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Abstract: A small portion of mislabeled data can easily limit the performance of deep neural networks
(DNNs) due to their high capacity for memorizing random labels. Thus, robust learning from noisy
labels has become a key challenge for deep learning due to inadequate datasets with high-quality
annotations. Most existing methods involve training models on clean sets by dividing clean samples
from noisy ones, resulting in large amounts of mislabeled data being unused. To address this
problem, we propose categorizing training samples into five fine-grained clusters based on the
difficulty experienced by DNN models when learning them and label correctness. A novel fine-
grained confidence modeling (FGCM) framework is proposed to cluster samples into these five
categories; with each cluster, FGCM decides whether to accept the cluster data as they are, accept
them with label correction, or accept them as unlabeled data. By applying different strategies to
the fine-grained clusters, FGCM can better exploit training data than previous methods. Extensive
experiments on widely used benchmarks CIFAR-10, CIFAR-100, clothing1M, and WebVision with
different ratios and types of label noise demonstrate the superiority of our FGCM.

Keywords: noisy labeled data; robust learning; image classification

1. Introduction

The double-edged nature of deep neural networks’ tremendous capacity to learn and
memorize data has been revealed [1–3]. However, although DNNs trained on large-scale
datasets achieved massive success in image classification [4], object detection [5], and other
visual tasks, they tend to undesirably memorize random false-labeled samples [3], resulting
in poor generation ability. Currently, there is growing research interest in noisy label
learning [6–13] owing to the scarcity of large-scale datasets with high-quality annotations
in most real-world cases [14]. Recent methods for noisy label learning [6,8,12,15–19] are
mostly inspired by the experimental observation [3] that DNNs tend to learn patterns
existing among samples early and later struggle to memorize hard samples. These methods
divide clean samples from noisy ones by treating samples with higher prediction confidence
as clean instances while others as noisy instances [1]. For example, MentorNet [16] trains
a student network by feeding in small-loss samples selected by a teacher model. Co-
teaching [17] and co-teaching+ [18] train two DNNs parallelly, where each network provides
small-loss samples to the other. Mcorr [8] estimates the probability of a sample being clean
by fitting a two-component beta mixture model on prediction loss. Here, a more robust
representation can be learned by excluding samples with low certainty of being clean from
further training.

However, the performance of the methods above is limited because it leaves many
unused mislabeled and hard samples that contain helpful information [2]. Therefore,
we rethink confidence modeling from a more fine-grained perspective of considering the
difficulty experienced by DNN models when learning from samples. Most existing methods
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overlook the different properties between hard and simple instances. Simple samples have
easily identifiable features, while hard samples are rather indistinct. Here, instead of
dividing the training data into either clean or noisy, we naturally categorize samples into
four kinds: Clean Simple(CS), Noisy Simple(NS), Clean Hard(CH), and Noisy Hard. The
Noisy Hard set is further divided into samples with relevant annotations (NHR) and
irrelevant labels (NHI). Figure 1 presents the significant differences among the confidence
trends of typical examples for each category during the training process, indicating the
feasibility of fine-grained categorization. Furthermore, it can be inferred from Figure 1 that
the confidence scores of maximum repeating pseudo labels share the same or similar trends
with those of ground truth labels during the early training stage for all the five clusters.
Thus, we use the former as an alternative when generating sample categories for the latter
because the latter is not available in real-world cases.

Figure 1. Typical examples of images in the training set and corresponding confidence score trends
for different kinds of samples on CIFAR-10 with 20% symmetrical noise. The words in blue below
each image are their annotation labels which might be wrong, while the green words are the ground
truth labels. The crosses or ticks in brackets indicate the rightness of corresponding labels. We train
a PreAct-18 resnet using SGD with a momentum of 0.9, a weight decay of 0.0005, and a batch size
of 128. The initial learning rate is set to 0.06 and reduced to 0.006 in the 80th epoch. The blue and
green curves represent the trends of confidence scores for annotation labels and ground truth labels
during the training process, respectively. (a) Clean Simple samples (CS) (i.e., highly distinguishable
instances with correct annotations). (b) Noisy Simple samples (NS) (i.e., mislabeled samples with
easily identifiable features). (c) Clean Hard samples (CH). (d) Noisy Hard samples with Relevant
annotations (NHR). (e) Noisy Hard samples with Irrelevant labels (NHI).

In this paper, we aim to robustly train deep neural networks on noisily labeled datasets
by recalling as much reusable training samples as possible. As mentioned above, existing
sample selection methods treat samples with higher prediction confidence as clean instances.
In this way, only a small portion of data can be selected. Moreover, it is hard to distinguish
hard samples from noisy samples, both having low prediction confidence. Therefore,
inspired by the findings induced from Figure 1, we propose a simple yet effective Fine-
Grained Confidence Modeling (FGCM) framework. First, FGCM clusters samples into the
five categories mentioned above by modeling the prediction scores for both annotations
and the maximum repeating pseudo labels of samples. Second, to include as many clean
and reusable samples in training, FGCM applies different strategies to different categories.
In particular, we take data from CS and CH as it is, correct labels from NS to the maximum
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repeating pseudo labels, since there is a high possibility for the maximum repeating pseudo
labels of NS instances to be correct according to Figure 1, and drop the labels of NHI
together with NHR which are ambiguous. By iteratively repeating the process, FGCM
can effectively prevent models from over-fitting to false-labeled samples and gradually
recall more reusable samples from dropped data to further strengthen the performance
of the trained model. Finally, semi-training strategy is employed to realize the use of
NHI and NHR sets, enhancing the performance of trained model. With the fine-grained
categorization of samples, FGCM can maximize the use of the training data.Extensive
experiments on various datasets show that FGCM outperforms SOTA methods.

