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Abstract: In recent years, gesture recognition and speech recognition, as important input methods in
Human–Computer Interaction (HCI), have been widely used in the field of virtual reality. In particular,
with the rapid development of deep learning, artificial intelligence, and other computer technologies,
gesture recognition and speech recognition have achieved breakthrough research progress. The
search platform used in this work is mainly the Google Academic and literature database Web of
Science. According to the keywords related to HCI and deep learning, such as “intelligent HCI”,
“speech recognition”, “gesture recognition”, and “natural language processing”, nearly 1000 studies
were selected. Then, nearly 500 studies of research methods were selected and 100 studies were
finally selected as the research content of this work after five years (2019–2022) of year screening. First,
the current situation of the HCI intelligent system is analyzed, the realization of gesture interaction
and voice interaction in HCI is summarized, and the advantages brought by deep learning are
selected for research. Then, the core concepts of gesture interaction are introduced and the progress of
gesture recognition and speech recognition interaction is analyzed. Furthermore, the representative
applications of gesture recognition and speech recognition interaction are described. Finally, the
current HCI in the direction of natural language processing is investigated. The results show that the
combination of intelligent HCI and deep learning is deeply applied in gesture recognition, speech
recognition, emotion recognition, and intelligent robot direction. A wide variety of recognition
methods were proposed in related research fields and verified by experiments. Compared with
interactive methods without deep learning, high recognition accuracy was achieved. In Human–
Machine Interfaces (HMIs) with voice support, context plays an important role in improving user
interfaces. Whether it is voice search, mobile communication, or children’s speech recognition, HCI
combined with deep learning can maintain better robustness. The combination of convolutional
neural networks and long short-term memory networks can greatly improve the accuracy and
precision of action recognition. Therefore, in the future, the application field of HCI will involve more
industries and greater prospects are expected.

Keywords: human–computer interaction; deep learning; speech recognition; gesture recognition;
emotion recognition

1. Introduction

With the progress of science and technology, many pioneers of technology are trying
to combine voice, vision, text, and other information, that is, multimodal information, to
promote the upgrade of Human–Computer Interaction (HCI) technology. Multimodal
interaction has also become a hot topic in academia and industry [1]. Multimodal tech-
nology will not be limited to speech and visual recognition but will gradually change the
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whole world in this revolution. For example, lip recognition, speech recognition, speech
translation, speech synthesis, and several industry-leading multimodal interaction basic
technologies have been applied in various industries. Gesture interaction technology,
as a command, is transformed into a language that can be recognized by computers by
capturing the movements of human hands and limbs. It has become another important
method of HCI after keyboards, mice, and touch screens [2–4]. In terms of intelligent
hardware, the mainstream method in the industry is processing signals by microphone
arrays and eliminating noise by hardware. However, when the environment is complex
and noisy, there is still a large bottleneck in speech recognition [5–7]. The next generation of
revolutionary HCI technology may not impact the whole industry, such as the emergence
of graphical interfaces and touch technology, but may use data-driven intelligence to realize
the potential revolution of HCI [8]. The vigorous development of artificial intelligence has
greatly promoted the intelligence of machines, and the in-depth study of the interaction
between humans and machines has promoted new gesture interaction technology and
automatic speech recognition technology [9–11].

HCI is the product of interdisciplinary research. The concept of HCI was first proposed
in 1975 and the professional name appeared in 1980 [12–14]. With the popularization of the
concept of HCI, research on HCI is increasing daily. Human–machine interaction is simply
“the way people and machines deal with each other” [15]. With the rise of deep learning
technology, the research process of HCI has further accelerated [16–18]. Human–robot
fingertip communication has gradually shifted from command communication to emotional
communication, and there are also some difficulties and challenges in the evolution of
this interaction. For example, voice and gesture, as an entry method of virtual reality, are
invading our life and are crucial to the application of interaction [19]. Different from the
physical world, humans and machines in the virtual world are no longer limited to the
objective laws of the physical world, and the logic of HCI is completely different [20–22].
HCI in the virtual world can develop a high-dimensional perspective of information for
people and a broader dimension of receiving information. At the same time, it can also
expand our access to information and experience through artificial ways. However, the
virtual world has higher requirements for gesture interaction and voice interaction. The
main problems at present are as follows. The first is how the dialog robot used in speech
recognition can effectively recognize environmental noise and real interactive sounds
and how the machine can better understand human language through machine learning
and artificial intelligence technology [23,24]. The second is that the problem of gesture
recognition lies in how to accurately identify which of the continuous movements are
unconscious and which are truly conscious interactive movements. The third is which
functions in the HCI system are more suitable for gesture recognition. The fourth is
how deep learning technology can further improve the accuracy of action capture and
recognition of interactive gestures. As a result of these problems, it is no longer humans
adapting to machines in the future dialog robot product form but machines adapting to
humans. Dialog robot products based on artificial intelligence technology will gradually
become mainstream [25–27].

Regarding the existing problems, nearly 1000 studies were screened in this work
based on keywords related to HCI and deep learning, such as “intelligent HCI”, “speech
recognition”, “gesture recognition”, and “natural language processing”, through the Google
academic and literature database Web of Science. Then, nearly 500 studies of research
methods were selected and approximately 100 studies were finally selected as the research
content of this work after five years (2019–2022) of year screening. The application status of
intelligent HCI in deep learning in various industries is studied, such as gesture recognition,
speech interaction, and natural language processing. In this work, the understanding of
speech interaction and gesture interaction in a Virtual Reality (VR) environment in HCI
is summarized and analyzed, as well as the application of natural language processing
in search and chat bots. This work focuses on the improvement of dynamic gesture
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understanding by deep learning technology, which can provide a reference for the future
development of HCI.

2. Adoption Status of Deep Learning in Intelligent HCI

HCI mainly analyzes the exchange of information between human actions and com-
puters. HCI is a comprehensive research field associated with cognitive psychology, er-
gonomics, multimedia, and VR [28]. The information exchange of HCI relies on interactive
devices, including human–computer interactive devices and computer–human interactive
devices [29–31]. HCI devices include the keyboard, mouse, joystick, joystick, data suit, po-
sition tracker, data glove, and pressure pen. Computer–human interaction devices include
printers, plotters, monitors, helmet-mounted monitors, and speakers. The progression pro-
cess of HCI involves voice interaction technology, image recognition, Augmented Reality
(AR), and VR, as well as somatosensory interaction technology, which has become popular
in recent years [32–34]. Among the four types of technologies, voice interaction is the one
with the highest input efficiency and the most natural interaction mode, which can easily
broaden the adoption scenarios of products. Image recognition is applied in the field of
automatic driving and security for road condition recognition and human face recognition.
AR and VR provide immersive experiences, not only for interaction but also for display
and movement [35,36]. People can directly use their body movements to interact with
the surrounding devices or environment via motion sensing without using any complex
control devices so that people can interact in an immersive way. HCI is changing with the
progression of science and technology (Figure 1).
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Deep learning is a new research direction in machine learning. In recent years, it has
achieved relatively successful development in image recognition and retrieval, language
information processing, and speech recognition [37–39]. Other approaches include context-
aware systems, behavior synthesis in user modeling studies or embedded dialog agents, and
natural speech processing, all of which rely on deep learning to support human interactions
with intelligent systems. Deep learning adoptions are based on building models that mimic
the neural connections of the human brain, which processes images, sound, and text signals
when data features are described hierarchically through multiple transformation stages, and
then data interpretation is provided [40]. It is a technology that enables machine learning,
which today is mostly neural networks. Neural networks are inspired by the human brain
and are the interconnections between neurons [41–43]. The adoption of deep learning in
HCI can not only improve the accuracy of speech recognition and image recognition but
also enhance the realism of interaction [44]. Language understanding is a technique that
explores the language problem of HCI. Unlike speech recognition, which converts speech
signals into text or corresponding commands, language understanding involves making
machines understand human language. People use the computer in the language they
are most accustomed to and no longer need to spend time and energy learning various
computer languages, therefore language understanding technology is relatively difficult.
Sensors have gradually been widely used due to the trend of environmental digitization
brought by the Internet of Things (IoT) technology [45–47]. Content media, objects in
the environment, and humans themselves are all going through a digitalized process.
Interaction design is particularly important and how to create and form a natural HCI
will become an important proposition. Whether it is system adoptions, intelligent devices,
and scenes in the environment, it will tend to be a more natural, easy, and humanized
HCI, which appears when the user has an appropriate help guide and therefore does not
require the user to have rigid memory function or immediate operation understanding.
The research framework of intelligent HCI design is shown in Figure 2.

