinguish easily from this image. We
can see that the model was able to identify the objects in the figures but could not create a
correct caption, such as in the two right sub-figures. The model succeeded in producing the
words ‘axial ct demonstrates a rounded mass in the right upper’ for the upper sub-figure
and ‘delayed image, demonstrates tracer activity’ for the lower sub-figure.

Similarly, the reliability of the generated captions depends on the words constituting
the original captions and their frequency in the dataset. For instance, if the word reoccurs
in the dataset, (i.e., present in many captions from the dataset), the model could easily
predict that word, but it would likely fail if the word is less frequent or present only in
one caption. We illustrate in Figure 14 some samples of the generated captions where the
original captions constitute rare words. Even though the system was able to predict that
the left sub-figures are a radiograph of the chest and a knee, respectively, it was not able to
predict efficient captions because of the words ‘parahilar’, ‘perobronchial’, ‘tricompartment’,
‘patellofemoral’, and ‘cartilage’, which are rare in the dataset. Similarly, the model failed in
generating good captions for the right sub-figures because of rare words, such as ‘cartilage’,
‘trochlear’, ‘groove’, and ‘hyperintensity’, or unknown words, such as ‘extramuscular’ and
‘forefoot’, which do not exist in the training captions. Roughly speaking, the model can
predict words that are recurrent and thereby have a higher likelihood to construct the
caption rather than a word that does not exist or rarely appears in the training dataset
because our model is not well trained on the embeddings.

We show in Figure 15 recurring and rare words from the training captions. Words,
such as ‘emission’, ‘tomography’, and ‘computed’ are the most recurrent in the training
dataset; the model could smoothly identify their embeddings and predict them because
it was well trained on them. However, words, such as ‘tarsal’, ‘bolus’, and ‘micronodule’,
were crossed by the model only once and, thereby, were not predicted accordingly.

Furthermore, some captions include numerical information or punctuation that are
semantically important. However, by removing the punctuation, stop words, and some of
the characters during pre-processing, we may lose some important information, which in
turn affects the meaning and the generation of the new caption. Figure 16 demonstrates
samples of original captions containing specific number tokens that, if removed, influence
the generation of the new captions. For instance, in the left sub-figure, ‘day 10’ has an
important clinical role in the diagnosis since it presents the historical data of the patient.
Similarly, in the right sub-figure, (<4 mm) is important information about the size that
influences the diagnosis. In both figures, the wrongly generated captions may be the
result of removing the prime information or the length of the original captions, which are
composed of more than one sentence.
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Figure 13. Samples of wrong captions generated by our system from images of bad quality. We
illustrate in red the words that were wrongly inserted or missed by the model.
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Figure 14. Samples of wrong captions generated by our system from captions containing rare words.
We illustrate in red the words that were wrongly inserted or missed by the model.
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Figure 15. Some examples of words and their number of occurrences in the training captions. We
show here the most frequent and rare words.

Finally, we illustrate in Figure 17 two samples of the generated captions for images
where training samples pertain to different modalities (x-ray computed tomography and
mammography modalities). In general, the model is shown as not being able to generate
captions for images from modalities on which it has not been well-trained on. For instance,
although the model predicted ‘spiculated mass, the breast’ for the left sub-figure, the model
was not able to create a correct caption. Again, the model failed in determining the modality
of the right sub-figure, where it was wrongly predicted as being an MRI image instead of
an x-ray computed tomography.

Figure 16. Samples of wrong captions generated by our system from captions containing numerical
data or punctuation and characters that were clinically important. We illustrate in red the words that
were wrongly inserted or missed by the model.
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We show in Figure 18 the number of images per modality and the corresponding
medical concept (modality). We can see that the training set was dominated by images
from the tomography emission-computed modality, while few images were from the
mammography modality. This justifies the number of occurrences of words ‘tomography’,
‘computed’, and ‘emission’ in the vocabulary of our model.

Figure 17. Samples of wrong captions generated by our system for images from modalities with few
training samples. We illustrate in red the words that were wrongly inserted or missed by the model.

Figure 18. Number of images per modality and its corresponding medical concept.

To improve the results, it is possible to train the model more and fine-tune the hy-
perparameters to enhance accuracy performance. Some data augmentation techniques
could be employed to resolve the issue of small training sample numbers. Indeed, data
augmentation can be performed on both medical concepts and image captions to obtain
more text samples. Different pre-trained embedding models could also be investigated,
especially the ones trained on a large-scale medical corpus to cover the diverse terminology
encountered in the training data, which can ultimately (potentially) improve the quality
of the generated captions. Another direction would be to categorize the medical concepts
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according to some topics and then perform a hierarchical multi-label classification (i.e.,
in two levels where the first level classifies the topics and the second one classifies the
medical concepts). Then the predictions are made based on the two levels to better select
the associated concepts of a given image. Finally, the pre-processing process should be
performed more selectively, to allow us to keep clinically important data, even if they are
numerical data or specific characters/symbols.

6. Conclusions

We presented an end-to-end network that integrates medical concepts alongside visual
features extracted from original raw images for medical image captioning. The model is
composed of different sub-models (a semantic feature encoder and visual feature encoder)
trained simultaneously for a better generation of captions. The outputs of a visual encoder
were merged with the outputs of a semantic encoder and inputted into the decoder to create
captions. The visual encoder is a pre-trained network, the semantic encoder is a multi-label
classifier, and the decoder is an LSTM network. A beam search with different indices was
employed at the end to allow the LSTM to select better words for the newly created caption.
Our model was evaluated on the ImageCLEF 2021 dataset by considering the images, their
associated concepts, and their ground-truth captions as inputs of the model and generated
captions as outputs. The experimental results and the ablation study illustrate the reliability
of our method even though the quality of the generated captions still needs to be improved.
For that, more training, hyperparameter optimization, and pre-processing have to be taken
into account to improve the findings.
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