Our main contributions are summarized as follows:

• We propose fine-grained training sample categories based on the difficulty of learning
them and their label correctness.

• We propose a simple yet effective FGCM framework for noisy label learning, which
can effectively maximize the useation of the training data and prevent models from
over-fitting to noisy labels.

• Extensive experiments show the effectiveness and robustness of FGCM under different
ratios and types of noise, outperforming previous methods.

2. Related Work

In this section, we briefly review the existing literature on noisy label learning. As
listed in Table 1, previous methods can be grouped into several categories.

Noise transition matrix. Many early studies tackle the task of noisy label learning
by estimating a noise transition matrix which represents the probability of one class being
mislabeled into another. Some methods try to improve the performance by adjusting the
prediction results of DNNs using the estimated label transition probability. Other methods,
such as Fcorr [20], correct the loss by multiplying the estimated transition probability with
the softmax outputs. The key to these methods is the reliability of the estimated noise
transition matrix. Webly learning [21] estimates a noise transition matrix by training an
additional noise adaptation layer. Probabilistic noise modeling [22] trains two networks
which are used to predict the noise type and label transition probability, respectively.

The performance of these methods is often limited in realistic cases due to the com-
plexity of estimating noise transition matrix on real-world datasets.

Table 1. Summary of literature reviewed according to the category of methods.

Category Methods

Noise transition matrix Fcorr [20], Webly learning [21], Probabilistic noise model-
ing [22]

Robust Loss Function Robust MAE [23], Generalized Cross Entropy [24], Sym-
metric Cross Entropy [25]

Sample Selection MentorNet [16], Co-teaching [17], Co-teaching+ [18],
Iterative-CV [26]

Hybrid Methods SELF [27], Mcorr [8], DivideMix [19], MOIT+ [28], Sel-
CL+ [12]

Robust Loss Function. Some studies try to design noise tolerant loss functions. The
robust MAE [23] showed that the mean absolute error (MAE) loss is more robust to label
noise than cross entropy (CE) loss, yet it is not applicable on complicated real world datasets
and suffered from increased difficulty in training compared with cross entropy loss. Thus,
the generalized cross entropy (GCE) [24] is introduced, trying to combine the advantages
of both MAE and CE loss. Symmetric cross entropy (SCE) [25] proposes a noise robust term
called reverse cross entropy loss, which can improve the learning on hard classes. SCE
archives significantly better performance than CE and GCE. However, the accuracy of these
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loss function methods is still not promising and their performance will be greatly degraded
in hard cases.

Sample Selection. Many recent studies adopted sample selection strategies which
select a certain number of possibly clean labeled samples from the training dataset and
exclude other samples from the update to prevent the model from over-fitting to noisy labels.
The small-loss trick is widely used to distinguish true-labeled samples from noisy samples
because the losses of clean samples tend to be smaller than false-labeled samples due to
the memorization effect of DNNs. MentorNet [16] trains a student network by feeding in
small-loss samples selected by a teacher model. Co-teaching [17] and Co-teaching+ [18]
train two networks simultaneously and each network selects small-loss samples for the
training of the other model. Iterative-CV [26] randomly divides training samples into
subsets and iteratively removes samples with large losses using a cross validation strategy.
Despite the significant improvements these methods obtain, samples acquired by them
are mostly clean simple instances. Hard samples containing rich information which can
greatly help the generalization of DNNs are discarded. Moreover, in extreme circumstances
where the noise rate is high, too few samples can be selected to train the model thoroughly.
Last but not least, the ground truth noise rate or a clean validation dataset, which are
not available in most cases, need to be provided to decide how many samples should
be selected.

Hybrid Methods. Recent studies attempted to combine sample selection with other
techniques. SELF [27] uses the mean-teacher model to progressively filter out noisy samples.
Mcorr [8] proposes to fit a two-component mixture model on prediction loss to estimate
the probability of a sample being clean or noisy. Following Mcorr, DivideMix [19] divides
training samples into a clean or noisy set using the obtained probabilities. Then semi-
supervised learning is performed with instances in the clean set treated as labeled data
while those in noisy set as unlabeled data.