In the field of advertising and information transmission, touch screens are an im-
portant form of HCI. Digital signage integrating audio, video, and image information
displays have become an important tool of HCI. In this process, its design, information
output, and user interaction also become more flexible. Shen et al. (2019) [48] pointed
out that media has changed the way people communicate with their friends. Whether
it is a self-service machine, transportation information display screen, or shopping mall
marketing display screen, the HCI requirements inspired by different scenarios have similar
demands for hardware product solutions. Shen et al. (2019) [49] applied a text mining
method called two-level conceptual link analysis. In the traditional HCI, the keyboard
is an indispensable part, which also causes certain limitations to the adoption scenarios.
Embedded computer hardware, as important basic hardware for the construction of HCI
scenes, also presents many possibilities. Obviously, intelligent HCI combined with deep
learning is deeply applied in gesture recognition, speech recognition, emotion recognition,
and natural language processing. A variety of recognition methods are proposed and
verified through experiments, which can achieve high recognition accuracy. Therefore,
applying deep learning in HCI design can broaden the application prospects.



Appl. Sci. 2022, 12, 11457 5 of 28Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 28 
 

Affective 
Factors

Acquired 
Ability

Personality 
Traits

Man Machine 
Interface Design

 
Figure 2. Research framework of intelligent HCI design. 

3. Application of Deep Learning in HCI Intelligent Systems 
HCI refers to the exchange of information between people and computers, including 

the computer providing information to people through output or display devices and 
people inputting relevant information to the computer through input devices. Multimodal 
simulation is the concrete 3D virtual realization of the situational environment and coex-
isting agent and the most prominent content represented by communicative behavior in 
discourse. Pustejovsky and Krishnaswamy (2021) [50] believed that embodiments act as 
an imperative part of the design and modeling of systems developed for HCI. This work 
describes VoxWorld, a simulation platform for building HCIs. The platform supports a 
multimodal dialog system that communicates through language, gesture, action, facial 
expression, and gaze tracking in a task-oriented interactive environment. With the contin-
uous development of sensor technology, the acquisition cost of depth images is decreas-
ing. Gesture recognition under depth images and red‒green‒blue (RGB) images has grad-
ually become a research direction in pattern recognition. However, most of the current 
deep gesture image processing methods are relatively simple, ignore the relationship and 
influence between the two modes, and fail to make full use of the related factors between 
different modes. To solve the above problems, Duan et al. (2021) [51] optimized the effect 
of depth image information processing by considering the independent features and re-
lated features of multimodal data and constructed an adaptive weight algorithm for the 
fusion of different features. Simulation results showed that the proposed method was su-
perior to the traditional deep gesture image processing method and the gesture recogni-
tion rate was higher. The proposed method also achieved higher recognition accuracy 
than that of other advanced gesture recognition methods, which verified the feasibility 

Figure 2. Research framework of intelligent HCI design.

3. Application of Deep Learning in HCI Intelligent Systems

HCI refers to the exchange of information between people and computers, including
the computer providing information to people through output or display devices and
people inputting relevant information to the computer through input devices. Multimodal
simulation is the concrete 3D virtual realization of the situational environment and co-
existing agent and the most prominent content represented by communicative behavior
in discourse. Pustejovsky and Krishnaswamy (2021) [50] believed that embodiments act
as an imperative part of the design and modeling of systems developed for HCI. This
work describes VoxWorld, a simulation platform for building HCIs. The platform sup-
ports a multimodal dialog system that communicates through language, gesture, action,
facial expression, and gaze tracking in a task-oriented interactive environment. With the
continuous development of sensor technology, the acquisition cost of depth images is
decreasing. Gesture recognition under depth images and red–green–blue (RGB) images has
gradually become a research direction in pattern recognition. However, most of the current
deep gesture image processing methods are relatively simple, ignore the relationship and
influence between the two modes, and fail to make full use of the related factors between
different modes. To solve the above problems, Duan et al. (2021) [51] optimized the effect of
depth image information processing by considering the independent features and related
features of multimodal data and constructed an adaptive weight algorithm for the fusion
of different features. Simulation results showed that the proposed method was superior to
the traditional deep gesture image processing method and the gesture recognition rate was
higher. The proposed method also achieved higher recognition accuracy than that of other
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advanced gesture recognition methods, which verified the feasibility and robustness of the
proposed method. These two studies indicate that multimodal image acquisition through
deep learning can improve the accuracy of gesture recognition in HCI systems.

The same application effect is also reflected in the context-aware system. For example,
Wang et al. (2018) [52] used deep learning as a data-driven technology for continuous
human motion analysis and human–machine cooperation demand prediction in future
intelligent manufacturing to improve the planning and control of robots in completing
shared tasks. The feasibility of engine assembly was verified by numerical examples,
which met the requirements. Similarly, Wang et al. (2020) [53] proposed a context-aware
citation recommendation model under an end-to-end memory network. The model uses
bidirectional long short-term memory (Bi-LSTM) to learn the representation of paper and
citation context. Furthermore, the superior performance of the model was proven by
experiments on different datasets. In addition to context-aware intelligent HCI systems, as
user modeling research suggests, deep learning is also widely used in user modeling based
on historical interaction matrices and recommendation systems under matching function
learning. The existing deep learning-based recommendation methods usually use the
user’s historical interaction terms to perform static user preference modeling. Wang et al.
(2022) [54] adopted the time-aware deep learning framework in their research to model
dynamic user preferences via an attention mechanism and predict matching scores based
on deep learning. It significantly and consistently outperformed the existing time-aware
and deep learning-based recommendation methods in the top-k recommendation.

Since HCI covers a wide range, the research literature has rich and multidisciplinary
content, with limited studies showing the big picture of the field. Such analyses provide
researchers with a better understanding of the field, revealing current issues, challenges,
and potential research gaps. Gurcan et al. (2021) [55] discussed the research trend of the
development stage of HCI research in the past 60 years. The results revealed 21 major
themes that delineate the future of HCI research. The topics were analyzed by extending
the found topics beyond the snapshot, considering their stage of development, number,
and acceleration to provide a panoramic view showing trends increasing and decreasing
over time. In this context, the shift of HCI research from machine-oriented systems to
human-oriented systems indicates its future direction toward up-context sensing adaptive
systems. Chhikara et al. (2020) [56] combined joint learning with emotion analysis to
create an advanced, simple, safe, and efficient HCI system for emotion monitoring. In this
study, facial expressions and voice signals were combined to find macro expressions and
create an emotion index. The index is monitored to determine users’ mental health. The
data collected from users are monitored to analyze the users’ mental health and provide
counseling solutions in the trough period, which has achieved a good treatment effect
for users. In the field of artificial intelligence, HCI technology and its related intelligent
robot technology are indispensable and interesting contents. Regarding the software
algorithms and hardware systems, the above techniques study and attempt to build a
natural HCI environment. Ren and Bao (2020) [57] provided an overview of HCI and
intelligent robots in their study. This study highlighted existing technologies for listening,
speaking, reading, writing, and other senses that are widely used in human interaction and
capable of providing solutions to some of the big challenges of HCI and intelligent robotics.
Hence, the performance of deep learning methods in different HCI intelligent systems is
obviously better than that of the unused systems.

4. Development Status of Intelligent Voice Interaction System

AI-based human–computer voice interaction technology makes previously tedious
work simple and easy to operate and greatly simplifies some steps of people’s daily lives.
From the birth of the earliest personal voice assistant to the present representative HCI
products, such as intelligent speakers, these AI products are not only symbolic representa-
tives of scientific and technological progress but also improve people’s quality of life. In the
beginning, when using cell phones, people just made calls and sent messages, but now peo-
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ple can also communicate with cell phones by voice. With traditional speakers, people just
wanted to listen to music to please them. AI speakers in the 21st century can not only meet
the needs of users to listen to music but can also have all kinds of conversations with users.
Voice interaction is an important and convenient method in an HCI system. It accesses the
user’s input information starting from the whole interaction system, including voice, face,
and multimodal emotion-related information. The input information can be understood in
the dialog system, and the output can be generated later through this dialog part. Finally,
text can also be displayed by speech synthesis, among which the most important part is the
speech part and the dialog system part, which is the whole process of speech interaction
(Figure 3).
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Traditional HCI methods are unable to meet peoples’ research and development needs
for artificial intelligence and the level of interaction between people and existing artificial
intelligence products in their lives is not deep enough. For example, for intelligent speakers,
the appearance of this kind of product to a certain extent improves peoples’ quality of life,
but it can only meet the needs of users and machines in a single round of interaction. To
further improve the level of HCI, researchers adopted deep learning in it. For example,
deep learning is combined with traditional methods and applied to human–computer
speech interaction systems to realize a variety of deep HCI mechanisms.