There are some methods try to alleviate the effect of noisy labels using supervised
contrastive learning techniques. MOIT+ [28] pretrains models with supervised contrastive
learning. Then the learned features are used to divide samples into clean or noisy. Then
a classifier is trained in a semi-supervised manner on the divided datasets. Sel-CL+ [12]
achieves approximately 10% higher accuracy than MOIT+ on severely noisy datasets by
pretraining models with unsupervised contrastive learning to completely remove the
impact of noisy labels. Then, Sel-CL+ uses the learned low-dimensional representations to
select confident pairs of samples for the supervised contrastive training of models instead
of selecting confident samples as MOIT+ does. In this way, Sel-CL+ is able to leverage
supervised information from not only the pairs with correct annotations, but also the pairs
which are false-labeled from the same class.

Although these methods achieved promising performance, the improvements mostly
are mostly owed to the using of semi-supervised or contrastive learning techniques. As
with traditional sample selection methods, they still leave a large part of helpful supervisory
signal unused, particularly from large loss training samples which consist of noisy labeled
samples and hard samples.

3. Proposed Method

In this section, in detail, we introduce FGCM, our proposed training framework for
learning from noisy labels. In summary, FGCM consists of three steps. (a) Generating
fine-grained sample clusters based on their confidence trends. (b) Performing cluster
refinement to promote the accuracy of sample clusters and constructing a cleaned training
set with samples from CS, CH, and NS sets. Step (a) and (b) are iteratively repeated in the
training process to expand the cleaned training set. (c) Performing mixed semi-training
with instances from NHI and NHR sets treated as unlabeled data and instances in the
cleaned training set as labeled data to maximum the use of training samples. The three
steps will be introduced in detail in the following subsections.
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First, to avoid confusion, we define the notations of the three kinds of labels which
will be frequently mentioned for the rest of the paper. Annotation labels, denoted as AY =
{ay1, ay2, . . . , ayn}, are the assigned labels of samples, part of which are false-labeled while
others are correct. GY = {gy1, gy2, . . . , gyn} refers to ground truth labels which are the
correct labels of samples. Maximum repeating pseudo labelsMY = {my1, my2, . . . , myn}
are the most frequent pseudo labels for each sample predicted by DNNs from the beginning
of training to the current epoch.

3.1. Generalization of Sample Clusters

The process of generating sample clusters and performing cluster refinements is
presented in Algorithm 1 which is located in page 6. Let S = (X ,AY) = {(xi, ayi)}N

i=1
denote the training set consists of N samples, where xi is an input image with ayi being
the corresponding annotation label. To obtain the maximum repeating pseudo label myi
for sample xi, we need to record the history prediction confidence for every sample as Cek .
Given a model with parameter θ, the confidence score cek

i (ỹ) represents the probability of
sample i to be classified into class ỹ after kth epoch of training:

cek
i (ỹ) = P ỹ

model(xi; θek ) (1)

where P ỹ
model refers to the model’s output softmax probability for class ỹ. We also maintain

a history prediction listHek which contains the pseudo labels produced by the model for
each sample from the beginning of the training process to the current epoch k:

Hek = {{arg maxPmodel(xi; θej)}
N
i=1}k

j=0 (2)

where arg maxPmodel(xi; θej) refers to the predicted label with maximum confidence, as
known as the pseudo label, for sample i in epoch j. We use the label with maximum number
of occurrences inHek

i as myi for sample i. The model is trained on the whole training set in
the early stage when the impact of noisy labels is minor. After the warmup phase ends, a
joint confidence score jcek−1

i is constructed for sample i in every epoch k:

jcek−1
i = (

∑k−1
j=0 c

ej
i (ayi)

k
,

∑k−1
j=0 c

ej
i (myi)

k
) (3)

The two elements in jcek−1
i represent the average of historical prediction confidence for

annotation and maximum repeating pseudo label, respectively, reflecting the trends of their
confidence scores during the training process. Gaussian Mixture Model (GMM) [29] is a
widely used unsupervised modeling technique. A Gaussian Mixture Model is a weighted
sum of M component Gaussian densities, where M is the number of clusters in the data.
GMM assumes that the input data points are generated from a mixture of M Gaussian dis-
tributions. With parameter estimation using the Expectation-Maximization algorithm [30],
GMM outputs the probabilities of samples belonging to each cluster. In this paper, we
categorize samples into the cluster with maximum possibility. Owing to the different
trends showed in Figure 1, five clusters of sample points can be generated by fitting a five-
component Gaussian Mixture Model(GMM) [29] to jcek−1 . The clustering result, presented
in Figure 2b, is highly consistent with that in Figure 2a, which is produced by replacing myi
with gyi, indicating the effectiveness of usingMY as the alternative for GY . The cluster
with the highest average confidence score of ayi is CS, and the second-highest cluster is CH.
The cluster with the maximum difference between the average scores of myi and ayi is NS.
The other two clusters are NHR and NHI, whose labels are ambiguous and less valuable to
training models. Moreover, the clusters can be further refined with priors as described in
the next subsection. Consequently, we can obtain a new training set T with the cleanest
labels by screening out instances from NHR and NHI and rectifying NS samples’ labels
with their maximum repeating pseudo labels. It is worth noting that though NHR and NHI
are not used in training, their existences improve the clustering performance. Training on a
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cleaned dataset effectively prevents the model from over-fitting to false-labeled samples.
Moreover, the cleaned training set T can be expanded with more reusable samples grad-
ually recalled from NHR and NHI by iteratively repeating the process to strengthen the
performance of the trained model further.

Algorithm 1: Generalization of Sample Clusters and Cluster Refinements

Input: θ, training dataset S = (X ,AY) = {(xi, ayi)}N
i=1

1 for k = 0 to MaxEpoch do
2 if k < WarmUpEpoch then
3 /*training on the whole S*/
4 θ = WarmUp(S , θ)

5 else
6 /*find the maximum repeating pseudo labels*/
7 MY = {myi}N

i=1 ← max(H)
8 /*construct a joint confidence score*/

9 jcek−1
i = (

∑k−1
j=0 c

ej
i (ayi)

k ,
∑k−1

j=0 c
ej
i (myi)

k )
10 /*generate clusters with GMM*/
11 NS , CS , CH,NHR,NHI ← GMM(jcek−1)
12 /* performing cluster refinements */
13 XÑ S = {xayi 6=myi}; xi ∈ XNS
14 XC̃S = {xayi≡myi}; xi ∈ XCS
15 XC̃H = {xayi≡myi}; xi ∈ XCH
16 /* constructing the new training set T */
17 if k == WarmUpEpoch then
18 T = (XÑ S ,MY Ñ S ) ∪ (XC̃S ,AY C̃S ) ∪ (XC̃H,AY C̃H)
19 else
20 T = T ∪ (XÑ S ,MY Ñ S ) ∪ (XC̃S ,AY C̃S ) ∪ (XC̃H,AY C̃H)
21 end
22 θ = Train(T , θ)

23 end
24 /*record history confidence and prediction*/
25 Cek = {Pmodel(xi; θ)}N

i=1
26 Hek = {arg max Cek

i }
N
i=1

27 end

Figure 2. Sample clusters generated by FGCM. (a) is generated using confidence score of ground
truth labels and annotation labels. (b) is generated using confidence score of maximum repeating
pseudo labels and annotation labels.
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3.2. Cluster Refinement

Despite possessing a reasonably high number of accurately labeled samples, the
cleaned training set still inevitably contains a small part of wrongly clustered samples,
especially when the noise rate of the original dataset S is high. In NS instances, myi and
ayi should differ with each other. However, myi and ayi should be the same in CS and CH
instances. After acquiring the fine-grained clustering results, we use this prior knowledge
to perform cluster refinements and obtain cleaned NS, CS as well as CH, filtering out
outlier samples:

XÑ S = {xayi 6=myi}; xi ∈ XNS ; XC̃S = {xayi≡myi}; xi ∈ XCS ; XC̃H = {xayi≡myi}; xi ∈ XCH

where XNS ,XCS ,XCH are the NS set, CS set and CH set generated by fine-grained clus-
tering. Furthermore, XÑ S ,XC̃S ,XC̃H are the refined ones.

3.3. Mixed Semi-Training

With the sample selection steps introduced above, we already constructed a cleaned
labeled set Xl which consists of Nl samples since the pseudo labels of CS, NS and CH
clusters have a high probability of being correct:

Xl = {(xi, li) : i ∈ (1, . . . , Nl)} = (XÑ S ,MY Ñ S ) ∪ (XC̃S ,AY C̃S ) ∪ (XC̃H,AY C̃H).

where li is the corresponding cleaned label for sample xi. To maximize the use of training
samples, instead of dropping all the samples in NHI and NHR clusters, we drop their labels
to construct an unlabeled set Xu consists of Nu samples:

Xu = {ui : i ∈ (1, . . . , Nu)} = (XNHR) ∪ (XNHI )

where ub refers to an unlabeled sample. We reinitialize the model to prevent over-fitting,
and make use of the labeled as well as the unlabeled dataset to train it in a mixed semi-
supervised way inspired by [31]. Cross entropy loss for labeled batches Lx is defined as:

Lx =
1
B

CE(Pmodel(xi; θ), li)B
i=1 (4)

where B is the batch size of labeled batches. Strong augmentations have been proved
to be beneficial to the training of model [31]. Sohn et al. take the whole training set as
unlabeled data and applies strong augmentations to unlabeled data [31]. To speed up
the semi-training process while improving the performance, we propose mixed batches
Batchm = {mb : b ∈ (1, . . . , (µ + 1)B)} ∈ Xl ∪ Xu randomly sampled from both labeled
data and unlabeled data. Every Batchm samples B samples from labeled dataset and µB
samples from unlabeled dataset. Therefore, the batch size for mix batches is (µ + 1)B.

For mixed batches, first we record the confidence scores for every sample mb as Cm.