Speech recognition has made significant progress in the last decade. Increasing
progress was made in end-to-end automatic speech recognition (ASR), which transcribes
speech to text without any pretrained alignment. The ASR architecture based on hybrid
connectionism temporal categorization and attention takes advantage of both. The perfor-
mance of the hybrid time classification and attention ASR system is comparable to that
of the hidden Markov model ASR system. However, deploying a hybrid temporal classi-
fication and attention system for online speech recognition is still a problem. Miao et al.
(2020) [58] introduced an online mixing time classification and attention end-to-end ASR.
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This architecture replaces all the offline components of the traditional online hybrid time
classification and attention ASR architectures with corresponding streaming components.
Experiments showed that the proposed online hybrid time classification and attention
model outperforms state-of-the-art competitors by enhancing the real-time detection of
HCI service.

To address the issue of the difficulty of recognizing interactions caused by different
languages and accents, Liao et al. (2020) [59] established the Formosa Speech Project, an
ancient name for Taiwan given by the Portuguese, to collect a large scale of Taiwanese
Mandarin to promote the development of Taiwan-specific speech project technology and
held the Formosa Plastic Speech Recognition Challenge to promote the corpus. The perfor-
mance of the existing Taiwan-specific voice project system was also evaluated. In addition
to the language used, the most important thing for speech recognition is the understand-
ing of context. One of the most important components of context is the emotion in the
speaker’s voice. Emotion recognition provides a prior for human decision processing,
interaction, and cognitive processes, making it possible to input human-like features to the
HMI, such as empathy and responding with appropriate emotions in the text-to-speech
engine. Speech emotion recognition refers to extracting the emotional state of the speaker.
The main purpose of emotional speech recognition is to adjust the system response to
detect the frustration or annoyance of the voice. Ho et al. (2020) [60] proposed a multi-
modal approach for speech emotion recognition via multilevel multi-head fusion attention
and a recursive neural network. For the audio functionality, the mel-frequency cepstrum
coefficient is determined from the raw signal using the OpenSMILE toolbox, and then
the text information is embedded using a pre-trained model of the bidirectional encoder
representation from the converter. These features are fed in parallel to the self-attention
mechanistic base RNN to exploit the context of each timestamp, using multi-head attention
techniques to fuse all representatives to predict emotional states. The experimental results
on three databases show that the combination of interactive emotion action capture, a
multimodal emotion line dataset, and multimodal opinion emotion and emotion intensity
achieves better performance than the single model, which also shows the important role of
recurrent neural networks in speech emotion recognition.

Similarly, to study the context in speech recognition, Hazer-Rau et al. (2020) [61]
proposed a multimodal dataset for the study of sentiment computing obtained in the
HCI environment. Experimental movement and interaction scenarios were designed and
implemented based on the generic paradigm of gamification for inducing dialog-based
HCI-related emotional and cognitive load states. Based on the HCI scenario in the study, 16
sensor patterns were recorded based on the multimodal emotion corpus uulmMAC of the
University of Ulm, resulting in the final uulmMAC dataset of 57 subjects and 95 recorded
sessions. It was found that the evaluation of reported subjective feedback showed sig-
nificant differences between the series, very consistent with the induced state, and the
questionnaire analysis showed stable results. In summary, the uulmMAC database is a
valuable contribution to affective computing and multimodal data analysis, captured in
mobile interaction scenarios that approximate real HCI. It consists of massive subjects
and allows investigation across time and space. It verifies and checks for quality issues
through subjective feedback and can be used in emotional computing and machine learn-
ing adoptions.

Despite some achievements in context recognition, speech recognition is still challeng-
ing due to the difficulty of adapting to new languages, dealing with changes in speech
datasets, and overcoming distortion factors. Deep learning systems can overcome these
challenges by using training algorithms, such as gradient descent optimization, using
depth maps with multiple processing layers, and using high-level abstractions in datasets.
Dokuz and Tufekci (2021) [62] proposed four strategies to select small batch samples to
represent the variation of each feature in the speech recognition task in the dataset to
improve the model performance of deep learning-based speech recognition. Experimental
results showed that the proposed strategy was more effective than the standard small-batch
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sample selection strategy. Similarly, Sun et al. (2020) [63] studied the effectiveness of three
methods to improve the performance of acoustic models in low-resource environments.
They are monophonic and Tritone learning, as well as functional combinations. The three
methods were applied to the network architecture and the results were compared with
the baseline. In the proposed hybrid Markov model, the task of Mandarin speech recogni-
tion was significantly improved at the phoneme level compared with the neural network
method. This also shows that neural networks are not excellent in all speech recognition
tasks and there is still much room for development.

Speaking recognition is mostly aimed at adults but automatic speech recognition of
children’s speech was considered to be a more challenging problem than adult speech.
This is due to things such as great acoustic speech variability, including mispronunciation
due to ongoing biological changes in growth, vocabulary and language skill progres-
sion. Further challenges arise with spontaneous speech from conversational interactions.
Kumar et al. (2020) [64] proposed a speech recognition model that uses linguistic informa-
tion from interactions to adjust children’s speech. Two approaches were proposed to exploit
this context, namely, lexical repetition and semantic response generation. For the latter, a
sequence-to-sequence model is used, which learns to predict target sub-utterances in the
context of given adult utterances, incorporating the long-term context into the model by
propagating the unit state during the session. Automatic robot activity understanding is
imperative in HCI. Existing manipulator control methods, such as position control and
visual control methods, cannot achieve autonomous learning. Reinforcement learning can
process the interaction between robot control and the environment but it should relearn the
control when the position of the target object changes. Thus, Li et al. (2021) [65] proposed
a quality model for end-to-end manipulator control using a deep reinforcement learning
scheme. Specifically, a strategy search algorithm was designed to realize automatic manip-
ulator learning. To avoid relearning the manipulator, a CNN control scheme was designed
to keep the manipulator robust. Extensive experiments have verified the effectiveness of
the proposed method.

Combined with the above research results, the voice interaction technology adopted
in the HCI intelligent system is comprehensively analyzed and the improvement effect
after deep learning and artificial intelligence is combined (Table 1).

Table 1. Development status of deep learning technology in assisting voice interaction in intelli-
gence systems.

Author and Year Research Scope The Research
Methods Results Analysis

Miao et al. (2020) Speech recognition

Online hybrid
CTC/Attention
end-to-end ASR

architecture.

Compared with the
offline CTC/attention

model, the online
CTC/attention model
proposed in this study
improves the real-time
factors of HCI services

and maintains a
moderate degradation

of its performance.

It takes advantage of
the advantages of CTC
and attention, which is
a significant advance
for end-to-end speech

automation
architecture.
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Table 1. Cont.

Author and Year Research Scope The Research
Methods Results Analysis

Liao et al. (2020) Voice HCI

Collect a large-scale
Taiwan Province

Putonghua
pronunciation and

corpus.

The evaluation results
showed that the
Taiwan-specific

Mandarin speech
recognition system
achieved a Chinese

character error rate of
8.1 percent.

We think that the
specific Mandarin
speech recognition
system in Taiwan

Province is necessary to
improve the

performance of
man–machine
interaction of

Putonghua speech in
Taiwan Province.

Ho et al. (2020) Speech emotion
recognition

Multilevel multi-head
fusion attention
mechanism and
recurrent neural

network.

Experimental results on
three databases show
that the multimodal

speech emotion
recognition method has

better performance
than using a single

model.

Recognizing human
emotions from speech
requires characteristic
audio and text features
before the data can be
fed into appropriate

deep-learning
algorithms.

Hazer-Rau et al. (2020) Affective computing in
speech interaction uulmMAC database

The uulmMAC
database has made a
valuable contribution
to the field of effective

computing and
multimodal data

analysis.

Affective computing
datasets including

classification, feature
analysis, multimodal

fusion, or intertemporal
survey can improve the

efficiency of affective
computing.

Dokuz and Tufekci
(2021)

Speech recognition
system

Mini-batch gradient
descent

Compared with the
standard small-batch

sample selection
strategy, the proposed

strategy performs
better.

The deep learning
system makes the
speech recognition

system better adapt to
the new language by
training algorithms.

Sun et al. (2020) Speech recognition

Hybrid Hidden
Markov

Models-phoneme-level
neural networks

It applies to all widely
used network

structures today. The
average relative

character error rate is
reduced by 8.0%.

Acoustic model
performance can be

improved without the
use of data

augmentation or
transfer learning

methods.

Kumar et al. (2020) Speech recognition for
children

Lexical repetition and
semantic response

generation

The context adaptation
model results in a

significant
improvement over the

baseline.

It is applicable to
improve the

performance of
children’s speech

recognition by using
information

transmission from
adult interlocutors.

From Table 1, researchers have made remarkable achievements in speech recognition
tasks and natural language generation tasks for the advantages of strong learning ability
and good adaptability of deep learning algorithms. With the use of deep learning tech-
niques, speech recognition systems have achieved greater success, and HCI has become
more common. In Human–machine Interfaces (HMIs) with voice support, context plays an
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important role in improving user interfaces. Whether it is voice search, mobile communi-
cation, or children’s speech recognition, HCI combined with deep learning can maintain
better robustness.

5. Human Gesture Recognition Based on Deep Learning

A gesture is a form of non-verbal communication that can be used in several fields,
such as communication between deaf and mute people, robot control, HCI, home au-
tomation, and medical applications. Gesture-based studies employ a number of different
techniques, including those based on instrumented sensor technology and computer vision.
In other words, gestures are divided into many directions, such as posture and gesture,
as well as dynamic and static, or a mixture of both. Oudah et al. (2020) [66] listed the
performance of these methods, computer vision technology to deal with similarities and
differences, hand segmentation technology used, classification algorithm and shortcomings,
number and types of gestures, datasets used, and detection range and camera types used.
The use of gesture recognition contains many complex technical difficulties. Gestures are
often used by people to convey their thoughts and feelings. For example, hearing-impaired
groups always rely on sign language to communicate with each other. However, most
normal people do not understand the language and face difficulties in communicating with
deaf and mute people. Therefore, the development of automated sign language recognition
systems can help facilitate this communication and close the gap.

The structured style of sign language gestures helps facilitate non-verbal communica-
tion between the deaf and the hearing impaired. Sign language recognition problems are
classified into two categories, namely, static gesture recognition, which focuses on finger
spelling, and dynamic recognition, which is related to the recognition of isolated words
and continuous sentences. Many continuous sign language recognition systems utilize
extended versions of the isolated word framework to recognize entire sentences. With the
rapid development of computer science and related fields, the way humans interact with
computers has evolved into a more natural and ubiquitous form. Various techniques were
developed to capture a user’s facial expressions as well as body movements and postures
to serve two types of applications. The captured information becomes a “snapshot” of the
user so that the computer can better understand the user’s intention or emotional state. The
user applies natural motion instead of using dedicated input devices to send commands
for system control or to interact with digital content in a virtual environment. Gesture
interpretation must be carried out quickly and with high accuracy in the vision-based
gesture interaction between humans and computers.

Human posture estimation is a challenging task in computer vision. It refers to the
process of inferring posture in an image, aiming to determine the position or spatial position
of a person’s body key points from a given image or video. The estimation principle is
shown in Figure 4.

There has been significant progress in addressing the problems and challenges re-
lated to human pose estimation aided by deep learning and publicly available datasets.
In this survey, Pareek and Thakkar (2020) [67] discussed the characteristics of various
machine learning and deep learning techniques of HAR and the public datasets used
for HAR and revealed the advantages and disadvantages of action representation, reduc-
tion and action analysis methods, as well as the challenges and future directions of HAR.
Munea et al. (2020) [68] described the methods used in human pose estimation and then
listed some applications and the drawbacks faced in pose estimation. This has established
a new research idea for gesture interaction understanding. Therefore, an increasing num-
ber of scholars are committed to studying how to optimize human gesture recognition
using deep learning, artificial intelligence, and other related technologies in the application
process of HCI systems. For example, as the hand is the key to natural HCI, researchers
have made many efforts to integrate our hands into the interaction cycle to obtain a more
convenient and comfortable interaction experience. For example, Tsai et al. (2020) [69]
proposed a low-cost HCI system with a gesture recognition function. The system uses a
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variety of visualization techniques, as well as skin and motion detection to capture the
region of interest from the background region and proposes a linking element labeling
algorithm to identify the centroid of the object. To identify the exact region of the gesture,
the arm region is removed with the help of the convex hull algorithm. The simulation
results show that despite some interference in the simulation environment, the recognition
rate is still very high. The principle of image-based human recognition is shown in Figure 5.
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In this applied research, the expected goal is basically achieved through continuous
efforts, and the original design of the dual-flow model is improved according to the re-
search. To realize human action and gesture recognition, modeling based on the human
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skeleton is the main method. Skeleton-based human action recognition has become an
active research area and the key to this task is to fully explore spatial and temporal fea-
tures. However, most graph neural network-based methods use a fixed adjacency matrix
defined by datasets, which can only capture the structural information provided by joints
directly connected through bones while ignoring the dependencies between unconnected
distant joints. In addition, the fixed adjacency matrix makes the network unable to extract
multilevel semantic features. Yang et al. (2020) [70] proposed a pseudograph CNN with
time and channel attention. Fixed normalized adjacent matrices are replaced by learnable
matrices. Hence, the matrix can learn the dependencies between joined joints. Learnable
matrices help networks capture multilevel features in spatial domains. In addition, because
frames and input channels containing prominent features play an imperative role in distin-
guishing actions from other actions, a mixed focus on timing and channels is recommended.
Similarly, there are many interactive methods of human action and gesture recognition
based on bone modeling.

As sensor technology and artificial intelligence make their progress, video gesture
recognition technology in the background of big data makes HCI more natural and flexible,
which brings a richer interactive experience for teaching, vehicle control, and video games.
To perform robust recognition under the conditions of illumination variation, background
clutter, fast movement and partial occlusion, Sun et al. (2020) [71] proposed a multilevel
feature fusion algorithm based on a dual-stream convolutional neural network, which
mainly consists of three steps. First, the Kinect sensor acquires red–green–blue depth images
to build a gesture database. Moreover, data augmentation is performed on both the training
and test sets. Then, the multistage feature fusion model of the dual-stream convolutional
neural network is established and trained. Experimental results show that the proposed
network model can stably track and recognize complex backgrounds, such as similar skin
colors, illumination variations, and occlusions. Compared with the single-channel model,
the average detection accuracy is improved by 1.08% and 3.56%, respectively.

Furthermore, unimodal human behavior recognition on RGB or bone has been exten-
sively studied. Each of these approaches has its own strengths and limitations, as they
portray action from different perspectives. Characteristics of different patterns can comple-
ment each other to describe actions. Therefore, it makes sense to use the complementarity
of the two models to identify actions. However, existing multimode approaches fail to take
full advantage of the complementarity of RGB and skeleton modes. Li et al. (2020) [72]
proposed a skeleton-guided multimodal network for human behavior recognition. The
proposed method makes full use of the complementarity of the two modes at the level of
semantic features. From a technical point of view, a bootstrap block is introduced, which is
a key component of the skeleton bootstrap multimodal network, and two related operation
schemes are discussed. Experimental results show that the proposed method achieves the
most advanced performance compared with the existing methods. The same conclusion
appeared in the work of Afza et al. (2020) [73]. Here, an action recognition technology
based on feature fusion and optimal feature selection was implemented. First, the color
transformation of hue-saturation-intensity (HIS) was carried out to improve the contrast
of video frames. Then, the motion features were extracted by an optical flow algorithm.
Furthermore, a new parallel method named the length control feature was extracted and
fused with shape and texture features. The new weighted entropy variance was applied to
combination vectors, and the best vector was selected for classification. The multimodal
skeleton guidance network is better than single-modal recognition.