Cm = Pmodel(mb; θ)
(µ+1)B
b=1 (5)

Then, labels with maximum confidence for unlabeled data are employed as their pseudo
labels Psem

b while labels for labeled data are kept:

Psem
b =

{
argmax(Cm

b ) if mb ∈ Xu

lb if mb ∈ Xl
(6)

By performing various augmentations [31], the cross entropy loss for mixed batches is
defined as:

Lm =
1

(µ + 1)B
Σ(µ+1)B

b=1 1max(Cm
b )>τCE(Pmodel(A(mb); θ), Psem

b ) (7)
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where only predicted labels with confidence higher than τ are counted in the loss and A
refers to augmentations. Finally, a coefficient factor λm is used to balance the loss of mixed
batches and forms the overall loss.

loss = Lx + λmLm (8)

4. Experiments
4.1. Experiment Settings
4.1.1. Datasets

We validate our method on four commonly used benchmark datasets, including
CIFAR-10, CIFAR-100 [32] with noisy synthetic labels and clothing1M [22], WebVision
1.0 [33] with real-world noise. CIFAR-10 and CIFAR-100 are accurately labeled with 50K
training images and 10K test images. Clothing1M is a large-scale real-world dataset with a
noise rate of approximately 38.5% [34]. It consists of one million training images collected
from the web and 10,526 accurately labeled test images. WebVision contains 2.4 million
training images with an estimated noise level of 20%. Following previous methods [15,19],
we use a mini version of WebVision which consists of the first 50 classes from Google subset
for training. The WebVision validation set and the ImageNet ILSVRC12 validation set are
used for evaluating. To be consistent with previous works, we evaluated two kinds of
noisy synthetic labels on CIFAR-10 and CIFAR-100. In symmetric noise (Sym) settings,
every category has the same noise rate, and noisy labels are evenly distributed among all
the classes. As for asymmetric noise (Asym), a certain percent of labels of each class are
relabeled into a similar category (e.g., dog← cat).

4.1.2. Implementation Details

We employed an 18-layer PreAct Resnet [35] as the backbone network for all the ex-
periments on CIFAR-10 and CIFAR-100. The net was trained using SGD with a momentum
of 0.9, a weight decay of 0.0005, and a batch size of 128. The network was trained for
350 epochs. We set the initial learning rate as 0.06 and reduced it by a factor of 10 after
80,150 epochs. The warmup period was 80 epochs for CIFAR-10 and CIFAR-100. We used
the same hyperparameters for all the experiment settings, demonstrating the robustness
of FGCM. For clothing1M, we randomly sampled 18,000 images for every class from the
noisy dataset as our training set and used the clean test set to evaluate performance. To be
consistent with previous methods [15], we used imagenet pretrained resnet-50 [36] as the
backbone. We set the initial learning rate as 0.01 and reduced it by a factor of 10 after every
10 epochs. The warmup period for clothing1M was 10 epochs. An inception-resnet v2 [37]
is employed for webvision. We set the initial learning rate as 0.01, and reduce it by a factor
of 10 after 40,60 epochs. The warmup period is 60 epochs for webvision.

For all the experiments, the unlabeled threshold τ, unlabeled data ratio µ, loss weight
of mixed batches λm are set to 0.95, 7 and 1, respectively.

4.2. Experimental Results and Analysis
Compared Methods

In this section, we present a thorough comparison between the performance of FGCM
and several state-of-the-art methods on the four commonly used benchmark datasets.
Table 2 presents the evaluation results of FGCM and other methods on CIFAR-10 and CIFAR-
100 under different ratios of symmetric noise based on PreAct-18 resnet. Meanwhile, Table 3
shows the results with different ratios of asymmetric noise. Here we briefly introduce some
of the SOTA methods we compared:

• DivideMix. DivideMix trains two networks simultaneously and iteratively divides
samples into either clean or noisy sets via a two-component mixture model. Further-
more, semi-supervised learning is performed with the clean and noisy set treated as
labeled and unlabeled data, respectively.
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• ELR. Using semi-supervised learning techniques, ELR first estimates target probabili-
ties base on the outputs of model in the early training stage. Then, ELR hinders the
memorization of noisy labels by employing a regularization term to maximize the
inner product between the targets and model outputs.

• MOIT+. Networks are first pretrained with supervised contrastive learning. Samples
are divided based on the learned features. Then a classifier is trained in a semi-
supervised manner on the divided datasets.

• Sel-CL+. The training of Sel-CL+ is warmed up with unsupervised contrastive learn-
ing. With the obtained low-dimensional representations, Sel-CL+ selects confident
sample pairs and trains the models with supervised contrastive learning technique.

Table 2. Performance comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 with
different ratios of symmetric noise as PreAct-18 resnet being the backbone.