Most existing methods using convolutional neural networks and long short-term
memory have achieved promising performance for skeleton-based action recognition.
However, these methods are limited in their ability to explore rich information about
spatiotemporal relationships. Graph convolutional networks achieve the latest results of
skeleton-based behavior recognition by extending convolutional neural networks to graphs.
However, due to the lack of effective feature aggregation methods, such as maximum
pooling in CNNs, existing graph convolutional network-based methods can only learn local
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information between adjacent joints. Moreover, it is difficult to obtain high-level interaction
features, such as the interaction between the five parts of the human body. Moreover,
subtle differences in confounding actions are often hidden in specific channels of key joint
features, and this discriminative information has rarely been exploited in previous methods.
Chen et al. (2020) [74] proposed a graph convolution network based on a structural graph
pool scheme and joint channel attention module. The scheme for the pool of structural
maps aggregates human skeletal maps based on prior knowledge of human typology. This
pooling scheme not only leads to more global representations but also reduces the number
of parameters and the computational cost. The joint channel attention module learns to
selectively focus on discriminative joints of the bone and give different degrees of attention
to different channels. This novel attention mechanism enhances the ability of the model to
classify confounding behaviors. Zhu et al. (2020) [75] proposed a new spatiotemporal model
with an end-to-end bidirectional LSTM-CNN, which uses a hierarchical spatiotemporal
dependence model to explore the rich spatiotemporal information in skeleton data.

Although convolutional neural networks have achieved great success in object recog-
nition in still images, the improvement of convolutional neural networks over traditional
methods for identifying actions in videos is slight because raw videos usually have
more redundant or irrelevant information than still images. This point was proven by
Yang et al. (2020) [76], where a spatial-temporal attentive convolutional neural network
(STA-CNN) was proposed, which selects the discriminative time period and automatically
pays attention to the information space region. The STA-CNN model integrates the tempo-
ral attention mechanism and spatial attention mechanism into a unified CNN to identify
actions in videos. The novel time attention mechanism automatically mines distinguishable
time fragments from long and noisy videos. First, the spatial attention mechanism uses
instantaneous motion information in optical flow characteristics to locate the significant
regions of motion. Then, the training is performed by auxiliary classification loss with a
global average pooling layer to focus on discriminant non-moving regions in video frames.
The STA-CNN model delivers state-of-the-art performance on two of the most challenging
datasets, namely, UCF-101 and HMDB-51.

Human behavior recognition has become the focus of the wider adoption of computer
vision. Recognizing the ambiguity of movement comes not only from the difficulty of defin-
ing body part movements but also from real-world problems, such as camera movements,
dynamic backgrounds, and harsh weather. To assess the performance of these methods
quantitatively and qualitatively, common datasets representing various operations under
multiple conditions and constraints are recorded. Jegham et al. (2020) [77] summarized
it according to the types of problems solved by existing methods. In addition, existing
datasets introduced for the field of human behavior recognition were compared. Human
motion recognition in video is a difficult task because of its complex background, geometric
transformation, and massive data. Computer vision-based video action recognition is
widely used in video surveillance, behavior detection, HCI, medical-aided diagnosis, and
motion analysis. However, video action recognition may be affected by many factors,
such as background and illumination. Dual-stream convolutional neural networks are
trained with video spatiotemporal models and fused at the output. The multisegment
dual-stream convolutional neural network model trains spatiotemporal information from
video, extracts its features and fuses them, and then determines the category of video action.
Qiao et al. (2021) [78] used the Google Xception model and transfer learning in their study
and took the Xception model trained on ImageNet as the initial weight, which solved model
underfitting caused by insufficient video behavior datasets and can effectively reduce the
influence of various factors in the video. This approach also greatly improves accuracy and
reduces training time. More importantly, the kinetics400 dataset was used for pretraining
to compensate for the lack of datasets, which greatly improved the accuracy of the model.
The human action recognition process in the video is shown in Figure 6.



Appl. Sci. 2022, 12, 11457 15 of 28Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 28 
 

Video capture

Extract keys

Recursive 
call

 
Figure 6. Human motion recognition process in the video. 

To achieve human action recognition in videos, Vishwakarma (2020) [79] developed 
an effective algorithm that can use a single decisive posture to identify human behavior 
in videos. To accomplish the task, the optical flow was utilized to extract the deterministic 
posture and the feature was extracted by the double transform of wavelet. The double 
transform was accomplished by the Gabor wavelet transform and Ridgelet transform. Ga-
bor wavelet transforms generate eigenvectors by computing first-order statistics of vari-
ous proportions and directions of input poses, which are robust to translation, scaling, 
and rotation. The Ridgelet transform was utilized to calculate the direction-dependent 
shape features of human behavior. The fusion features provide a powerful algorithm. The 
validity of the algorithm was measured on the public Weizmann, Ballet, Movement, and 
UT Interaction datasets, which reported accuracies of 96.66%, 96%, 92.75%, and 100%, re-
spectively. Comparison of accuracy with related advanced techniques showed the excel-
lent performance of the research. Similarly, Tran et al. (2020) [80] proposed a new method 
for real-time fingertip detection and gesture recognition using a depth camera and a 3D 
convolutional neural network. The system can accurately and reliably extract the position 
of fingertips and recognize gestures in real-time. They demonstrated the accuracy and 
robustness of the interface by evaluating the gesture recognition of various gestures. In 
addition, a tool was developed to manipulate computer programs to show the possibility 
of using gesture recognition. Experimental results showed that the proposed system has 
high gesture recognition accuracy. Therefore, it is deemed a good method for the future 
of manual HCI-based gesture interfaces. Chen et al. (2020) [81] conducted an in-depth 
review of data gloves and vision-based sensor systems and adopted corresponding mod-
eling methods. It was explained that these methods based on computer vision are very 
promising in hand pose estimation. 

HAR is a hot topic in academia and among other stakeholders. Today, it has a wide 
range of uses and can be used in many practical adoptions, such as health, assisted living, 
and elderly care. Both visual and sensor-based data are available for HAR. Visual data 
include video images and skeleton images, while sensor-based data are obtained as digital 
data from accelerometers, gyroscopes, and other devices. The classification tools and data 
types used are critical to HAR performance. Ozcan and Basturk (2020) [82] used stacked 
autoencoders (SAEs) to perform activity identification according to the sensor data. If 
structural optimization is left to the user experience, using SAE to find results with near-
optimal accuracy can be a challenging process. It aimed to increase the accuracy of HAR 
classification methods via heuristic optimization algorithms. Therefore, the structural pa-
rameters of SAE were optimized using a newly developed hybrid algorithm including 

Figure 6. Human motion recognition process in the video.

To achieve human action recognition in videos, Vishwakarma (2020) [79] developed
an effective algorithm that can use a single decisive posture to identify human behavior in
videos. To accomplish the task, the optical flow was utilized to extract the deterministic
posture and the feature was extracted by the double transform of wavelet. The double
transform was accomplished by the Gabor wavelet transform and Ridgelet transform.
Gabor wavelet transforms generate eigenvectors by computing first-order statistics of
various proportions and directions of input poses, which are robust to translation, scaling,
and rotation. The Ridgelet transform was utilized to calculate the direction-dependent
shape features of human behavior. The fusion features provide a powerful algorithm. The
validity of the algorithm was measured on the public Weizmann, Ballet, Movement, and
UT Interaction datasets, which reported accuracies of 96.66%, 96%, 92.75%, and 100%, re-
spectively. Comparison of accuracy with related advanced techniques showed the excellent
performance of the research. Similarly, Tran et al. (2020) [80] proposed a new method
for real-time fingertip detection and gesture recognition using a depth camera and a 3D
convolutional neural network. The system can accurately and reliably extract the position
of fingertips and recognize gestures in real-time. They demonstrated the accuracy and
robustness of the interface by evaluating the gesture recognition of various gestures. In
addition, a tool was developed to manipulate computer programs to show the possibility
of using gesture recognition. Experimental results showed that the proposed system has
high gesture recognition accuracy. Therefore, it is deemed a good method for the future
of manual HCI-based gesture interfaces. Chen et al. (2020) [81] conducted an in-depth
review of data gloves and vision-based sensor systems and adopted corresponding mod-
eling methods. It was explained that these methods based on computer vision are very
promising in hand pose estimation.

HAR is a hot topic in academia and among other stakeholders. Today, it has a wide
range of uses and can be used in many practical adoptions, such as health, assisted living,
and elderly care. Both visual and sensor-based data are available for HAR. Visual data
include video images and skeleton images, while sensor-based data are obtained as digital
data from accelerometers, gyroscopes, and other devices. The classification tools and
data types used are critical to HAR performance. Ozcan and Basturk (2020) [82] used
stacked autoencoders (SAEs) to perform activity identification according to the sensor
data. If structural optimization is left to the user experience, using SAE to find results with
near-optimal accuracy can be a challenging process. It aimed to increase the accuracy of
HAR classification methods via heuristic optimization algorithms. Therefore, the structural
parameters of SAE were optimized using a newly developed hybrid algorithm including
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particle swarm optimization and artificial swarm optimization algorithm in the internal
structure. Each algorithm performed 30 runs and the results were analyzed in detail by
statistical methods. The SAE supported by the hybrid algorithm gave the minimum error
and was the most robust algorithm.

This point was also verified by Khan et al. (2020) [83], who proposed a novel HAR
system under the use of directional gradients and histograms of deep features to incorporate
traditional handcrafted features. Initially, human contours were extracted with the help
of salience-based methods. In the first stage, motion and geometric features are extracted
from the selected channel, while the Chi-square distance between the extracted minimum
distance feature and the threshold-based minimum distance feature is calculated in the
second stage. Then, the extracted deep CNN and the handmade features were fused
together to generate a result vector. In addition, to address the curse of dimensionality, an
entropy-based feature selection technique was proposed to identify the most discriminant
features for classification using multiclass support vector machines. All simulations were
performed on publicly available benchmark datasets, including Weizmann, YouTube, UCF
Sports, and UT-Interaction. There was also a comparative assessment. Compared with a
few existing methods, the proposed model showed excellent performance.

Gesture recognition has attracted the attention of many researchers due to its wide
application in robotics, gaming, virtual reality, sign language, and HCI. Sign language
is a structured form of hand gesture and the most effective way to communicate with
hearing impairment. Coupled with the current variety of computer interfaces, users can
interact with virtual worlds in various ways. There are three major challenges, namely
hand segmentation, hand shape feature representation, and gesture sequence recognition
to develop an efficient sign language recognition system to recognize dynamically isolated
gestures in virtual environments. Traditional sign language recognition methods use
color-based hand segmentation algorithms to segment hands, handcrafted features are
extracted for hand shape representation, and hidden Markov models are used for sequence
recognition. Seinfeld et al. (2021) [84] identified a set of concepts related to different user
representations and conducted a multidisciplinary review of the multisensory and cognitive
factors behind the control and subjective experience of user representations. Aly and Aly
(2020) [85] proposed a new framework for signature-independent sign language recognition
using a variety of deep learning architectures under hand semantic segmentation, hand
shape feature representation, and deep recurrent neural networks. The recently developed
combined method called DeepLabv3 and semantic segmentation is trained using a set
of pixel-labeled hand images to extract the hand region from each frame of the input
video, using a deep Bidirectional Long Short-Term Memory (BiLSTM) recursive neural
network to recognize the extracted sequence of feature vectors. The BiLSTM network
contains three BiLSTM layers and a fully connected softmax layer. The performance of
the proposed method was evaluated using a challenging Arabic sign language database
containing 23 isolated words captured from three different users. Experimental results
show that the proposed framework outperforms state-of-the-art signer-independent test
strategy methods.

In addition to the field of virtual reality, one of the main mobile edge computing
technologies in healthcare monitoring systems is human motion recognition. Built-in multi-
functional sensors make smartphones a ubiquitous platform for acquiring and analyzing
data, allowing smartphones to perform human motion recognition. The task of identifying
human activities using accelerometers built into smartphones has been well addressed, but
in practice, these traditional methods fail to identify complex and real-time human activities
with multimodal and high-dimensional sensor data. Wan et al. (2020) [86] designed an
architecture based on a smartphone inertial accelerometer for human action recognition in
their study. As participants perform typical daily activities, the smartphone collects sensory
data sequences, extracts efficient features from the raw data, and then captures the user’s
physical behavior data through multiple three-axis accelerometers. It was concluded that
hand posture estimation is a great academic and technical challenge because of the struc-
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ture and dexterous movement of the human hand. Driven by advances in hardware and
artificial intelligence, various data glove prototypes and computer vision-based methods
have been proposed in recent years for accurate and fast hand pose estimation. However,
existing reviews either focus on data wearables or visual methods or are based on specific
types of cameras, such as depth cameras.

Combined with the above research results, the gesture interaction technology adopted
in the HCI intelligent system is comprehensively analyzed, and the improvement effect
after deep learning and artificial intelligence is combined (Table 2).

Table 2. Development status of deep learning technology in assisting gesture interaction in intelli-
gent systems.

Author and Year Research Scope The Interaction
Technology Adopted Results Summary and

Analysis

Pareek and Thakkar
(2020)

Human behavior
recognition

Public datasets and
Deep learning

Action recognition
technology and

applications of human
behavior recognition

are reviewed.

Content-based video
HCI, education,
healthcare, and

abnormal activity
detection can achieve
better results on the

basis of effective
datasets.

Tsai et al. (2020) Gesture recognition

Multiple visual
techniques and

connected component
labeling algorithm

A low-cost HCI system
with gesture

recognition function is
established, and the
recognition rate is

very high.

To perform gesture
interpretation quickly

and with high accuracy,
a reliable labeling

algorithm is needed.

Yang et al. (2020) Human action
recognition

Graph Convolutional
network and Human

skeleton modeling

Performance
comparable to
state-of-the-art

methods is achieved on
NTU-RGB+D and
HDM05 datasets.

Graph convolutional
neural networks can

help solve the
dependence

relationship between
unconnected distant
joints and improve

recognition accuracy.

Sun et al. (2020) Gesture recognition
algorithm

Dual stream
convolutional neural

network and
Kinect sensor

The multilevel feature
fusion model of dual
stream convolutional

neural network is
established and trained.

For gesture tracking
and recognition in

complex backgrounds,
the average detection
accuracy increased by
1.08% and the average

accuracy increased
by 3.56%.

Sensor technology,
artificial intelligence,

and big data
technology make the
HCI of video gesture

recognition more
natural and flexible.



Appl. Sci. 2022, 12, 11457 18 of 28

Table 2. Cont.

Author and Year Research Scope The Interaction
Technology Adopted Results Summary and

Analysis

Li et al. (2020) Gesture recognition Skeleton-guided
multimodal network

In this way, skeleton
features can guide RGB

features in action
recognition, to enhance

the important RGB
information closely
related to actions.

The single-mode
human behavior

recognition mode of
RGB or bone is
integrated and

complementary to
describe the action, and

the recognition
performance can be

optimized.

Afza et al. (2020) Gesture recognition

Sparse activation
function and feature
fusion and weighted

entropy-variance

The recognition rate is
97.9%, 100%, 99.3%,
and 94.5% in four

famous action datasets,
respectively.

The action recognition
technology based on

feature fusion and best
feature selection has

high recognition rate.

Chen et al. (2020) Gesture recognition Graph convolutional
network

The new graph
convolution network

based on structure
graph pooling scheme

and joint channel
attention module

reduces the number of
parameters and

computational cost.

An effective feature
aggregation method is

one of the keys to
skeleton-based action
recognition. Attention

mechanisms can
enhance the model’s

ability to classify
confusing behaviors.

Zhu et al. (2020) Gesture recognition Two-way LSTM-CNN

The new
spatiotemporal model

of end-to-end
bidirectional low

frequency modulation
(BiLSTM-CNN) is
effective on NTU

RGB+D, SBU
interaction, and

UTD-MHAD datasets.

Efficient and low-cost
human bone capture
systems rely on the

complementary
performance of neural

networks.

Yang et al. (2020) Gesture recognition
Spatiotemporal

attention convolutional
neural networks

The spatiotemporal
attention mechanism
automatically mines

discriminative
temporal fragments

from long, noisy videos.
State-of-the-art

performance was
achieved on datasets
UCF-101 (95.8%) and

HMDB-51 (71.5%).

Convolutional neural
networks alone can

achieve high accuracy
in object recognition of
delicate images, but the
improvement effect of
motion recognition in
video is not obvious.