Dataset CIFAR-10 CIFAR-100

Noise type Sym

Method/Noise ratio 20% 50% 80% 20% 50% 80%

Cross-Entropy 86.8 79.4 62.9 61.8 37.3 8.8

Fcorr [20] 86.8 79.8 63.3 61.5 46.6 19.9

Co-teaching+ [18] 89.5 85.7 67.4 65.6 51.8 27.9

Pcorr [38] 92.4 89.1 77.5 69.4 57.5 31.1

FINE [39] 91.0 87.3 69.4 70.3 64.2 25.6

Meta-Learning [40] 92.9 89.3 77.4 68.5 59.2 42.4

Mcorr [8] 94.0 92.0 86.8 73.9 66.1 48.2

DivideMix [19] 95.2 94.2 93.0 75.2 72.8 58.3

ELR [15] 93.8 92.6 88.0 74.5 70.2 45.2

MSLC [41] 93.5 90.5 69.9 72.5 68.9 24.3

MOIT+ [28] 94.1 91.8 81.1 75.9 70.6 47.6

Sel-CL+ [12] 95.5 93.9 89.2 76.5 72.4 59.6

FGCM 95.6 94.9 94.1 77.1 74.9 61.1

As stated in Table 2, Co-teaching+ gains a significant improvement from Cross-Entropy
by excluding big-loss samples from training. However, the performance is limited com-
pared with other methods due to discarding too many training samples. MOIT+ outper-
forms Co-teaching by a large margin. Leveraging supervised contrastive learning technique,
MOIT+ learns a more robust representation and significantly alleviates the effect of noisy
labels. Sel-CL+ gains further improvements by selecting confident sample pairs instead
of clean samples. In this way, the learned representations benefit from not only the pairs
with correct annotations, but also the pairs which are false-labeled from the same class.
Therefore, the performance of Sel-CL+ is remarkably better than MOIT+ on high noise
ratio settings (i.e., 80% symmetric noise on CIFAR-10 and CIFAR-100). DivideMix achieves
comparable performance with Sel-CL+ on CIFAR-10 and CIFAR-100 with symmetric noise,
owing to treating detected noisy samples as unlabeled data for semi-supervised training.
However, the performance is not optimal under asymmetric noise as presented in Table 3,
indicating that the small loss strategy does not work well for asymmetric noise. FGCM, our
proposed methods, sets a new SOTA performance across all noise types and ratios. With
the confidence of maximum repeating pseudo labels, FGCM can effectively perceive the dif-
ficulty experienced by DNN models when learning the samples, while with the confidence
trends of annotation labels FGCM is able to decide whether a sample is clean. Combining
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the two together, the proposed FGCM is able to mine more reusable supervision informa-
tion, compared with DivideMix and Sel-CL+, from noisy datasets by categorizing training
samples into fine-grained clusters. The improvement is significant especially for high noise
ratios, which is more challenging. Sel-CL+ achieves competitive performance for low noise
ratios (i.e., asymmetric noise and 20% symmetric noise) yet FGCM outperforms Sel-CL+ by
a large margin for high noise ratios (e.g., 5.5% for 80% symmetric noise on CIFAR-10). This
is owed to the ability of FGCM to accurately correct labels for noisy samples. While the
performance of many sample selection methods degrades on the asymmetric noise, FGCM
outperforms DivideMix by 2.4% for 40% asymmetric noise on CIFAR-10. For asymmetric
noise, the training difficulties of different classes vary greatly due to the different degree of
similarities between classes, causing the losses of samples in some annotated classes are
generally higher than the other classes. Therefore, it is not convincing to realize the division
of samples only based on the loss of their annotation labels. FGCM, however, is able to
discriminate between hard samples and noisy samples by the fine-grained categorization,
thus still achieving SOTA performance for asymmetric noise.

Notably, the results of original DivideMix and ELR are acquired by using the average
predictions of two trained models while other methods use only one. For a fair comparison,
we report their results without model ensembles.

Table 3. Performance comparison with state-of-the-art methods on CIFAR-10 with different ratios of
asymmetric noise as PreAct-18 resnet being the backbone.

Dataset CIFAR-10

Noise type Asym

Method/Noise ratio 10% 20% 30% 40%

Cross-Entropy 88.8 86.1 81.7 76.0

GCE [24] 89.5 85.6 80.6 76.0

Pcorr [38] 93.1 92.9 92.6 91.6

Mcorr [8] 89.6 91.8 92.2 91.2

DivideMix [19] 93.8 93.2 92.5 91.4

ELR [15] 94.4 93.3 91.5 85.3

MOIT+ [28] 94.2 94.3 94.3 93.3

Sel-CL+ [12] 95.6 95.2 94.5 93.4

FGCM 95.6 95.4 94.7 93.8

Test results on clothing1M and WebVision are listed in Tables 4 and 5.

Table 4. Performance comparison with state-of-the-art methods on clothing1M.

Method TCNet [13] Meta-Cleaner [42] ELR FINE MSLC Divide-Mix+ ELR+ FGCM
Accuracy 71.15 72.50 72.87 72.91 74.02 74.76 74.81 74.91

The reported results of DivideMix+ and ELR+ are with model ensembles however
FGCM still archives comparable or even better performance. The results demonstrate the
effectiveness of our proposed FGCM.

Figure 3 illustrates some of mislabeled images in CLothing1M and WebVision filtered
and rectified by FGCM. Images are randomly chosen from the NS cluster generated by
FGCM. The red labels above each image are the annotation labels from corresponding
datasets while the green label below each image is the pseudo label produced by FGCM.
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Figure 3 demonstrates the effectiveness of FGCM in filtering and rectified noisy labels by
modeling the confidence of samples in a fine-grained manner.

Table 5. Performance comparison with state-of-the-art methods on WebVision validation set and the
ImageNet ILSVRC12 validation set. Results for baseline methods are copied from [12,15,19].