Table 2 shows that there are many research achievements on human action recognition
in still images and videos. In particular, action recognition combined with convolutional
neural networks and long short-term memory networks can greatly improve the accuracy
and precision of action recognition. However, it also faces some technical difficulties,
therefore, it is necessary to synthesize or improve the traditional neural network to achieve
a better recognition effect. Therefore, in the future, more researchers will conduct multidi-
mensional analysis and propose more solutions.
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6. Natural Language Processing and HCI

Human–computer dialog is one of the most natural ways of HCI. Its development
has influenced and promoted the progress of speech recognition and synthesis, natural
language understanding [87–89], dialog management, and natural language generation.
Due to the limitations of interaction efficiency and ergonomics, it is difficult for gesture
interaction and other methods to become the mainstream HCI mode in the short term.
However, products with voice interaction capability have been widely studied since their
application [90–92]. In terms of interactive means, users can give orders, play music, control
their home, and perform other tasks only through dialog with related products, which
can truly free their hands and improve the happiness index of life. Natural language
understanding (NLU) can enable the computer to understand the user’s language to make
further decisions or complete interactive actions, which is an important task for products
with voice interaction capabilities to handle [93–95], such as machine translation, man–
machine dialog robots, and smart homes [96]. It is popular to adopt deep learning to
solve some problems in natural language processing, and the performance will be better
compared with traditional machine learning methods [97]. However, deep learning still
belongs to the category of machine learning. Many concepts of machine learning are
common in deep learning, such as datasets, loss functions, overfitting, and other basic
concepts. Many scholars have made efforts in this field.

For example, in the research of Yunanto et al. (2019) [98], to build educational games
to realize artificial intelligence, the implementation method of establishing a Non-Player
Character (NPC) based on natural language processing was implemented so that NPC can
automatically answer questions about English. The average score of educational games
with this NPC was higher than 75% of users. The presence of NPCs in educational games
can increase user interest. With this natural language processing technique, the popularity
ranking of the educational game genre can be increased.

Dialog robots are used in many systems. If a robot accepts a task instruction in
natural language, it must first decode the instruction to understand the user’s intention.
Therefore, Pramanick et al. (2022) [99] introduced a system named Talk-to-Resolve (TTR),
which enables the robot to solve the deadlock by visually observing the scene to initiate
coherent dialog and communication with the coach. Using the observed scene and the
given instructions to calculate the robot’s next action together can greatly improve the
accuracy of the conversation. While robots should observe their surroundings in different
ways, natural gestures and spoken words are the most convenient ways for humans to
interact with robots. Only when the robot can understand this type of interaction will it be
possible to achieve a true human–machine dialog. This point is reflected in the study of El-
Komy et al. (2022) [100]. In this study, smartphones with visual, language, and intelligence
functions were used to help visually impaired people avoid obstacles, and voice output
was used to remind them, which is undoubtedly good news for blind people. Recupero
and Spiga (2020) [101] proposed a method to allow NAO humanoid robots to perform user-
spoken natural language commands, define an action robot ontology, perform machine
reads on the input text given by the user (natural language), and attempt to identify the
action commands to be performed by the robot. This research is a large step forward for
human–machine conversations and for machines’ understanding of natural language.

To achieve a real natural dialog with emotion in HCI, emotion processing and recogni-
tion are needed [102–104]. Li et al. (2019) [105] proposed a method of combining prosody
valence and text emotion through decision-level fusion, which reduced fatal recogni-
tion errors and thus improved user experience. According to the distribution inferred
from person-to-person conversation data, the parameters estimated by the recognition
function were used for prediction. The evaluation of ten participants showed that the
system enhanced by the module can effectively carry out natural conversations. Similarly,
Jia (2021) [106] proposed a novel sentiment classification framework. The framework can
identify semantic emotional terms and emoticons. This strategy resulted in multi-emotion
and polarity classifications that were 3% to 4% more accurate than the next best-performing
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baseline classifier. This is very helpful for enhancing the interaction between humans and
chatbots and for emotion classification. However, even without speech recognition errors,
robots may face difficulties interpreting natural language commands [107,108]. Therefore,
Marge and Rudnicky (2019) [109] proposed a robust method to deal with poor communica-
tion between humans and robots in the task-oriented oral dialog. When a robot encounters
a communication problem, it can look back at its interaction history to consider how it
solved similar situations. The research helps robots solve problems in time when they
encounter difficult instructions that are difficult to interpret.

One of the additional chatbot developments is to help people use named entity recog-
nition in the text to book flights, track sentences to detect user intent and respond when the
context of the conversation domain is limited. Permatasari and Maharani (2021) [110] used
NLU in their study to analyze and design chatbot interactions, aiming to make the robot
understand the user’s meaning and provide the best and correct response. It turns out
that dialog managers using reinforcement learning can bring low costs to computation in
chatbots. Therefore, the combination of natural language understanding and reinforcement
learning is very helpful for robot humanization.

Ghit,ă et al. (2020) [111] introduced a social robot framework that is designed in a
modular and powerful way for the assisted care scenario. The framework includes robot
services for navigation, human detection and recognition, multilingual natural language
interaction and dialog management, as well as activity recognition and general behavior
composition. In addition, the dialog was widely used for verbal interaction between
humans and robots, such as auxiliary robots in hospitals. However, the robot is usually
limited by the scheduled conversation, so it is difficult to understand the new words of
the new target. Rofi’ah et al. (2021) [112] discussed conversations in Bahasa Indonesia
about entertainment, motivation, emergency situations, and ways to help with knowledge
growth. In emergency situations, patients were able to request a robot to call a nurse.
Reinforcement learning methods to overcome the limitations of robot knowledge were
adopted to achieve the new dialog goals of the patient assistant.

The above application of natural language processing in HCI is summarized in Table 3.

Table 3. Development status of human–computer interaction in natural language processing.

Author and Year Research Scope The Interaction
Technology Adopted Results Summary and

Analysis

Yunanto et al. (2019) Educational games and
NPCS

Natural language
processing

The average score of an
educational game with
this NPC is higher than

75% of users.

The presence of
intelligent NPCS in

educational games can
increase user interest.

Recupero and Spiga
(2020)

Human–computer
dialog and Natural

language processing

Natural language and
speech interaction

For each action the
robot can perform, a

corresponding element
is simulated in the

ontology to understand
human natural

language.

Robots are being given
the ability to read

natural language more
intelligently, a huge

step forward in
understanding human
movement and speech.

Li et al. (2019) Man–machine dialog
and sentiment analysis

Multimodal sentiment
analysis and Natural
language processing

The user experience is
improved by reducing
low-level identification

errors.

To achieve a truly
natural

human–computer
conversation, it needs
to combine sentiment

analysis.
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Table 3. Cont.

Author and Year Research Scope The Interaction
Technology Adopted Results Summary and

Analysis

Marge and Rudnicky
(2019)

Speech recognition and
HCI

TeamTalk and Nearest
neighbor algorithm

A recovery strategy is
selected for virtual

robots that encounter
unexplained
instructions

Information from the
robot’s path planner
and its surroundings

can help the robot
detect and recover from
miscommunication in a

conversation.

Jia (2021) The man–machine
dialog

Emotion classification
and Language

processing

This strategy makes the
multi-emotion and

polarity classification
3% to 4% more accurate

than the next
best-performing

baseline classifier.

It makes sense that
emoticons should be

considered in
sentiment classification

schemes.

Yunanto et al. (2019) Educational games and
NPCS

Natural language
processing

The average score of an
educational game with
this NPC is higher than

75% of users.

The presence of
intelligent NPCS in

educational games can
increase user interest.

Recupero and Spiga
(2020)

Human–computer
dialog and Natural

language processing

Natural language
processing and speech

interaction

For each action the
robot can perform, a

corresponding element
is simulated in the

ontology to understand
human natural

language.

Robots are being given
the ability to read

natural language more
intelligently, a huge

step forward in
understanding human
movement and speech.

Ghit,ă et al. (2020) Social robot

Natural language
processing and robot
operating system and

voice interaction

It focuses on the
quantitative evaluation

of each functional
module, discussing

their performance and
possible improvements

in different settings.

Social robots can
provide economic

efficiency and growth
in areas such as retail,

entertainment, and
active and assisted

living.

Rofi’ah et al. (2021) Dialog robot Reinforcement learning
and voice interaction

Reinforcement learning
approaches that

overcome the
knowledge limitations
of robots achieve new

dialog goals for patient
assistants.

The hospital’s assistive
robot uses

reinforcement learning
to help it grow its

database of knowledge
conversations, making

the robot more
understanding.

7. Summary of the Application Status of Deep Learning in HCI

Based on the above studies on the application of deep learning in different fields of
HCI systems, the algorithms (methods) and datasets used in these studies are summarized
in Table 4.

Hence, for the HCI system, deep learning, regardless of speech recognition, emotion
recognition, or human–computer dialog, makes the established system more intelligent and
can greatly enhance the ability of the machine model to identify and classify and analyze
confusing behaviors. HCI creates a new generation of social information technology by
understanding the relationship among information technology, human life, and social
development to achieve the goal of constantly challenging the limits of human potential.
Deep learning provides technical support for HCI, which makes it no longer a simple dialog
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between humans and machines but also contains emotional information, thus making HCI
develop on a deeper level.

Table 4. Summary of algorithms and datasets used by deep learning technology in intelligent
HCI systems.

Author and Year Research Scope Algorithm (Model) Dataset

Hazer-Rau et al. (2020) Emotional computing
Affective computing and
multimodal data analysis

methods
uulmMAC

Iio et al. (2020) Social robot
The

question–answer–response
dialog model

A collection of conversations
from the nursing home site

Li (2021) Gesture recognition HCI model of manipulator
operated by manipulator Subject site collection

Calvo et al. (2021) Speech recognition and
interaction

Mobile and personal voice
assistant platforms

Questionnaire survey results
and on-site evaluation

Tao and Busso (2020) Speech recognition and
interaction

Multitask learning and
automatic audiovisual speech

recognition systems
An audio–visual corpus

Duan et al. (2021) Gesture recognition Weight adaptive algorithm
combining different features Gesture image dataset

Wang et al. (2020) Context awareness

Context-aware citation
recommendation model based

on end-to-end memory
network

Three real datasets

Miao et al. (2020) Speech recognition

Online hybrid based on
connectionist temporal
classification/attention

end-to-end automatic speech
recognition architecture

LibriSpeech

Ho et al. (2020) Speech emotion recognition

Multimodal speech emotion
recognition method based on
multilevel multi-head fusion

attention mechanism and
recurrent neural network

CMU-MOSEI, IEMOCA and
MELD

Chen et al. (2020) Motion recognition

A novel graph convolution
network based on structure
graph pooling scheme and

joint channel attention module

NTU-RGB+D, Kinetics-M, and
SYSU-3D

Zhu et al. (2020) Motion recognition

A new spatiotemporal model
of end-to-end bidirectional
Low-frequency modulation

(BiLSTM-CNN)

NTU RGB+D, SBU Interaction
and UTD-MHAD

Yang et al. (2020) Motion recognition
Spatiotemporal concern

convolutional neural network
model

UCF-101 (95.8%) and
HMDB-51 (71.5%)

Aly and Aly (2020) Gesture recognition
Hidden Markov model and

Color-based hand
segmentation algorithm

Hand graphics collection
based on DeepLabv3

Li et al. (2019) Man–machine dialog

An algorithm that combines
prosody valence with text

emotion through
decision-level fusion

A survey of the subject’s
experience
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Table 4. Cont.

Author and Year Research Scope Algorithm (Model) Dataset

Marge and Rudnicky (2019) Man–machine dialog Nearest neighbor learning
algorithm

Crowd-sourced data and user
experience data

Jia (2021) Dialog robot
Word2vec and vector

arithmetic and improved
k-means similarity calculation

Emotional dictionary

Permatasari and Maharani
(2021) Robot

Support vector machine and
feature extraction

combination algorithm
Chatbot dialog collection

8. Challenges of Deep Learning in Intelligent HCI

HCI is the interactive relationship between the system and users, which uses dialog
language between people and computers that completes the process of information ex-
change between man and computer in a certain interactive way. The human–computer
interface refers to the part visible to the user, on which the user communicates with the
system and performs operations. In HCI, the natural interaction behavior of human beings
and the state change of physical space are multichannel, imprecise, and very unstable
modes. As a cognitive subject, it is a great challenge for computers to understand human
natural interactions, intentions, and questions and to provide accurate feedback. At present,
there is still much room to improve the accuracy and real-time performance of natural
perception technology. Human physiology and psychological changes can affect the state
of interaction at any time. In the era of the Internet of Everything, to compensate for the
limitations of science and technology, experience design has never been as important as it
is now. The core of HCI design is gradually developing toward the direction of intelligence,
humanization, and scenarization. With so many smart devices, so many screens, and so
many notifications, there is so much information overload that users cannot even digest it.
The more information users acquire, the more anxious they become. Target-driven business
competition results in every device and software competing for users’ limited time.

Speculation about the next revolutionary method of HCI is the focus of the industry. It
was described as the closest thing to natural human interaction, which includes voice inter-
action, gesture recognition in multiple scenes, brain–computer interaction by connecting
the human brain and computer, holographic operation in different scenes, and full interface
without a touch screen. These interaction modes have relatively high requirements on tech-
nology and product hardware, and it may be difficult to give full play to their advantages
under the current technical constraints. However, as future technologies and products
develop to a certain stage, new mainstream HCI will emerge in them. Voice interaction
is viewed as one of the primary traffic entry points for users in many future scenarios.
Therefore, seeking reliable and effective far-field speech technology breakthroughs has
become an urgent demand in the current industry and academia. Multichannel microphone
array technology was proven to significantly improve the quality of speech recognition.
When the number of signal acquisition channels is large enough, additional multichannel
synchronization technology needs to be developed. In addition, at present, there are few
integrated multiple microphones in consumer electronics and few relevant research results,
which also increases the difficulty in the progression of this hardware solution. In speech
recognition systems, the design of microphone array signal processing algorithms should
be emphasized.

Far-field speech recognition is mainly faced with echo interference, indoor reverber-
ation, multisource interference, and non-stationary noise interference. To solve the echo
interference problem, echo cancellation technology should be adopted to remove the sound
played by the device from the signal received by the microphone. The technology is already
well established on handheld mobile devices, including open-source software such as speex
and webrtc. However, to achieve a greater echo suppression effect, the two schemes use
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abundant nonlinear processing methods. The speech recognition engine is very sensitive to
the nonlinear processing of speech signals. Therefore, if direct near-field echo cancellation
is used in the field of far-field speech recognition, the effect is not good. Deep learning
outperforms traditional models in machine learning tasks. A deep neural network is an
effective solution because of the ability to automatically learn the time correlation of time
series. However, choosing the most convenient deep neural network and its parameteriza-
tion is a complex task that requires considerable professional knowledge. Therefore, the
applicability of the existing architecture to different prediction tasks needs to be further
explored. The success of the deep Web is remarkable. They have made visual research very
popular, dramatically increased the interaction between academia and industry, allowed
visual technology to be applied to many disciplines, and produced many important results.
However, the limitation of the depth of the network is also more prominent; it cannot
be interpreted and is vulnerable to fraud, which is too dependent on annotation data
features. Hence, many researchers have issued the call of “Deep Learning is dead”, calling
for attention to Deep Learning outside of the other methods, therefore, Deep Learning faces
a great challenge in the future.

9. Conclusions

With the progression of science and technology, the HCI method has developed from
traditional print media to intelligent media. Gesture control, voice control, dialog robots,
and other VR, AR, and AI interactive devices have emerged in an endless stream, bringing
earth-shaking changes to people’s lives. Gesture control has several advantages over
traditional touch screens. Gesture control is an alternative to voice control, especially in
public areas. Virtual reality glasses allow users to immerse themselves in an artificial three-
dimensional world. Virtual, augmented, and mixed reality is utilized for entertainment,
gaming and industry 4.0, which also allow for remote control. As a result, mankind
was able to expand its field of experience and action. Machines will continue to become
better at interpreting signals, such as when an autonomous car responds correctly to
hand signals from a traffic policeman. Caregiving robots assess the needs of those who
cannot express their feelings. The more complex contributions that the machines make, the
more imperative it becomes for them to communicate effectively with their users. Speech
recognition and human movement recognition based on deep learning have improved
the accuracy and realism of HCI. HCI is just the beginning. In the future, more data from
different sensors will be combined to capture and control complex processes.
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