Method
WebVision ILSVRC12

Top1 Top5 Top1 Top5

Fcorr [20] 61.15 82.68 57.36 82.36
Decoupling [43] 62.54 84.74 58.26 82.26
D2L [44] 62.68 84.00 57.80 81.36
MentorNet [16] 63.00 81.40 57.80 79.92
Co-teaching [17] 63.58 85.20 61.48 84.70
Iterative-CV [26] 65.24 85.34 61.60 84.98
DivideMix+ [19] 77.32 91.64 75.20 90.84
ELR [15] 76.26 91.26 68.71 87.84
ELR+ [15] 77.78 91.68 70.29 89.76
ProtoMix [45] 76.3 91.5 73.3 91.2
FGCM 77.84 91.76 74.56 90.24

The outstanding performance on both synthetic and real-world datasets demonstrates
that FGCM can effectively alleviate the bad memorization effect of DNNs and still maintain
good performance for the trained model even when there is a high number of false-labeled
training samples.

Figure 3. Examples of rectified labels by FGCM in Clothing1M and WebVision datasets. Red labels
denote original annotations which are obviously wrong. Green labels denote rectified labels produced
by FGCM which are obviously correct.

4.3. Ablations

To better evaluate our method, we perform multiple ablation studies in this section.
As is shown in Table 6, to evaluate the effectiveness of cluster refinement, we train a model
without using cluster refinement, the decrease in accuracy indicates that cluster refinement
is beneficial to the performance of model. To study the impact of the noisy simple set, we
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train a model without using rectified noisy simple set as labeled data. The performance
further drops, which suggests that using samples from noisy simple set can improve the
generation ability of the trained model. We train a model only using samples from the
intersection of CS, NS and CH to validate the effect of mixed semi-training. The results
prove the efficacy of mixed semi-training, especially when under high level of noise rate.
We randomly sample 20,000 labels from the dataset to build labeled batches and use the rest
labels as unlabeled data. There is a severe drop in the performance of the model trained
without fine-grained sample categorization. In particular, the performance is totally ruined,
under 80% noise rate. The results provide strong evidence to demonstrate the effectiveness
of fine-grained sample categorization.

Table 6. Ablation Study results on CIFAR-10 with two different noise rates.

Dataset CIFAR-10

Method Noise Rates Sym 20% Sym 80%

FGCM (CS + NS + CH + NHI + NHR + cluster refinement) 95.6 94.1
FGCM (CS + NS + CH + NHI + NHR 95.2 93.6
FGCM (CS + CH + NHI + NHR) 94.5 93.0
FGCM (CS + NS + CH) 93.8 76.9
FGCM w/o fine-grained sample categorization 88.25 50.0
Cross Entropy 86.8 62.9

4.3.1. Ablation Study on Warm-Up Epoch

The performance of loss modeling methods in the literature is very sensitive to the
choice of warmup epoch. Being too early or too late to end the warmup stage will cause
either insufficient learning or over-fitting to noisy labels. As is shown in Figure 4, our
method is relatively nonsensitive to the choice of warmup epoch. Under the setting of 20%
and 50% noise rate, the precision of labels produced by FGCM keeps at a high point even
when the model begins to be over-fitted. When the noise rate is extremely high (e.g., 80%)
the precision of labels produced by FGCM slowly decreases.

(a) (b) (c)

Figure 4. Precision and recall of labels produced by FGCM under different noise rates on CIFAR-10
dataset vs. the precision on trainset during training. The orange curves represent the precision of
labels of the labeled trainset produced by FGCM. The green curves show the recall of the labeled
trainset produced by FGCM. The blue curves illustrate the precision of models on the original
trainset. (a) Results on CIFAR-10 with 20% symmetric label noise. (b) Results on CIFAR-10 with 50%
symmetric label noise. (c) Results on CIFAR-10 with 80% symmetric label noise.

4.3.2. Ablation Study on Cluster Number

Tables 7 and 8 illustrate the precision and recall of filtered labels obtained using FGCM
with different clustering numbers under different noise types and rates on CIFAR-10.
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For ANNO-GMM-2, we cluster samples into two categories only using the confidence of
annotation label, which is the common practice adopted by previous methods [9,19]. The
set with higher confidence is chosen. For FGCM-GMM-3, we cluster samples into three
categories and use the set with highest sum of confidence (i.e., CS) as well as the set with
biggest difference between confidence of annotation and pseudo label (i.e., NS); For FGCM-
GMM-4, we cluster samples into four categories, filtering CS, NS, and CH. The results show
that by clustering samples into five categories, we can achieve the highest precision of
filtered labels on all the settings while the recall is still acceptable. The comparison between
ANNO-GMM-2 and FGCM-GMM-5 demonstrates the effectiveness of our proposed fine-
grained confidence modeling, since FGCM can achieve higher precision than ANNO-
GMM-2 while the recall is far higher than that of ANNO-GMM-2. Notably, though the label
precision of ANNO-GMM-2 achieves 99.79% under 40% asymmetric noise, the clean set
only consists of samples from five classes while all the samples from the other five classes
are in the noisy set.

Table 7. Precision of obtained labels using different clustering methods and cluster numbers on
CIFAR-10 with different type and ratios of noise. ANNO-GMM-2 denotes experiment that only uses
the confidence of annotation label to divide samples into two categories.

Methods-Cluster Num Sym 20% Sym 50% Sym 80% Asym 40%

ANNO-GMM-2 99.70 97.94 96.73 99.79
FGCM-GMM-3 97.67 97.20 96.19 95.94
FGCM-GMM-4 99.10 97.42 95.40 95.40

FGCM-KMEANS-5 99.75 98.33 95.93 95.13
FGCM-GMM-5 99.75 99.02 97.23 97.04

Table 8. Recall of obtained labels using different clustering methods and cluster numbers on CIFAR-
10 with different type and ratios of noise. ANNO-GMM-2 denotes experiment that only uses the
confidence of annotation label to divide samples into two categories.

Methods-Cluster Num Sym 20% Sym 50% Sym 80% Asym 40%

ANNO-GMM-2 77.05 52.09 16.44 41.39
FGCM-GMM-3 79.68 73.28 35.84 58.72
FGCM-GMM-4 83.80 71.04 32.57 63.20

FGCM-KMEANS-5 77.56 66.40 33.78 60.83
FGCM-GMM-5 79.35 71.42 29.57 60.59

4.3.3. Ablation Study on Clustering Methods

The last two rows in Tables 7 and 8 perform a comparison between different clustering
methods in FGCM. In FGCM-KMEANS-5, we use Kmeans, one of the most popular
clustering algorithms, to cluster samples into five clusters based on the joint confidence
scores with the maximum number of iterations and relative tolerance set to 2000 and 0.0001,
respectively.

As stated in Tables 7 and 8, GMM outperforms Kmeans. The accuracy of labels
produced by GMM is higher than Kmeans especially under high noise ratios while the
recall of labels is comparable. GMM is more flexible in the sharpness of distribution and
more robust to outliers compared with Kmeans. Therefore, we employ GMM in this paper.

4.4. Training Time Analysis

In this section, we compare the training time of FGCM on CIFAR-10 with 50% sym-
metrical noise with previous methods. The results are listed in Table 9. We use a single
Nvidia Tesla V100 GPU to train all the models. Co-teaching+ is the fastest but the trained
performance of other methods is much higher than Co-teaching+. The training time of
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FGCM is slightly longer than DivideMix yet both of FGCM and DivideMix are much faster
than Sel-CL+.

Table 9. Comparison of total Training Time on CIFAR-10 with 50% symmetrical label noise, using a
single Nvidia Telsa V100 GPU.

Co-Teaching+ Pcorr Meta-Learning DivideMix Sel-CL+ FGCM
4.3 h 6.0 h 8.6 h 5.2 h 7.2 h 5.4 h

5. Conclusions and Future Work

In this paper, in order to train deep neural networks robustly on noisily labeled
datasets by recalling more reusable training samples, we propose to categorize training
samples into five kinds (i.e., Clean Simple (CS), Noisy Simple (NS), Clean Hard (CH), Noisy
Hard with Relevant annotations (NHR), and Noisy Hard with Irrelevant lables (NHI)).
Then, we find there are significant differences among the confidence trends of samples
from the five kinds during the training process. Thus, we propose a simple yet effective
framework for noisy label learning called Fine-Grained Confidence Modeling (FGCM)
where samples in the training set are categorized into fine-grained categories based on the
difficulty experienced by DNN models when learning the samples and label correctness.

In every epoch after a warmup process, FGCM clusters training samples into the
five fine-grained categories by fitting a five-component Gaussian Mixture Model on the
prediction confidence of both annotation labels and the maximum repeating pseudo labels.
Then, the generated clusters are refined using their prior assumptions (e.g., annotation
labels and the maximum repeating pseudo labels of NS samples should be different). Finally,
a new training set with high label accuracy can be obtained by screening out instances
from NHR and NHI whose labels are ambiguous, rectifying the labels of NS samples with
their maximum repeating pseudo labels. By iteratively repeating the process, FGCM can
gradually recall more reusable training samples from NHR and NHI. Moreover, semi-
training is employed with samples from NHR and NHI treated as unlabeled data. In this
way, FGCM can maximize the use of supervised labels and training samples, meanwhile
preventing the model from over-fitting to noisy labels. Extensive experiments on CIFAR-10,
CIFAR-100, clothing1M and Webvision demonstrate the effectiveness of FGCM.

Limitations Despite FGCM significantly outperforming previous methods, the perfor-
mance will downgrade on noisy datasets with class imbalance issues, which is common in
real-world datasets. The confidence of training samples will be influenced by the long-tailed
distribution between different classes, making it more difficult to distinguish clean samples.
Furthermore, this is one of the reasons why current noisy label learning methods struggle
to achieve better performance on real-world datasets such as Clothing1M and Webvision.

Future Works Our future works will focus on three aspects: (1) The robust training
of DNNs on noisily labeled imbalance datasets. (2) The training time costed by existing
methods is still high especially on large scale datasets. More efficient algorithms should
be developed. (3) Currently, most works on noisy label learning are focused on the task
of image classification. In future, techniques of noisy label learning may extend to other
visual tasks [46] or other modalities such as natural language processing [47].
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